analyser_hj3415 2.9.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- analyser_hj3415/.DS_Store +0 -0
- analyser_hj3415/__init__.py +0 -0
- analyser_hj3415/cli.py +234 -0
- analyser_hj3415/eval.py +960 -0
- analyser_hj3415/tsa.py +620 -0
- analyser_hj3415/workroom/__init__.py +0 -0
- analyser_hj3415/workroom/mysklearn.py +50 -0
- analyser_hj3415/workroom/mysklearn2.py +39 -0
- analyser_hj3415/workroom/score.py +342 -0
- analyser_hj3415/workroom/trash.py +289 -0
- analyser_hj3415-2.9.3.dist-info/METADATA +232 -0
- analyser_hj3415-2.9.3.dist-info/RECORD +14 -0
- analyser_hj3415-2.9.3.dist-info/WHEEL +4 -0
- analyser_hj3415-2.9.3.dist-info/entry_points.txt +3 -0
@@ -0,0 +1,39 @@
|
|
1
|
+
# 필요한 라이브러리 불러오기
|
2
|
+
import numpy as np
|
3
|
+
from sklearn.linear_model import LinearRegression
|
4
|
+
from sklearn.model_selection import train_test_split
|
5
|
+
import matplotlib.pyplot as plt
|
6
|
+
|
7
|
+
# 1. 데이터 준비 (주택 면적, 가격)
|
8
|
+
# 예를 들어 면적에 따른 주택 가격 데이터 (면적: X, 가격: y)
|
9
|
+
X = np.array([[1500], [2000], [2500], [3000], [3500], [4000]]) # 면적 (단위: square feet)
|
10
|
+
y = np.array([300000, 400000, 500000, 600000, 700000, 800000]) # 가격 (단위: dollars)
|
11
|
+
|
12
|
+
# 2. 학습 데이터와 테스트 데이터를 나누기 (80% 학습, 20% 테스트)
|
13
|
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
14
|
+
|
15
|
+
# 3. 선형 회귀 모델 생성
|
16
|
+
model = LinearRegression()
|
17
|
+
|
18
|
+
# 4. 모델을 학습시키기 (train 데이터를 사용)
|
19
|
+
model.fit(X_train, y_train)
|
20
|
+
|
21
|
+
# 5. 테스트 데이터로 예측 수행
|
22
|
+
y_pred = model.predict(X_test)
|
23
|
+
|
24
|
+
# 6. 예측 결과 출력
|
25
|
+
print("실제 값:", y_test)
|
26
|
+
print("예측 값:", y_pred)
|
27
|
+
|
28
|
+
# 7. 시각화를 통해 학습 결과 확인
|
29
|
+
plt.scatter(X_train, y_train, color='blue', label='Training data') # 학습 데이터
|
30
|
+
plt.scatter(X_test, y_test, color='green', label='Test data') # 실제 값
|
31
|
+
plt.plot(X_test, y_pred, color='red', label='Prediction') # 예측된 값
|
32
|
+
plt.xlabel('House Size (square feet)')
|
33
|
+
plt.ylabel('Price (dollars)')
|
34
|
+
plt.legend()
|
35
|
+
plt.show()
|
36
|
+
|
37
|
+
# 9. 모델 평가 (R^2 스코어)
|
38
|
+
r2_score = model.score(X_test, y_test)
|
39
|
+
print(f"모델의 R^2 스코어: {r2_score:.2f}")
|
@@ -0,0 +1,342 @@
|
|
1
|
+
import math
|
2
|
+
import numpy
|
3
|
+
import pprint
|
4
|
+
import copy
|
5
|
+
from typing import Tuple
|
6
|
+
|
7
|
+
from db_hj3415 import myredis, mymongo
|
8
|
+
from utils_hj3415 import utils
|
9
|
+
|
10
|
+
import logging
|
11
|
+
|
12
|
+
logger = logging.getLogger(__name__)
|
13
|
+
formatter = logging.Formatter('%(levelname)s: [%(name)s] %(message)s')
|
14
|
+
ch = logging.StreamHandler()
|
15
|
+
ch.setFormatter(formatter)
|
16
|
+
logger.addHandler(ch)
|
17
|
+
logger.setLevel(logging.WARNING)
|
18
|
+
|
19
|
+
|
20
|
+
|
21
|
+
def mil(code: str, expect_earn: float) -> Tuple[int, int, int, int]:
|
22
|
+
"""
|
23
|
+
이익 지표 일반적인 기준 설정
|
24
|
+
|
25
|
+
1. 비율이 10% 이상일 경우 주의:
|
26
|
+
• 이 비율이 10%를 넘을 경우, 이는 기업의 순이익이 현금 흐름과 비교하여 너무 높아졌음을 나타냅니다.
|
27
|
+
• 순이익이 과도하게 부풀려졌을 가능성이 있으며, 회계적인 항목(예: 미수금, 재고자산의 평가차익 등)이나 비현금성 이익이 이익에 크게 기여하고 있을 수 있습니다. 이런 경우, 현금 흐름이 제대로 발생하지 않고 있음에도 순이익만 높게 기록되는 상황이 발생할 수 있어 이익의 질이 낮다고 평가됩니다.
|
28
|
+
• 특히, 비율이 지속적으로 높다면 재무 건전성에 문제가 있을 수 있습니다.
|
29
|
+
2. 비율이 5% 이상 ~ 10% 미만일 때:
|
30
|
+
• 비율이 5% ~ 10% 사이라면, 기업의 이익이 여전히 현금 흐름과 괴리가 있지만, 업종에 따라 일정 부분은 허용될 수 있습니다.
|
31
|
+
• 예를 들어, 기술 기업이나 고성장 산업에서는 초기 투자나 R&D 비용이 많기 때문에 순이익과 현금 흐름의 차이가 다소 발생할 수 있습니다. 이런 경우 비율이 5%를 넘더라도 성장성을 고려한 투자 관점에서 용인될 수 있습니다.
|
32
|
+
• 다만, 일반적인 제조업 등 현금 창출이 중요한 업종에서는 5% 이상의 괴리도 주의 깊게 볼 필요가 있습니다.
|
33
|
+
3. 비율이 5% 미만일 때:
|
34
|
+
• 비율이 5% 미만이라면, 기업의 순이익과 현금 흐름 간의 차이가 크지 않으므로, 이익의 질이 높고 재무 건전성이 양호하다고 평가할 수 있습니다.
|
35
|
+
• 특히 음수일 경우, 영업활동에서 벌어들인 현금이 순이익을 초과한다는 것을 의미하므로, 이는 매우 긍정적인 신호입니다. 기업이 순이익보다도 더 많은 현금을 창출하고 있는 상태로, 이익이 실제 현금 흐름으로 뒷받침되고 있음을 나타냅니다.
|
36
|
+
|
37
|
+
참고할 수 있는 기준
|
38
|
+
1. 경고 신호: 10% 이상
|
39
|
+
• 비율이 10% 이상이라면, 기업의 이익이 실제 현금 흐름과 크게 괴리되어 있음을 의미하며, 이익의 질이 낮고 재무 건전성이 떨어질 가능성이 큽니다. 특히, 이 비율이 지속적으로 높다면, 주의가 필요합니다.
|
40
|
+
2. 주의: 5% ~ 10%
|
41
|
+
• 이 비율은 어느 정도 괴리가 있는 상태이며, 업종 특성에 따라 감안할 수 있지만, 일반적인 기업의 경우 주의를 요합니다.
|
42
|
+
3. 안정적: 5% 미만
|
43
|
+
• 5% 미만은 비교적 안정적인 상태로 평가될 수 있습니다. 이익과 현금 흐름 간의 괴리가 크지 않기 때문에, 기업의 재무 상태와 이익의 질이 건전하다고 볼 수 있습니다.
|
44
|
+
4. 매우 긍정적: 음수
|
45
|
+
• 비율이 음수일 경우, 현금 창출 능력이 매우 우수한 상태입니다. 현금 흐름이 순이익보다 더 크므로, 이는 매우 긍정적인 신호로 평가됩니다.
|
46
|
+
|
47
|
+
사례별 해석
|
48
|
+
|
49
|
+
1. 비율이 15%:
|
50
|
+
• 회사는 순이익이 영업활동현금흐름에 비해 과도하게 높습니다. 이는 비현금성 이익이 많이 포함되어 있거나, 회계적인 처리로 인해 순이익이 부풀려졌을 가능성이 큽니다. 기업의 이익 질에 의문을 가져야 하며, 장기적으로 재무 구조에 문제가 생길 수 있습니다.
|
51
|
+
2. 비율이 7%:
|
52
|
+
• 괴리가 존재하지만, 일부 산업에서는 용인될 수 있는 범위입니다. 다만, 현금 흐름이 안정적인지 추가적인 분석이 필요합니다.
|
53
|
+
3. 비율이 -3%:
|
54
|
+
• 매우 긍정적인 상황입니다. 회사는 순이익보다 더 많은 현금을 벌어들이고 있어, 이익의 질이 매우 높으며, 주주들에게도 더 많은 이익을 돌려줄 가능성이 큽니다.
|
55
|
+
|
56
|
+
기타 고려 사항
|
57
|
+
|
58
|
+
• 업종별 차이: 기술 기업, 스타트업 등은 고정자산 투자나 R&D 비용이 많아 현금 흐름과 이익이 괴리될 수 있습니다. 이 경우 이익의 질이 낮다고 단정할 수는 없으므로 산업 특성을 고려해야 합니다.
|
59
|
+
• 기업의 성장 단계: 빠르게 성장하는 기업일수록 현금 흐름보다 순이익이 클 수 있지만, 시간이 지나면서 현금 창출 능력이 증가할 수 있습니다.
|
60
|
+
• 비현금성 항목 분석: 감가상각, 미수금 등의 비현금성 항목이 이익에 얼마나 영향을 미치는지 분석하여 이익의 질을 파악하는 것이 중요합니다.
|
61
|
+
ROIC 평가 기준
|
62
|
+
|
63
|
+
1. 10% 이상:
|
64
|
+
• 일반적으로 ROIC가 10% 이상이면 매우 우수한 기업으로 평가됩니다.
|
65
|
+
• 이는 기업이 투자된 자본으로 높은 수익을 창출하고 있음을 의미하며, 자본의 사용 효율성이 매우 높다는 것을 나타냅니다.
|
66
|
+
2. 7% ~ 10%:
|
67
|
+
• ROIC가 7%에서 10% 사이라면, 기업은 자본을 비교적 효율적으로 사용하고 있는 상태입니다.
|
68
|
+
• 자본비용(WACC)이 이보다 낮다면, 투자자는 기업이 가치 창출을 하고 있다고 판단할 수 있습니다.
|
69
|
+
3. 5% ~ 7%:
|
70
|
+
• 이 범위에서는 보통 수준의 효율성을 보여줍니다. ROIC가 자본비용보다 낮지 않다면 투자자에게 긍정적일 수 있지만, 이 수익률이 경쟁사 대비 낮다면 경쟁력이 떨어질 수 있음을 시사할 수 있습니다.
|
71
|
+
4. 5% 미만:
|
72
|
+
• ROIC가 5% 미만이라면, 기업은 자본을 비효율적으로 사용하고 있음을 의미할 수 있습니다.
|
73
|
+
• 자본을 투입해 수익을 내지 못하거나, 투자된 자본으로부터 적절한 수익을 창출하지 못하고 있는 상태일 수 있습니다.
|
74
|
+
:param code:
|
75
|
+
:param expect_earn:
|
76
|
+
:return:
|
77
|
+
"""
|
78
|
+
|
79
|
+
mil_dict = eval.mil(code)
|
80
|
+
|
81
|
+
# print(pprint.pformat(mil_dict, width=200))
|
82
|
+
|
83
|
+
# 주주수익률 평가
|
84
|
+
if math.isnan(mil_dict['주주수익률']):
|
85
|
+
score1 = 0
|
86
|
+
else:
|
87
|
+
주주수익률평가 = math.ceil(mil_dict['주주수익률'] - (expect_earn * 100))
|
88
|
+
score1 = 0 if 0 > 주주수익률평가 else 주주수익률평가
|
89
|
+
|
90
|
+
# 이익지표 평가
|
91
|
+
score2 = 10 if mil_dict['이익지표'] < 0 else 0
|
92
|
+
|
93
|
+
# 투자수익률 평가
|
94
|
+
MAX3 = 20
|
95
|
+
score3 = 0
|
96
|
+
roic = mil_dict['투자수익률']['ROIC']
|
97
|
+
roe = mil_dict['투자수익률']['ROE']
|
98
|
+
if math.isnan(roic) or roic <= 0:
|
99
|
+
# roic 가 비정상이라 평가할 수 없는 경우
|
100
|
+
if 10 < roe <= 20:
|
101
|
+
score3 += round(MAX3 * 0.333)
|
102
|
+
elif 20 < roe:
|
103
|
+
score3 += round(MAX3 * 0.666)
|
104
|
+
elif 0 < roic:
|
105
|
+
# roic 로 평가할 수 있는 경우
|
106
|
+
if 0 < roic <= 15:
|
107
|
+
score3 += round(MAX3 * 0.333)
|
108
|
+
elif 15 < roic <= 30:
|
109
|
+
score3 += round(MAX3 * 0.666)
|
110
|
+
elif 30 < roic:
|
111
|
+
score3 += MAX3
|
112
|
+
|
113
|
+
# PFCF 평가
|
114
|
+
pfcf_dict = mil_dict['가치지표']['PFCF']
|
115
|
+
_, pfcf = mymongo.C1034.latest_dict_value(pfcf_dict)
|
116
|
+
|
117
|
+
logger.debug(f'recent pfcf {_}, {pfcf}')
|
118
|
+
try:
|
119
|
+
p = round(-40 * math.log10(pfcf) + 40)
|
120
|
+
except ValueError:
|
121
|
+
p = 0
|
122
|
+
score4 = 0 if 0 > p else p
|
123
|
+
|
124
|
+
return score1, score2, score3, score4
|
125
|
+
|
126
|
+
|
127
|
+
def blue(code: str) -> Tuple[int, int, int, int, int]:
|
128
|
+
"""회사의 안정성을 보는 지표들
|
129
|
+
|
130
|
+
0을 기준으로 상태가 좋치 않을 수록 마이너스 값을 가진다.
|
131
|
+
|
132
|
+
Returns:
|
133
|
+
tuple : 유동비율, 이자보상배율, 순부채비율, 순운전자본회전율, 재고자산회전율 평가 포인트
|
134
|
+
|
135
|
+
Notes:
|
136
|
+
"""
|
137
|
+
def _calc_point_with_std(data: dict) -> int:
|
138
|
+
"""표준편차를 통해 점수를 계산하는 내부 함수
|
139
|
+
|
140
|
+
Args:
|
141
|
+
data(dict): 재무재표상의 연/분기 딕셔너리 데이터
|
142
|
+
"""
|
143
|
+
NEG_MAX = -5
|
144
|
+
d_values = [i for i in data.values() if not math.isnan(i)]
|
145
|
+
logger.debug(f'd_values : {d_values}')
|
146
|
+
if len(d_values) == 0:
|
147
|
+
p = NEG_MAX
|
148
|
+
else:
|
149
|
+
std = numpy.std(d_values)
|
150
|
+
# 표준편차가 작을수록 데이터의 변환가 적다는 의미임.
|
151
|
+
logger.debug(f'표준편차 : {std}')
|
152
|
+
p = NEG_MAX if float(std) > -NEG_MAX else -math.floor(float(std))
|
153
|
+
|
154
|
+
return int(p)
|
155
|
+
|
156
|
+
c104y = myredis.C104(code, 'c104y')
|
157
|
+
|
158
|
+
blue_dict = eval.blue(code)
|
159
|
+
|
160
|
+
# print(pprint.pformat(blue_dict, width=200))
|
161
|
+
|
162
|
+
def 유동비율평가(유동비율: float) -> int:
|
163
|
+
# 채점은 0을 기준으로 마이너스 해간다. 즉 0이 제일 좋은 상태임.
|
164
|
+
# 유동비율 평가 - 100 이하는 문제 있음
|
165
|
+
NEG_MAX = -10
|
166
|
+
if math.isnan(유동비율) or 유동비율 <= 0:
|
167
|
+
p = NEG_MAX
|
168
|
+
elif math.isinf(유동비율):
|
169
|
+
p = 0
|
170
|
+
else:
|
171
|
+
p = 0 if 100 < round(유동비율) else NEG_MAX + round(유동비율/10)
|
172
|
+
logger.debug(f'유동비율평가 point : {p}')
|
173
|
+
return int(p)
|
174
|
+
|
175
|
+
p1 = 유동비율평가(blue_dict['유동비율'])
|
176
|
+
|
177
|
+
def 이자보상배율평가(이자보상배율: tuple) -> int:
|
178
|
+
# 이자보상배율평가 : 1이면 자금사정 빡빡 5이상이면 양호
|
179
|
+
NEG_MAX = -5
|
180
|
+
최근이자보상배율q, dict_y = 이자보상배율
|
181
|
+
|
182
|
+
if math.isnan(최근이자보상배율q) or 최근이자보상배율q <= 1:
|
183
|
+
# 최근 분기의 값이 비정상이면 최근 년도를 한번 더 비교해 보지만 좀더 엄격하게 전년대비도 비교한다.
|
184
|
+
|
185
|
+
_, 최근이자보상배율y = mymongo.C1034.latest_dict_value(dict_y)
|
186
|
+
c104y.page = 'c104y'
|
187
|
+
전년대비 = c104y.find_yoy(title='이자보상배율')
|
188
|
+
|
189
|
+
if math.isnan(최근이자보상배율y) or 최근이자보상배율y <= 1 or math.isnan(전년대비) or 전년대비 < 0:
|
190
|
+
p = NEG_MAX
|
191
|
+
else:
|
192
|
+
p = 0 if 5 < 최근이자보상배율y else NEG_MAX + round(최근이자보상배율y)
|
193
|
+
else:
|
194
|
+
p = 0 if 5 < 최근이자보상배율q else NEG_MAX + round(최근이자보상배율q)
|
195
|
+
logger.debug(f'이자보상배율평가 point : {p}')
|
196
|
+
return int(p)
|
197
|
+
|
198
|
+
p2 = 이자보상배율평가(blue_dict['이자보상배율'])
|
199
|
+
|
200
|
+
def 순부채비율평가(순부채비율: tuple) -> int:
|
201
|
+
# 부채비율은 업종마다 달라 일괄비교 어려우나 순부채 비율이 20%이하인것이 좋고 꾸준히 늘어나지 않는것이 좋다.
|
202
|
+
# 순부채 비율이 30%이상이면 좋치 않다.
|
203
|
+
NEG_MAX = -5
|
204
|
+
최근순부채비율q, dict_y = 순부채비율
|
205
|
+
|
206
|
+
if math.isnan(최근순부채비율q) or 최근순부채비율q >= 80:
|
207
|
+
# 최근 분기의 값이 비정상이면 최근 년도를 한번 더 비교해 보지만 좀더 엄격하게 전년대비도 비교한다.
|
208
|
+
_, 최근순부채비율y = mymongo.C1034.latest_dict_value(dict_y)
|
209
|
+
c104y.page = 'c104y'
|
210
|
+
전년대비 = c104y.find_yoy(title='순부채비율')
|
211
|
+
if math.isnan(최근순부채비율y) or 최근순부채비율y >= 80 or math.isnan(전년대비) or 전년대비 > 0:
|
212
|
+
p = NEG_MAX
|
213
|
+
else:
|
214
|
+
p = 0 if 최근순부채비율y < 30 else round((30 - 최근순부채비율y) / 10)
|
215
|
+
else:
|
216
|
+
p = 0 if 최근순부채비율q < 30 else round((30 - 최근순부채비율q) / 10)
|
217
|
+
logger.debug(f'순부채비율평가 point : {p}')
|
218
|
+
return int(p)
|
219
|
+
|
220
|
+
p3 = 순부채비율평가(blue_dict['순부채비율'])
|
221
|
+
|
222
|
+
def 순운전자본회전율평가(순운전자본회전율: tuple) -> int:
|
223
|
+
# 순운전자본회전율은 매출액/순운전자본으로 일정비율이 유지되는것이 좋으며 너무 작아지면 순운전자본이 많아졌다는 의미로 재고나 외상이 쌓인다는 뜻
|
224
|
+
_, dict_y = 순운전자본회전율
|
225
|
+
p = _calc_point_with_std(data=dict_y)
|
226
|
+
logger.debug(f'순운전자본회전율평가 point : {p}')
|
227
|
+
return p
|
228
|
+
|
229
|
+
p4 = 순운전자본회전율평가(blue_dict['순운전자본회전율'])
|
230
|
+
|
231
|
+
def 재고자산회전율평가(재고자산회전율: tuple) -> int:
|
232
|
+
# 재고자산회전율은 매출액/재고자산으로 회전율이 낮을수록 재고가 많다는 이야기이므로 불리 전년도등과 비교해서 큰차이 발생하면 알람.
|
233
|
+
# 재고자산회전율이 작아지면 재고가 쌓인다는뜻
|
234
|
+
_, dict_y = 재고자산회전율
|
235
|
+
p = _calc_point_with_std(data=dict_y)
|
236
|
+
# 라이벌기업과 비교점수 추가
|
237
|
+
logger.debug(f'재고자산회전율평가 point : {p}')
|
238
|
+
return p
|
239
|
+
|
240
|
+
p5 = 재고자산회전율평가(blue_dict['재고자산회전율'])
|
241
|
+
|
242
|
+
return p1, p2, p3, p4, p5
|
243
|
+
|
244
|
+
|
245
|
+
def growth(code: str) -> Tuple[int, int]:
|
246
|
+
"""회사의 성장성을 보는 지표들
|
247
|
+
|
248
|
+
<매출액>
|
249
|
+
매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
250
|
+
<영업이익률>
|
251
|
+
영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
252
|
+
|
253
|
+
Returns:
|
254
|
+
tuple : 매출액증가율, 영업이익률 평가 포인트
|
255
|
+
"""
|
256
|
+
growth_dict = eval.growth(code)
|
257
|
+
|
258
|
+
logger.debug(pprint.pformat(growth_dict, width=200))
|
259
|
+
|
260
|
+
def 매출액증가율평가(매출액증가율: tuple) -> int:
|
261
|
+
# 매출액은 어떤경우에도 성장하는 기업이 좋다.매출이 20%씩 늘어나는 종목은 유망한 종목
|
262
|
+
MAX = 20
|
263
|
+
최근매출액증가율q, dict_y = 매출액증가율
|
264
|
+
_, 최근매출액증가율y = mymongo.C1034.latest_dict_value(dict_y)
|
265
|
+
|
266
|
+
# 최근 자료가 성장하는 중인지 판단
|
267
|
+
if math.isnan(최근매출액증가율q):
|
268
|
+
최근매출액증가율q = 최근매출액증가율y
|
269
|
+
|
270
|
+
sp1 = 0
|
271
|
+
if math.isnan(최근매출액증가율y):
|
272
|
+
pass
|
273
|
+
elif 0 < 최근매출액증가율y and 0 < 최근매출액증가율q:
|
274
|
+
# 최근에 마이너스 성장이 아닌경우 MAX/10점 보너스
|
275
|
+
sp1 += MAX / 10
|
276
|
+
if 최근매출액증가율y < 최근매출액증가율q:
|
277
|
+
# 최근에 이전보다 더 성장중이면 MAX/10점 보너스
|
278
|
+
sp1 += MAX / 10
|
279
|
+
# 나머지는 성장률 기반 점수 배정
|
280
|
+
sp1 += MAX / 2 if 최근매출액증가율q > MAX else 최근매출액증가율q / 2
|
281
|
+
elif 최근매출액증가율y <= 0 < 최근매출액증가율q:
|
282
|
+
# 직전에 마이너스였다가 최근에 회복된 경우 MAX/10점 보너스
|
283
|
+
sp1 += MAX / 10
|
284
|
+
# 나머지는 성장률 기반 점수 배정
|
285
|
+
sp1 += MAX / 2 if 최근매출액증가율q > MAX else 최근매출액증가율q / 2
|
286
|
+
else:
|
287
|
+
# 최근 자료가 마이너스인 경우 마이너스만큼 점수를 차감한다.
|
288
|
+
sp1 += -(MAX / 2) if 최근매출액증가율q < -MAX else 최근매출액증가율q / 2
|
289
|
+
|
290
|
+
# 평균매출액증가율 구하기
|
291
|
+
d_values = [i for i in dict_y.values() if not math.isnan(i)]
|
292
|
+
logger.debug(f'평균매출액증가율 d_values : {d_values}')
|
293
|
+
|
294
|
+
if len(d_values) == 0:
|
295
|
+
평균매출액증가율 = float('nan')
|
296
|
+
else:
|
297
|
+
평균매출액증가율 = float(numpy.mean(d_values))
|
298
|
+
logger.debug(f'평균 : {평균매출액증가율}')
|
299
|
+
|
300
|
+
sp2 = 0
|
301
|
+
if math.isnan(평균매출액증가율):
|
302
|
+
sp2 += -(MAX/2)
|
303
|
+
elif 평균매출액증가율 <= 0:
|
304
|
+
# 평균매출액증가율이 마이너스인 경우 마이너스만큼 점수를 차감한다.
|
305
|
+
sp2 += -(MAX / 2) if 평균매출액증가율 < -MAX else 평균매출액증가율 / 2
|
306
|
+
else:
|
307
|
+
sp2 = MAX / 2 if 평균매출액증가율 > MAX else 평균매출액증가율 / 2
|
308
|
+
|
309
|
+
logger.debug(f'매출액증가율평가 point : {sp1 + sp2}')
|
310
|
+
|
311
|
+
return int(sp1 + sp2)
|
312
|
+
|
313
|
+
p1 = 매출액증가율평가(growth_dict['매출액증가율'])
|
314
|
+
|
315
|
+
def 영업이익률평가(영업이익률: dict) -> int:
|
316
|
+
# 영업이익률은 기업의 경쟁력척도로 경쟁사에 비해 높으면 경제적해자를 갖춘셈
|
317
|
+
영업이익률 = copy.deepcopy(영업이익률)
|
318
|
+
name = myredis.Corps.get_name(code)
|
319
|
+
|
320
|
+
p = 0
|
321
|
+
try:
|
322
|
+
myprofit = utils.to_float(영업이익률.pop(name))
|
323
|
+
except KeyError:
|
324
|
+
logger.warning(f'{name} 영업이익률 does not exist.')
|
325
|
+
return 0
|
326
|
+
logger.debug(f'종목영업이익률 : {myprofit}')
|
327
|
+
|
328
|
+
for profit in 영업이익률.values():
|
329
|
+
profit = utils.to_float(profit)
|
330
|
+
if math.isnan(profit):
|
331
|
+
continue
|
332
|
+
elif myprofit > profit:
|
333
|
+
p += 1
|
334
|
+
else:
|
335
|
+
continue
|
336
|
+
|
337
|
+
logger.debug(f'영업이익률평가 point : {p}')
|
338
|
+
return p
|
339
|
+
|
340
|
+
p2 = 영업이익률평가(growth_dict['영업이익률'])
|
341
|
+
|
342
|
+
return p1, p2
|
@@ -0,0 +1,289 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
def _make_df_part(db_addr, codes: list, q):
|
4
|
+
def make_record(my_client, my_code: str) -> dict:
|
5
|
+
# 장고에서 사용할 eval 테이블을 만들기 위해 각각의 레코드를 구성하는 함수
|
6
|
+
c101 = mongo.C101(my_client, my_code).get_recent()
|
7
|
+
|
8
|
+
red_dict = red(my_client, my_code)
|
9
|
+
mil_dict = mil(my_client, my_code)
|
10
|
+
growth_dict = growth(my_client, my_code)
|
11
|
+
|
12
|
+
mil_date = mil_dict['date']
|
13
|
+
red_date = red_dict['date']
|
14
|
+
growth_date = growth_dict['date']
|
15
|
+
|
16
|
+
return {
|
17
|
+
'code': c101['코드'],
|
18
|
+
'종목명': c101['종목명'],
|
19
|
+
'주가': utils.to_int(c101['주가']),
|
20
|
+
'PER': utils.to_float(c101['PER']),
|
21
|
+
'PBR': utils.to_float(c101['PBR']),
|
22
|
+
'시가총액': utils.to_float(c101['시가총액']),
|
23
|
+
'RED': utils.to_int(red_dict['red_price']),
|
24
|
+
'주주수익률': utils.to_float(mil_dict['주주수익률']),
|
25
|
+
'이익지표': utils.to_float(mil_dict['이익지표']),
|
26
|
+
'ROIC': utils.to_float(mil_dict['투자수익률']['ROIC']),
|
27
|
+
'ROE': utils.to_float(mil_dict['투자수익률']['ROE']),
|
28
|
+
'PFCF': utils.to_float(mongo.Corps.latest_value(mil_dict['가치지표']['PFCF'])[1]),
|
29
|
+
'PCR': utils.to_float(mongo.Corps.latest_value(mil_dict['가치지표']['PCR'])[1]),
|
30
|
+
'매출액증가율': utils.to_float(growth_dict['매출액증가율'][0]),
|
31
|
+
'date': list(set(mil_date + red_date + growth_date))
|
32
|
+
}
|
33
|
+
# 각 코어별로 디비 클라이언트를 만들어야만 한다. 안그러면 에러발생
|
34
|
+
client = mongo.connect_mongo(db_addr)
|
35
|
+
t = len(codes)
|
36
|
+
d = []
|
37
|
+
for i, code in enumerate(codes):
|
38
|
+
print(f'{i+1}/{t} {code}')
|
39
|
+
try:
|
40
|
+
d.append(make_record(client, code))
|
41
|
+
except:
|
42
|
+
logger.error(f'error on {code}')
|
43
|
+
continue
|
44
|
+
df = pd.DataFrame(d)
|
45
|
+
logger.info(df)
|
46
|
+
q.put(df)
|
47
|
+
|
48
|
+
|
49
|
+
def make_today_eval_df(client, refresh: bool = False) -> pd.DataFrame:
|
50
|
+
""" 멀티프로세싱을 사용하여 전체 종목의 eval 을 데이터프레임으로 만들어 반환
|
51
|
+
|
52
|
+
기본값으로 refresh 는 False 로 설정되어 당일자의 저장된 데이터프레임이 있으면 새로 생성하지 않고 mongo DB를 이용한다.
|
53
|
+
"""
|
54
|
+
today_str = datetime.datetime.today().strftime('%Y%m%d')
|
55
|
+
df = mongo.EvalByDate(client, today_str).load_df()
|
56
|
+
if refresh or len(df) == 0:
|
57
|
+
codes_in_db = mongo.Corps.get_all_codes(client)
|
58
|
+
|
59
|
+
print('*' * 25, f"Eval all using multiprocess(refresh={refresh})", '*' * 25)
|
60
|
+
print(f'Total {len(codes_in_db)} items..')
|
61
|
+
logger.debug(codes_in_db)
|
62
|
+
n, divided_list = utils.code_divider_by_cpu_core(codes_in_db)
|
63
|
+
|
64
|
+
addr = mongo.extract_addr_from_client(client)
|
65
|
+
|
66
|
+
start_time = time.time()
|
67
|
+
q = Queue()
|
68
|
+
ths = []
|
69
|
+
for i in range(n):
|
70
|
+
ths.append(Process(target=_make_df_part, args=(addr, divided_list[i], q)))
|
71
|
+
for i in range(n):
|
72
|
+
ths[i].start()
|
73
|
+
|
74
|
+
df_list = []
|
75
|
+
for i in range(n):
|
76
|
+
df_list.append(q.get())
|
77
|
+
# 부분데이터프레임들을 하나로 합침
|
78
|
+
final_df = pd.concat(df_list, ignore_index=True)
|
79
|
+
|
80
|
+
for i in range(n):
|
81
|
+
ths[i].join()
|
82
|
+
|
83
|
+
print(f'Total spent time : {round(time.time() - start_time, 2)} sec.')
|
84
|
+
logger.debug(final_df)
|
85
|
+
print(f"Save to mongo db(db: eval col: {today_str})")
|
86
|
+
mongo.EvalByDate(client, today_str).save_df(final_df)
|
87
|
+
else:
|
88
|
+
print(f"Use saved dataframe from mongo db..")
|
89
|
+
final_df = df
|
90
|
+
return final_df
|
91
|
+
|
92
|
+
|
93
|
+
def yield_valid_spac(client) -> tuple:
|
94
|
+
"""
|
95
|
+
전체 스팩주의 현재가를 평가하여 2000원 이하인 경우 yield한다.
|
96
|
+
|
97
|
+
Returns:
|
98
|
+
tuple: (code, name, price)
|
99
|
+
"""
|
100
|
+
codes = mongo.Corps.get_all_codes(client)
|
101
|
+
logger.debug(f'len(codes) : {len(codes)}')
|
102
|
+
print('<<< Finding valuable SPAC >>>')
|
103
|
+
for i, code in enumerate(codes):
|
104
|
+
name = mongo.Corps.get_name(client, code)
|
105
|
+
logger.debug(f'code : {code} name : {name}')
|
106
|
+
if '스팩' in str(name):
|
107
|
+
logger.debug(f'>>> spac - code : {code} name : {name}')
|
108
|
+
price, _, _ = utils.get_price_now(code=code)
|
109
|
+
if price <= 2000:
|
110
|
+
logger.warning(f'현재가:{price}')
|
111
|
+
print(f"code: {code} name: {name}, price: {price}")
|
112
|
+
yield code, name, price
|
113
|
+
|
114
|
+
|
115
|
+
|
116
|
+
class GetDFTest(unittest.TestCase):
|
117
|
+
def test_make_df_part(self):
|
118
|
+
codes = ['025320', '000040', '060280', '003240']
|
119
|
+
from multiprocessing import Queue
|
120
|
+
q = Queue()
|
121
|
+
eval._make_df_part(addr, codes, q)
|
122
|
+
|
123
|
+
def test_get_df(self):
|
124
|
+
print(eval.make_today_eval_df(client, refresh=True))
|
125
|
+
print(eval.make_today_eval_df(client, refresh=False))
|
126
|
+
|
127
|
+
|
128
|
+
class SpacTest(unittest.TestCase):
|
129
|
+
def test_valid_spac(self):
|
130
|
+
for code, name, price in eval.yield_valid_spac(client):
|
131
|
+
print(code, name, price)
|
132
|
+
|
133
|
+
|
134
|
+
|
135
|
+
|
136
|
+
def mil(code: str) -> Tuple[int, int, int, int]:
|
137
|
+
"""
|
138
|
+
- 재무활동현금흐름이 마이너스라는 것은 배당급 지급했거나, 자사주 매입했거나, 부채를 상환한 상태임.
|
139
|
+
- 반대는 채권자로 자금을 조달했거나 신주를 발행했다는 의미
|
140
|
+
<주주수익률> - 재무활동현금흐름/시가총액 => 5%이상인가?
|
141
|
+
|
142
|
+
투하자본수익률(ROIC)가 30%이상인가
|
143
|
+
ROE(자기자본이익률) 20%이상이면 아주 우수 다른 투자이익률과 비교해볼것 10%미만이면 별로...단, 부채비율을 확인해야함.
|
144
|
+
|
145
|
+
이익지표 ...영업현금흐름이 순이익보다 많은가 - 결과값이 음수인가..
|
146
|
+
|
147
|
+
FCF는 영업현금흐름에서 자본적 지출(유·무형투자 비용)을 차감한 순수한 현금력이라 할 수 있다.
|
148
|
+
말 그대로 자유롭게(Free) 사용할 수 있는 여윳돈을 뜻한다.
|
149
|
+
잉여현금흐름이 플러스라면 미래의 투자나 채무상환에 쓸 재원이 늘어난 것이다.
|
150
|
+
CAPEX(Capital expenditures)는 미래의 이윤을 창출하기 위해 지출된 비용을 말한다.
|
151
|
+
이는 기업이 고정자산을 구매하거나, 유효수명이 당회계년도를 초과하는 기존의 고정자산에 대한 투자에 돈이 사용될 때 발생한다.
|
152
|
+
|
153
|
+
잉여현금흐름이 마이너스일때는 설비투자가 많은 시기라 주가가 약세이며 이후 설비투자 마무리되면서 주가가 상승할수 있다.
|
154
|
+
주가는 잉여현금흐름이 증가할때 상승하는 경향이 있다.
|
155
|
+
fcf = 영업현금흐름 - capex
|
156
|
+
|
157
|
+
가치지표평가
|
158
|
+
price to fcf 계산
|
159
|
+
https://www.investopedia.com/terms/p/pricetofreecashflow.asp
|
160
|
+
pcr보다 정확하게 주식의 가치를 평가할수 있음. 10배이하 추천
|
161
|
+
|
162
|
+
Returns:
|
163
|
+
tuple: 주주수익률, 이익지표, 투자수익률, PFCF포인트
|
164
|
+
"""
|
165
|
+
mil_dict = eval.mil(code)
|
166
|
+
|
167
|
+
print(pprint.pformat(mil_dict, width=200))
|
168
|
+
|
169
|
+
# 주주수익률 평가
|
170
|
+
if math.isnan(mil_dict['주주수익률']):
|
171
|
+
score1 = 0
|
172
|
+
else:
|
173
|
+
주주수익률평가 = math.ceil(mil_dict['주주수익률'] - (eval.EXPECT_EARN * 100))
|
174
|
+
score1 = 0 if 0 > 주주수익률평가 else 주주수익률평가
|
175
|
+
|
176
|
+
# 이익지표 평가
|
177
|
+
score2 = 10 if mil_dict['이익지표'] < 0 else 0
|
178
|
+
|
179
|
+
# 투자수익률 평가
|
180
|
+
MAX3 = 20
|
181
|
+
score3 = 0
|
182
|
+
roic = mil_dict['투자수익률']['ROIC']
|
183
|
+
roe = mil_dict['투자수익률']['ROE']
|
184
|
+
if math.isnan(roic) or roic <= 0:
|
185
|
+
# roic 가 비정상이라 평가할 수 없는 경우
|
186
|
+
if 10 < roe <= 20:
|
187
|
+
score3 += round(MAX3 * 0.333)
|
188
|
+
elif 20 < roe:
|
189
|
+
score3 += round(MAX3 * 0.666)
|
190
|
+
elif 0 < roic:
|
191
|
+
# roic 로 평가할 수 있는 경우
|
192
|
+
if 0 < roic <= 15:
|
193
|
+
score3 += round(MAX3 * 0.333)
|
194
|
+
elif 15 < roic <= 30:
|
195
|
+
score3 += round(MAX3 * 0.666)
|
196
|
+
elif 30 < roic:
|
197
|
+
score3 += MAX3
|
198
|
+
|
199
|
+
# PFCF 평가
|
200
|
+
pfcf_dict = mil_dict['가치지표']['PFCF']
|
201
|
+
_, pfcf = mongo.Corps.latest_value(pfcf_dict)
|
202
|
+
|
203
|
+
logger.debug(f'recent pfcf {_}, {pfcf}')
|
204
|
+
try:
|
205
|
+
p = round(-40 * math.log10(pfcf) + 40)
|
206
|
+
except ValueError:
|
207
|
+
p = 0
|
208
|
+
score4 = 0 if 0 > p else p
|
209
|
+
|
210
|
+
return score1, score2, score3, score4
|
211
|
+
|
212
|
+
|
213
|
+
|
214
|
+
|
215
|
+
def dbmanager():
|
216
|
+
cmd = ['repair', 'sync', 'eval', 'update']
|
217
|
+
parser = argparse.ArgumentParser()
|
218
|
+
parser.add_argument('cmd', help=f"Command - {cmd}")
|
219
|
+
parser.add_argument('target', help="Target for scraping (type 6digit code or 'all' or 'parts')")
|
220
|
+
parser.add_argument('-d', '--db_path', help="Set mongo database path")
|
221
|
+
|
222
|
+
args = parser.parse_args()
|
223
|
+
|
224
|
+
db_path = args.db_path if args.db_path else "mongodb://192.168.0.173:27017"
|
225
|
+
client = mongo.connect_mongo(db_path)
|
226
|
+
|
227
|
+
if args.cmd in cmd:
|
228
|
+
if args.cmd == 'repair':
|
229
|
+
if args.target == 'all' or utils.is_6digit(args.target):
|
230
|
+
need_for_repair_codes = chk_db.chk_integrity_corps(client, args.target)
|
231
|
+
# repair dict 예시 - {'343510': ['c106', 'c104', 'c103'], '298000': ['c104'], '091810': ['c104']}
|
232
|
+
print(f"Need for repairing codes :{need_for_repair_codes}")
|
233
|
+
if need_for_repair_codes:
|
234
|
+
# x = input("Do you want to try to repair db by scraping? (y/N)")
|
235
|
+
# if x == 'y' or x == 'Y':
|
236
|
+
for code, failed_page_list in need_for_repair_codes.items():
|
237
|
+
for page in failed_page_list:
|
238
|
+
if page == 'c101':
|
239
|
+
nfsrun.c101([code, ], db_path)
|
240
|
+
elif page == 'c103':
|
241
|
+
nfsrun.c103([code, ], db_path)
|
242
|
+
elif page == 'c104':
|
243
|
+
nfsrun.c104([code, ], db_path)
|
244
|
+
elif page == 'c106':
|
245
|
+
nfsrun.c106([code, ], db_path)
|
246
|
+
recheck_result = chk_db.chk_integrity_corps(client, code)
|
247
|
+
if recheck_result:
|
248
|
+
# 다시 스크랩해도 오류가 지속되는 경우
|
249
|
+
print(f"The db integrity failure persists..{recheck_result}")
|
250
|
+
# x = input(f"Do you want to delete {code} on DB? (y/N)")
|
251
|
+
# if x == 'y' or x == 'Y':
|
252
|
+
# mongo.Corps.del_db(client, code)
|
253
|
+
# else:
|
254
|
+
# print("Canceled.")
|
255
|
+
mongo.Corps.del_db(client, code)
|
256
|
+
# else:
|
257
|
+
# print("Done.")
|
258
|
+
else:
|
259
|
+
print("Done.")
|
260
|
+
else:
|
261
|
+
print(f"Invalid target option : {args.target}")
|
262
|
+
elif args.cmd == 'update':
|
263
|
+
if args.target == 'all' or utils.is_6digit(args.target):
|
264
|
+
need_for_update_codes = list(chk_db.chk_modifying_corps(client, args.target).keys())
|
265
|
+
# need_for_update_codes 예시 - [codes....]
|
266
|
+
print(f"Need for updating codes :{need_for_update_codes}")
|
267
|
+
if need_for_update_codes:
|
268
|
+
nfsrun.c103(need_for_update_codes, db_path)
|
269
|
+
nfsrun.c104(need_for_update_codes, db_path)
|
270
|
+
nfsrun.c106(need_for_update_codes, db_path)
|
271
|
+
elif args.target == 'parts':
|
272
|
+
pass
|
273
|
+
else:
|
274
|
+
print(f"Invalid target option : {args.target}")
|
275
|
+
elif args.cmd == 'sync':
|
276
|
+
if args.target == 'all':
|
277
|
+
chk_db.sync_mongo_with_krx(client)
|
278
|
+
else:
|
279
|
+
print(f"The target should be 'all' in sync command.")
|
280
|
+
elif args.cmd == 'eval':
|
281
|
+
if args.target == 'all':
|
282
|
+
# eval을 평가해서 데이터베이스에 저장한다.
|
283
|
+
eval.make_today_eval_df(client, refresh=True)
|
284
|
+
else:
|
285
|
+
print(f"The target should be 'all' in sync command.")
|
286
|
+
else:
|
287
|
+
print(f"The command should be in {cmd}")
|
288
|
+
|
289
|
+
client.close()
|