amd-gaia 0.15.0__py3-none-any.whl → 0.15.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (185) hide show
  1. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.2.dist-info}/METADATA +222 -223
  2. amd_gaia-0.15.2.dist-info/RECORD +182 -0
  3. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.2.dist-info}/WHEEL +1 -1
  4. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.2.dist-info}/entry_points.txt +1 -0
  5. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.2.dist-info}/licenses/LICENSE.md +20 -20
  6. gaia/__init__.py +29 -29
  7. gaia/agents/__init__.py +19 -19
  8. gaia/agents/base/__init__.py +9 -9
  9. gaia/agents/base/agent.py +2132 -2177
  10. gaia/agents/base/api_agent.py +119 -120
  11. gaia/agents/base/console.py +1967 -1841
  12. gaia/agents/base/errors.py +237 -237
  13. gaia/agents/base/mcp_agent.py +86 -86
  14. gaia/agents/base/tools.py +88 -83
  15. gaia/agents/blender/__init__.py +7 -0
  16. gaia/agents/blender/agent.py +553 -556
  17. gaia/agents/blender/agent_simple.py +133 -135
  18. gaia/agents/blender/app.py +211 -211
  19. gaia/agents/blender/app_simple.py +41 -41
  20. gaia/agents/blender/core/__init__.py +16 -16
  21. gaia/agents/blender/core/materials.py +506 -506
  22. gaia/agents/blender/core/objects.py +316 -316
  23. gaia/agents/blender/core/rendering.py +225 -225
  24. gaia/agents/blender/core/scene.py +220 -220
  25. gaia/agents/blender/core/view.py +146 -146
  26. gaia/agents/chat/__init__.py +9 -9
  27. gaia/agents/chat/agent.py +809 -835
  28. gaia/agents/chat/app.py +1065 -1058
  29. gaia/agents/chat/session.py +508 -508
  30. gaia/agents/chat/tools/__init__.py +15 -15
  31. gaia/agents/chat/tools/file_tools.py +96 -96
  32. gaia/agents/chat/tools/rag_tools.py +1744 -1729
  33. gaia/agents/chat/tools/shell_tools.py +437 -436
  34. gaia/agents/code/__init__.py +7 -7
  35. gaia/agents/code/agent.py +549 -549
  36. gaia/agents/code/cli.py +377 -0
  37. gaia/agents/code/models.py +135 -135
  38. gaia/agents/code/orchestration/__init__.py +24 -24
  39. gaia/agents/code/orchestration/checklist_executor.py +1763 -1763
  40. gaia/agents/code/orchestration/checklist_generator.py +713 -713
  41. gaia/agents/code/orchestration/factories/__init__.py +9 -9
  42. gaia/agents/code/orchestration/factories/base.py +63 -63
  43. gaia/agents/code/orchestration/factories/nextjs_factory.py +118 -118
  44. gaia/agents/code/orchestration/factories/python_factory.py +106 -106
  45. gaia/agents/code/orchestration/orchestrator.py +841 -841
  46. gaia/agents/code/orchestration/project_analyzer.py +391 -391
  47. gaia/agents/code/orchestration/steps/__init__.py +67 -67
  48. gaia/agents/code/orchestration/steps/base.py +188 -188
  49. gaia/agents/code/orchestration/steps/error_handler.py +314 -314
  50. gaia/agents/code/orchestration/steps/nextjs.py +828 -828
  51. gaia/agents/code/orchestration/steps/python.py +307 -307
  52. gaia/agents/code/orchestration/template_catalog.py +469 -469
  53. gaia/agents/code/orchestration/workflows/__init__.py +14 -14
  54. gaia/agents/code/orchestration/workflows/base.py +80 -80
  55. gaia/agents/code/orchestration/workflows/nextjs.py +186 -186
  56. gaia/agents/code/orchestration/workflows/python.py +94 -94
  57. gaia/agents/code/prompts/__init__.py +11 -11
  58. gaia/agents/code/prompts/base_prompt.py +77 -77
  59. gaia/agents/code/prompts/code_patterns.py +2034 -2036
  60. gaia/agents/code/prompts/nextjs_prompt.py +40 -40
  61. gaia/agents/code/prompts/python_prompt.py +109 -109
  62. gaia/agents/code/schema_inference.py +365 -365
  63. gaia/agents/code/system_prompt.py +41 -41
  64. gaia/agents/code/tools/__init__.py +42 -42
  65. gaia/agents/code/tools/cli_tools.py +1138 -1138
  66. gaia/agents/code/tools/code_formatting.py +319 -319
  67. gaia/agents/code/tools/code_tools.py +769 -769
  68. gaia/agents/code/tools/error_fixing.py +1347 -1347
  69. gaia/agents/code/tools/external_tools.py +180 -180
  70. gaia/agents/code/tools/file_io.py +845 -845
  71. gaia/agents/code/tools/prisma_tools.py +190 -190
  72. gaia/agents/code/tools/project_management.py +1016 -1016
  73. gaia/agents/code/tools/testing.py +321 -321
  74. gaia/agents/code/tools/typescript_tools.py +122 -122
  75. gaia/agents/code/tools/validation_parsing.py +461 -461
  76. gaia/agents/code/tools/validation_tools.py +806 -806
  77. gaia/agents/code/tools/web_dev_tools.py +1758 -1758
  78. gaia/agents/code/validators/__init__.py +16 -16
  79. gaia/agents/code/validators/antipattern_checker.py +241 -241
  80. gaia/agents/code/validators/ast_analyzer.py +197 -197
  81. gaia/agents/code/validators/requirements_validator.py +145 -145
  82. gaia/agents/code/validators/syntax_validator.py +171 -171
  83. gaia/agents/docker/__init__.py +7 -7
  84. gaia/agents/docker/agent.py +643 -642
  85. gaia/agents/emr/__init__.py +8 -8
  86. gaia/agents/emr/agent.py +1504 -1506
  87. gaia/agents/emr/cli.py +1322 -1322
  88. gaia/agents/emr/constants.py +475 -475
  89. gaia/agents/emr/dashboard/__init__.py +4 -4
  90. gaia/agents/emr/dashboard/server.py +1972 -1974
  91. gaia/agents/jira/__init__.py +11 -11
  92. gaia/agents/jira/agent.py +894 -894
  93. gaia/agents/jira/jql_templates.py +299 -299
  94. gaia/agents/routing/__init__.py +7 -7
  95. gaia/agents/routing/agent.py +567 -570
  96. gaia/agents/routing/system_prompt.py +75 -75
  97. gaia/agents/summarize/__init__.py +11 -0
  98. gaia/agents/summarize/agent.py +885 -0
  99. gaia/agents/summarize/prompts.py +129 -0
  100. gaia/api/__init__.py +23 -23
  101. gaia/api/agent_registry.py +238 -238
  102. gaia/api/app.py +305 -305
  103. gaia/api/openai_server.py +575 -575
  104. gaia/api/schemas.py +186 -186
  105. gaia/api/sse_handler.py +373 -373
  106. gaia/apps/__init__.py +4 -4
  107. gaia/apps/llm/__init__.py +6 -6
  108. gaia/apps/llm/app.py +184 -169
  109. gaia/apps/summarize/app.py +116 -633
  110. gaia/apps/summarize/html_viewer.py +133 -133
  111. gaia/apps/summarize/pdf_formatter.py +284 -284
  112. gaia/audio/__init__.py +2 -2
  113. gaia/audio/audio_client.py +439 -439
  114. gaia/audio/audio_recorder.py +269 -269
  115. gaia/audio/kokoro_tts.py +599 -599
  116. gaia/audio/whisper_asr.py +432 -432
  117. gaia/chat/__init__.py +16 -16
  118. gaia/chat/app.py +428 -430
  119. gaia/chat/prompts.py +522 -522
  120. gaia/chat/sdk.py +1228 -1225
  121. gaia/cli.py +5659 -5632
  122. gaia/database/__init__.py +10 -10
  123. gaia/database/agent.py +176 -176
  124. gaia/database/mixin.py +290 -290
  125. gaia/database/testing.py +64 -64
  126. gaia/eval/batch_experiment.py +2332 -2332
  127. gaia/eval/claude.py +542 -542
  128. gaia/eval/config.py +37 -37
  129. gaia/eval/email_generator.py +512 -512
  130. gaia/eval/eval.py +3179 -3179
  131. gaia/eval/groundtruth.py +1130 -1130
  132. gaia/eval/transcript_generator.py +582 -582
  133. gaia/eval/webapp/README.md +167 -167
  134. gaia/eval/webapp/package-lock.json +875 -875
  135. gaia/eval/webapp/package.json +20 -20
  136. gaia/eval/webapp/public/app.js +3402 -3402
  137. gaia/eval/webapp/public/index.html +87 -87
  138. gaia/eval/webapp/public/styles.css +3661 -3661
  139. gaia/eval/webapp/server.js +415 -415
  140. gaia/eval/webapp/test-setup.js +72 -72
  141. gaia/installer/__init__.py +23 -0
  142. gaia/installer/init_command.py +1275 -0
  143. gaia/installer/lemonade_installer.py +619 -0
  144. gaia/llm/__init__.py +10 -2
  145. gaia/llm/base_client.py +60 -0
  146. gaia/llm/exceptions.py +12 -0
  147. gaia/llm/factory.py +70 -0
  148. gaia/llm/lemonade_client.py +3421 -3221
  149. gaia/llm/lemonade_manager.py +294 -294
  150. gaia/llm/providers/__init__.py +9 -0
  151. gaia/llm/providers/claude.py +108 -0
  152. gaia/llm/providers/lemonade.py +118 -0
  153. gaia/llm/providers/openai_provider.py +79 -0
  154. gaia/llm/vlm_client.py +382 -382
  155. gaia/logger.py +189 -189
  156. gaia/mcp/agent_mcp_server.py +245 -245
  157. gaia/mcp/blender_mcp_client.py +138 -138
  158. gaia/mcp/blender_mcp_server.py +648 -648
  159. gaia/mcp/context7_cache.py +332 -332
  160. gaia/mcp/external_services.py +518 -518
  161. gaia/mcp/mcp_bridge.py +811 -550
  162. gaia/mcp/servers/__init__.py +6 -6
  163. gaia/mcp/servers/docker_mcp.py +83 -83
  164. gaia/perf_analysis.py +361 -0
  165. gaia/rag/__init__.py +10 -10
  166. gaia/rag/app.py +293 -293
  167. gaia/rag/demo.py +304 -304
  168. gaia/rag/pdf_utils.py +235 -235
  169. gaia/rag/sdk.py +2194 -2194
  170. gaia/security.py +183 -163
  171. gaia/talk/app.py +287 -289
  172. gaia/talk/sdk.py +538 -538
  173. gaia/testing/__init__.py +87 -87
  174. gaia/testing/assertions.py +330 -330
  175. gaia/testing/fixtures.py +333 -333
  176. gaia/testing/mocks.py +493 -493
  177. gaia/util.py +46 -46
  178. gaia/utils/__init__.py +33 -33
  179. gaia/utils/file_watcher.py +675 -675
  180. gaia/utils/parsing.py +223 -223
  181. gaia/version.py +100 -100
  182. amd_gaia-0.15.0.dist-info/RECORD +0 -168
  183. gaia/agents/code/app.py +0 -266
  184. gaia/llm/llm_client.py +0 -723
  185. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.2.dist-info}/top_level.txt +0 -0
gaia/eval/claude.py CHANGED
@@ -1,542 +1,542 @@
1
- # Copyright(C) 2025-2026 Advanced Micro Devices, Inc. All rights reserved.
2
- # SPDX-License-Identifier: MIT
3
-
4
- import base64
5
- import json
6
- import os
7
- from pathlib import Path
8
-
9
- try:
10
- import anthropic
11
- except ImportError:
12
- anthropic = None
13
-
14
- try:
15
- from bs4 import BeautifulSoup
16
- except ImportError:
17
- BeautifulSoup = None
18
-
19
- from dotenv import load_dotenv
20
-
21
- from gaia.eval.config import DEFAULT_CLAUDE_MODEL, MODEL_PRICING
22
- from gaia.logger import get_logger
23
-
24
- load_dotenv()
25
-
26
-
27
- class ClaudeClient:
28
- log = get_logger(__name__)
29
-
30
- def __init__(self, model=None, max_tokens=1024, max_retries=3):
31
- """
32
- Initialize Claude client with retry support.
33
-
34
- Args:
35
- model: Claude model to use (defaults to DEFAULT_CLAUDE_MODEL)
36
- max_tokens: Maximum tokens in response (default: 1024)
37
- max_retries: Maximum number of retry attempts for API calls with exponential backoff (default: 3)
38
- """
39
- # Check for required dependencies
40
- if anthropic is None:
41
- error_msg = (
42
- "\n❌ Error: Missing required package 'anthropic'\n\n"
43
- "Please install the eval dependencies:\n"
44
- ' uv pip install -e ".[eval]"\n\n'
45
- "Or install anthropic directly:\n"
46
- " uv pip install anthropic\n"
47
- )
48
- raise ImportError(error_msg)
49
-
50
- if BeautifulSoup is None:
51
- error_msg = (
52
- "\n❌ Error: Missing required package 'bs4' (BeautifulSoup4)\n\n"
53
- "Please install the eval dependencies:\n"
54
- ' uv pip install -e ".[eval]"\n\n'
55
- "Or install beautifulsoup4 directly:\n"
56
- " uv pip install beautifulsoup4\n"
57
- )
58
- raise ImportError(error_msg)
59
-
60
- if model is None:
61
- model = DEFAULT_CLAUDE_MODEL
62
- self.log = self.__class__.log # Use the class-level logger for instances
63
- self.api_key = os.getenv("ANTHROPIC_API_KEY")
64
- if not self.api_key:
65
- error_msg = (
66
- "ANTHROPIC_API_KEY not found in environment.\n"
67
- "Please add your Anthropic API key to the .env file:\n"
68
- " ANTHROPIC_API_KEY=your_api_key_here\n"
69
- "Alternatively, export it as an environment variable:\n"
70
- " export ANTHROPIC_API_KEY=your_api_key_here\n"
71
- )
72
- self.log.error(error_msg)
73
- raise ValueError(error_msg)
74
- # Initialize Anthropic client with retry support
75
- # The SDK handles exponential backoff automatically
76
- self.client = anthropic.Anthropic(
77
- api_key=self.api_key,
78
- max_retries=max_retries,
79
- timeout=300.0, # 5 minute timeout for large documents
80
- )
81
- self.model = model
82
- self.max_tokens = max_tokens
83
- self.max_retries = max_retries
84
- self.log.info(
85
- f"Initialized ClaudeClient with model: {model}, max_retries: {max_retries}"
86
- )
87
-
88
- def calculate_cost(self, input_tokens, output_tokens):
89
- """
90
- Calculate the cost of an API call based on token usage.
91
-
92
- Args:
93
- input_tokens (int): Number of input tokens
94
- output_tokens (int): Number of output tokens
95
-
96
- Returns:
97
- dict: Cost breakdown with input_cost, output_cost, and total_cost
98
- """
99
- # Get pricing for the current model, fallback to default if not found
100
- pricing = MODEL_PRICING.get(self.model, MODEL_PRICING["default"])
101
-
102
- # Calculate costs (convert tokens to millions)
103
- input_cost = (input_tokens / 1_000_000) * pricing["input_per_mtok"]
104
- output_cost = (output_tokens / 1_000_000) * pricing["output_per_mtok"]
105
- total_cost = input_cost + output_cost
106
-
107
- return {
108
- "input_cost": round(input_cost, 6),
109
- "output_cost": round(output_cost, 6),
110
- "total_cost": round(total_cost, 6),
111
- }
112
-
113
- def get_completion(self, prompt):
114
- self.log.debug("Getting completion from Claude")
115
- self.log.debug(f"Prompt token count: {self.count_tokens(prompt)}")
116
- try:
117
- message = self.client.messages.create(
118
- model=self.model,
119
- max_tokens=self.max_tokens,
120
- messages=[{"role": "user", "content": prompt}],
121
- )
122
- return message.content
123
- except Exception as e:
124
- self.log.error(f"Error getting completion: {e}")
125
- raise
126
-
127
- def get_completion_with_usage(self, prompt):
128
- """
129
- Get completion from Claude and return both content and usage/cost information.
130
-
131
- Args:
132
- prompt (str): The prompt to send to Claude
133
-
134
- Returns:
135
- dict: Contains 'content', 'usage', and 'cost' keys
136
- """
137
- self.log.info("Getting completion with usage tracking from Claude")
138
- try:
139
- message = self.client.messages.create(
140
- model=self.model,
141
- max_tokens=self.max_tokens,
142
- messages=[{"role": "user", "content": prompt}],
143
- )
144
-
145
- # Extract usage information
146
- usage = {
147
- "input_tokens": message.usage.input_tokens,
148
- "output_tokens": message.usage.output_tokens,
149
- "total_tokens": message.usage.input_tokens
150
- + message.usage.output_tokens,
151
- }
152
-
153
- # Calculate cost
154
- cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
155
-
156
- self.log.info(
157
- f"Usage: {usage['input_tokens']} input + {usage['output_tokens']} output = {usage['total_tokens']} total tokens"
158
- )
159
- self.log.info(
160
- f"Cost: ${cost['input_cost']:.4f} input + ${cost['output_cost']:.4f} output = ${cost['total_cost']:.4f} total"
161
- )
162
-
163
- return {"content": message.content, "usage": usage, "cost": cost}
164
- except Exception as e:
165
- self.log.error(f"Error getting completion with usage: {e}")
166
- raise
167
-
168
- def list_models(self):
169
- self.log.info("Retrieving available models")
170
- try:
171
- models = self.client.models.list(limit=20)
172
- self.log.info(f"Successfully retrieved {len(models)} models")
173
- return models
174
- except Exception as e:
175
- self.log.error(f"Error listing models: {e}")
176
- raise
177
-
178
- def count_tokens(self, prompt):
179
- return self.client.messages.count_tokens(
180
- model=self.model, messages=[{"role": "user", "content": prompt}]
181
- )
182
-
183
- def _convert_html_to_text(
184
- self, file_path, save_text=False, output_dir="./output/claude"
185
- ):
186
- """
187
- Convert HTML file content to plain text.
188
-
189
- Args:
190
- file_path (str): Path to the HTML file
191
- save_text (bool): If True, saves extracted text to a file
192
-
193
- Returns:
194
- str: Extracted text content
195
- """
196
- self.log.info("Converting HTML to text")
197
- with open(file_path, "r", encoding="utf-8") as f:
198
- soup = BeautifulSoup(f.read(), "html.parser")
199
- text_content = soup.get_text(separator="\n", strip=True)
200
- self.log.debug(f"Extracted {len(text_content)} characters of text")
201
-
202
- if save_text:
203
- # Create output directory if it doesn't exist
204
- os.makedirs(output_dir, exist_ok=True)
205
-
206
- filename = Path(file_path).stem
207
- output_path = f"{output_dir}/{filename}.soup.txt"
208
- with open(output_path, "w", encoding="utf-8") as f:
209
- f.write(text_content)
210
- self.log.info(f"Saved extracted text to: {output_path}")
211
-
212
- return text_content
213
-
214
- def analyze_file(
215
- self,
216
- file_path,
217
- prompt,
218
- media_type=None,
219
- save_text=False,
220
- output_dir="./output/claude",
221
- ):
222
- """
223
- Analyze a file using Claude's file understanding capabilities.
224
-
225
- Args:
226
- file_path (str): Path to the file to analyze
227
- prompt (str): The analysis prompt/question
228
- media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
229
- save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
230
- output_dir (str, optional): The directory to save the output file
231
- """
232
- self.log.info(f"Analyzing file: {file_path}")
233
- ext = os.path.splitext(file_path)[1].lower()
234
-
235
- try:
236
- # For HTML files, extract text using BeautifulSoup
237
- if ext in [".html", ".htm"]:
238
- text_content = self._convert_html_to_text(
239
- file_path, save_text, output_dir
240
- )
241
- message = self.client.messages.create(
242
- model=self.model,
243
- max_tokens=self.max_tokens,
244
- messages=[
245
- {
246
- "role": "user",
247
- "content": f"Document content:\n\n{text_content}\n\n{prompt}",
248
- }
249
- ],
250
- )
251
- self.log.info("Successfully analyzed HTML content")
252
- return message.content[0].text
253
-
254
- # For other file types, use the original base64 encoding method
255
- mime_types = {
256
- ".txt": "text/plain",
257
- ".pdf": "application/pdf",
258
- ".md": "text/markdown",
259
- ".csv": "text/csv",
260
- ".json": "application/json",
261
- }
262
-
263
- if media_type is None:
264
- media_type = mime_types.get(ext, "application/octet-stream")
265
- self.log.debug(f"Using media type: {media_type}")
266
-
267
- with open(file_path, "rb") as f:
268
- file_content = base64.b64encode(f.read()).decode("utf-8")
269
- self.log.debug(f"File encoded, size: {len(file_content)} bytes")
270
-
271
- self.log.info("Sending file for analysis")
272
- message = self.client.messages.create(
273
- model=self.model,
274
- max_tokens=self.max_tokens,
275
- messages=[
276
- {
277
- "role": "user",
278
- "content": [
279
- {
280
- "type": "document",
281
- "source": {
282
- "type": "base64",
283
- "media_type": media_type,
284
- "data": file_content,
285
- },
286
- },
287
- {"type": "text", "text": prompt},
288
- ],
289
- }
290
- ],
291
- )
292
- self.log.info("Successfully analyzed file")
293
- return message.content[0].text
294
-
295
- except Exception as e:
296
- self.log.error(f"Error analyzing file: {e}")
297
- raise
298
-
299
- def analyze_file_with_usage(
300
- self,
301
- file_path,
302
- prompt,
303
- media_type=None,
304
- save_text=False,
305
- output_dir="./output/claude",
306
- ):
307
- """
308
- Analyze a file using Claude's file understanding capabilities with usage tracking.
309
-
310
- Args:
311
- file_path (str): Path to the file to analyze
312
- prompt (str): The analysis prompt/question
313
- media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
314
- save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
315
- output_dir (str, optional): The directory to save the output file
316
-
317
- Returns:
318
- dict: Contains 'content', 'usage', and 'cost' keys
319
- """
320
- self.log.info(f"Analyzing file with usage tracking: {file_path}")
321
- ext = os.path.splitext(file_path)[1].lower()
322
-
323
- try:
324
- # For text-based files, read content directly as text
325
- if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
326
- if ext in [".html", ".htm"]:
327
- text_content = self._convert_html_to_text(
328
- file_path, save_text, output_dir
329
- )
330
- else:
331
- # For other text files, read directly
332
- with open(file_path, "r", encoding="utf-8") as f:
333
- text_content = f.read()
334
- self.log.debug(
335
- f"Read text file, length: {len(text_content)} characters"
336
- )
337
- message = self.client.messages.create(
338
- model=self.model,
339
- max_tokens=self.max_tokens,
340
- messages=[
341
- {
342
- "role": "user",
343
- "content": f"Document content:\n\n{text_content}\n\n{prompt}",
344
- }
345
- ],
346
- )
347
- self.log.info(f"Successfully analyzed text content ({ext} file)")
348
-
349
- # Extract usage and calculate cost
350
- usage = {
351
- "input_tokens": message.usage.input_tokens,
352
- "output_tokens": message.usage.output_tokens,
353
- "total_tokens": message.usage.input_tokens
354
- + message.usage.output_tokens,
355
- }
356
- cost = self.calculate_cost(
357
- usage["input_tokens"], usage["output_tokens"]
358
- )
359
-
360
- return {
361
- "content": message.content[0].text,
362
- "usage": usage,
363
- "cost": cost,
364
- }
365
-
366
- # For binary file types (primarily PDFs), use base64 encoding with document format
367
- mime_types = {
368
- ".pdf": "application/pdf",
369
- }
370
-
371
- if media_type is None:
372
- media_type = mime_types.get(ext)
373
- if media_type is None:
374
- raise ValueError(
375
- f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
376
- )
377
- self.log.debug(f"Using media type: {media_type}")
378
-
379
- with open(file_path, "rb") as f:
380
- file_content = base64.b64encode(f.read()).decode("utf-8")
381
- self.log.debug(f"File encoded, size: {len(file_content)} bytes")
382
-
383
- self.log.info("Sending file for analysis")
384
- message = self.client.messages.create(
385
- model=self.model,
386
- max_tokens=self.max_tokens,
387
- messages=[
388
- {
389
- "role": "user",
390
- "content": [
391
- {
392
- "type": "document",
393
- "source": {
394
- "type": "base64",
395
- "media_type": media_type,
396
- "data": file_content,
397
- },
398
- },
399
- {"type": "text", "text": prompt},
400
- ],
401
- }
402
- ],
403
- )
404
- self.log.info("Successfully analyzed file")
405
-
406
- # Extract usage and calculate cost
407
- usage = {
408
- "input_tokens": message.usage.input_tokens,
409
- "output_tokens": message.usage.output_tokens,
410
- "total_tokens": message.usage.input_tokens
411
- + message.usage.output_tokens,
412
- }
413
- cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
414
-
415
- return {"content": message.content[0].text, "usage": usage, "cost": cost}
416
-
417
- except Exception as e:
418
- self.log.error(f"Error analyzing file: {e}")
419
- raise
420
-
421
- def count_file_tokens(
422
- self, file_path, prompt="", media_type=None, output_dir="./output/claude"
423
- ):
424
- """
425
- Count tokens for a file and optional prompt combination.
426
-
427
- Args:
428
- file_path (str): Path to the file to analyze
429
- prompt (str, optional): Additional prompt text to include in token count
430
- media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
431
-
432
- Returns:
433
- int: Total token count
434
- """
435
- self.log.info(f"Counting tokens for file: {file_path}")
436
- ext = os.path.splitext(file_path)[1].lower()
437
-
438
- try:
439
- # For text-based files, count tokens of extracted text
440
- if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
441
- if ext in [".html", ".htm"]:
442
- text_content = self._convert_html_to_text(
443
- file_path, save_text=False, output_dir=output_dir
444
- )
445
- else:
446
- # For other text files, read directly
447
- with open(file_path, "r", encoding="utf-8") as f:
448
- text_content = f.read()
449
-
450
- content = f"Document content:\n\n{text_content}\n\n{prompt}"
451
- token_count = self.count_tokens(content)
452
- self.log.info(
453
- f"Text file ({ext}) token count: {token_count.input_tokens}"
454
- )
455
- return token_count.input_tokens
456
-
457
- # For binary file types (primarily PDFs), encode and count
458
- mime_types = {
459
- ".pdf": "application/pdf",
460
- }
461
-
462
- if media_type is None:
463
- media_type = mime_types.get(ext)
464
- if media_type is None:
465
- raise ValueError(
466
- f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
467
- )
468
- self.log.debug(f"Using media type: {media_type}")
469
-
470
- with open(file_path, "rb") as f:
471
- file_content = base64.b64encode(f.read()).decode("utf-8")
472
-
473
- message_content = [
474
- {
475
- "type": "document",
476
- "source": {
477
- "type": "base64",
478
- "media_type": media_type,
479
- "data": file_content,
480
- },
481
- }
482
- ]
483
-
484
- if prompt:
485
- message_content.append({"type": "text", "text": prompt})
486
-
487
- token_count = self.client.messages.count_tokens(
488
- model=self.model,
489
- messages=[{"role": "user", "content": message_content}],
490
- )
491
-
492
- self.log.info(f"File token count: {token_count.input_tokens}")
493
- return token_count.input_tokens
494
-
495
- except Exception as e:
496
- self.log.error(f"Error counting tokens: {e}")
497
- raise
498
-
499
-
500
- # Example usage
501
- if __name__ == "__main__":
502
- client = ClaudeClient()
503
-
504
- # Test file analysis with Blender introduction document
505
- file_path = "./data/html/blender/introduction.html"
506
- prompt = (
507
- "Given this document, generate a set of short queries a user "
508
- "may ask about the document and produce a set of ground truth "
509
- "answers to be used in validating a RAG system. Include a "
510
- "summary of the document in the queries. Return a json "
511
- "formatted list of query-response pairs formatted as follows:"
512
- "{'source': 'path/to/document', 'summary': 'summarized document', "
513
- "'qa_pairs': [{'query': 'query1', 'response': 'response1'}, "
514
- "{'query': 'query2', 'response': 'response2'}, ...]}"
515
- )
516
-
517
- analysis = client.analyze_file(
518
- file_path, prompt, save_text=True, output_dir="./output/claude"
519
- )
520
- print(client.count_file_tokens(file_path, prompt))
521
-
522
- # Prepare enhanced output with metadata
523
- from datetime import datetime
524
-
525
- output_data = {
526
- "metadata": {
527
- "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
528
- "model": client.model,
529
- "source_file": file_path,
530
- "prompt": prompt,
531
- "token_count": client.count_file_tokens(file_path, prompt),
532
- },
533
- "analysis": json.loads(analysis), # Parse JSON string into dictionary
534
- }
535
-
536
- # Save analysis to JSON file
537
- output_dir = "./output/claude"
538
- os.makedirs(output_dir, exist_ok=True)
539
- output_path = f"{output_dir}/{Path(file_path).stem}.out.json"
540
- with open(output_path, "w", encoding="utf-8") as f:
541
- json.dump(output_data, f, indent=2)
542
- print(f"Analysis saved to: {output_path}")
1
+ # Copyright(C) 2025-2026 Advanced Micro Devices, Inc. All rights reserved.
2
+ # SPDX-License-Identifier: MIT
3
+
4
+ import base64
5
+ import json
6
+ import os
7
+ from pathlib import Path
8
+
9
+ try:
10
+ import anthropic
11
+ except ImportError:
12
+ anthropic = None
13
+
14
+ try:
15
+ from bs4 import BeautifulSoup
16
+ except ImportError:
17
+ BeautifulSoup = None
18
+
19
+ from dotenv import load_dotenv
20
+
21
+ from gaia.eval.config import DEFAULT_CLAUDE_MODEL, MODEL_PRICING
22
+ from gaia.logger import get_logger
23
+
24
+ load_dotenv()
25
+
26
+
27
+ class ClaudeClient:
28
+ log = get_logger(__name__)
29
+
30
+ def __init__(self, model=None, max_tokens=1024, max_retries=3):
31
+ """
32
+ Initialize Claude client with retry support.
33
+
34
+ Args:
35
+ model: Claude model to use (defaults to DEFAULT_CLAUDE_MODEL)
36
+ max_tokens: Maximum tokens in response (default: 1024)
37
+ max_retries: Maximum number of retry attempts for API calls with exponential backoff (default: 3)
38
+ """
39
+ # Check for required dependencies
40
+ if anthropic is None:
41
+ error_msg = (
42
+ "\n❌ Error: Missing required package 'anthropic'\n\n"
43
+ "Please install the eval dependencies:\n"
44
+ ' uv pip install -e ".[eval]"\n\n'
45
+ "Or install anthropic directly:\n"
46
+ " uv pip install anthropic\n"
47
+ )
48
+ raise ImportError(error_msg)
49
+
50
+ if BeautifulSoup is None:
51
+ error_msg = (
52
+ "\n❌ Error: Missing required package 'bs4' (BeautifulSoup4)\n\n"
53
+ "Please install the eval dependencies:\n"
54
+ ' uv pip install -e ".[eval]"\n\n'
55
+ "Or install beautifulsoup4 directly:\n"
56
+ " uv pip install beautifulsoup4\n"
57
+ )
58
+ raise ImportError(error_msg)
59
+
60
+ if model is None:
61
+ model = DEFAULT_CLAUDE_MODEL
62
+ self.log = self.__class__.log # Use the class-level logger for instances
63
+ self.api_key = os.getenv("ANTHROPIC_API_KEY")
64
+ if not self.api_key:
65
+ error_msg = (
66
+ "ANTHROPIC_API_KEY not found in environment.\n"
67
+ "Please add your Anthropic API key to the .env file:\n"
68
+ " ANTHROPIC_API_KEY=your_api_key_here\n"
69
+ "Alternatively, export it as an environment variable:\n"
70
+ " export ANTHROPIC_API_KEY=your_api_key_here\n"
71
+ )
72
+ self.log.error(error_msg)
73
+ raise ValueError(error_msg)
74
+ # Initialize Anthropic client with retry support
75
+ # The SDK handles exponential backoff automatically
76
+ self.client = anthropic.Anthropic(
77
+ api_key=self.api_key,
78
+ max_retries=max_retries,
79
+ timeout=300.0, # 5 minute timeout for large documents
80
+ )
81
+ self.model = model
82
+ self.max_tokens = max_tokens
83
+ self.max_retries = max_retries
84
+ self.log.info(
85
+ f"Initialized ClaudeClient with model: {model}, max_retries: {max_retries}"
86
+ )
87
+
88
+ def calculate_cost(self, input_tokens, output_tokens):
89
+ """
90
+ Calculate the cost of an API call based on token usage.
91
+
92
+ Args:
93
+ input_tokens (int): Number of input tokens
94
+ output_tokens (int): Number of output tokens
95
+
96
+ Returns:
97
+ dict: Cost breakdown with input_cost, output_cost, and total_cost
98
+ """
99
+ # Get pricing for the current model, fallback to default if not found
100
+ pricing = MODEL_PRICING.get(self.model, MODEL_PRICING["default"])
101
+
102
+ # Calculate costs (convert tokens to millions)
103
+ input_cost = (input_tokens / 1_000_000) * pricing["input_per_mtok"]
104
+ output_cost = (output_tokens / 1_000_000) * pricing["output_per_mtok"]
105
+ total_cost = input_cost + output_cost
106
+
107
+ return {
108
+ "input_cost": round(input_cost, 6),
109
+ "output_cost": round(output_cost, 6),
110
+ "total_cost": round(total_cost, 6),
111
+ }
112
+
113
+ def get_completion(self, prompt):
114
+ self.log.debug("Getting completion from Claude")
115
+ self.log.debug(f"Prompt token count: {self.count_tokens(prompt)}")
116
+ try:
117
+ message = self.client.messages.create(
118
+ model=self.model,
119
+ max_tokens=self.max_tokens,
120
+ messages=[{"role": "user", "content": prompt}],
121
+ )
122
+ return message.content
123
+ except Exception as e:
124
+ self.log.error(f"Error getting completion: {e}")
125
+ raise
126
+
127
+ def get_completion_with_usage(self, prompt):
128
+ """
129
+ Get completion from Claude and return both content and usage/cost information.
130
+
131
+ Args:
132
+ prompt (str): The prompt to send to Claude
133
+
134
+ Returns:
135
+ dict: Contains 'content', 'usage', and 'cost' keys
136
+ """
137
+ self.log.info("Getting completion with usage tracking from Claude")
138
+ try:
139
+ message = self.client.messages.create(
140
+ model=self.model,
141
+ max_tokens=self.max_tokens,
142
+ messages=[{"role": "user", "content": prompt}],
143
+ )
144
+
145
+ # Extract usage information
146
+ usage = {
147
+ "input_tokens": message.usage.input_tokens,
148
+ "output_tokens": message.usage.output_tokens,
149
+ "total_tokens": message.usage.input_tokens
150
+ + message.usage.output_tokens,
151
+ }
152
+
153
+ # Calculate cost
154
+ cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
155
+
156
+ self.log.info(
157
+ f"Usage: {usage['input_tokens']} input + {usage['output_tokens']} output = {usage['total_tokens']} total tokens"
158
+ )
159
+ self.log.info(
160
+ f"Cost: ${cost['input_cost']:.4f} input + ${cost['output_cost']:.4f} output = ${cost['total_cost']:.4f} total"
161
+ )
162
+
163
+ return {"content": message.content, "usage": usage, "cost": cost}
164
+ except Exception as e:
165
+ self.log.error(f"Error getting completion with usage: {e}")
166
+ raise
167
+
168
+ def list_models(self):
169
+ self.log.info("Retrieving available models")
170
+ try:
171
+ models = self.client.models.list(limit=20)
172
+ self.log.info(f"Successfully retrieved {len(models)} models")
173
+ return models
174
+ except Exception as e:
175
+ self.log.error(f"Error listing models: {e}")
176
+ raise
177
+
178
+ def count_tokens(self, prompt):
179
+ return self.client.messages.count_tokens(
180
+ model=self.model, messages=[{"role": "user", "content": prompt}]
181
+ )
182
+
183
+ def _convert_html_to_text(
184
+ self, file_path, save_text=False, output_dir="./output/claude"
185
+ ):
186
+ """
187
+ Convert HTML file content to plain text.
188
+
189
+ Args:
190
+ file_path (str): Path to the HTML file
191
+ save_text (bool): If True, saves extracted text to a file
192
+
193
+ Returns:
194
+ str: Extracted text content
195
+ """
196
+ self.log.info("Converting HTML to text")
197
+ with open(file_path, "r", encoding="utf-8") as f:
198
+ soup = BeautifulSoup(f.read(), "html.parser")
199
+ text_content = soup.get_text(separator="\n", strip=True)
200
+ self.log.debug(f"Extracted {len(text_content)} characters of text")
201
+
202
+ if save_text:
203
+ # Create output directory if it doesn't exist
204
+ os.makedirs(output_dir, exist_ok=True)
205
+
206
+ filename = Path(file_path).stem
207
+ output_path = f"{output_dir}/{filename}.soup.txt"
208
+ with open(output_path, "w", encoding="utf-8") as f:
209
+ f.write(text_content)
210
+ self.log.info(f"Saved extracted text to: {output_path}")
211
+
212
+ return text_content
213
+
214
+ def analyze_file(
215
+ self,
216
+ file_path,
217
+ prompt,
218
+ media_type=None,
219
+ save_text=False,
220
+ output_dir="./output/claude",
221
+ ):
222
+ """
223
+ Analyze a file using Claude's file understanding capabilities.
224
+
225
+ Args:
226
+ file_path (str): Path to the file to analyze
227
+ prompt (str): The analysis prompt/question
228
+ media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
229
+ save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
230
+ output_dir (str, optional): The directory to save the output file
231
+ """
232
+ self.log.info(f"Analyzing file: {file_path}")
233
+ ext = os.path.splitext(file_path)[1].lower()
234
+
235
+ try:
236
+ # For HTML files, extract text using BeautifulSoup
237
+ if ext in [".html", ".htm"]:
238
+ text_content = self._convert_html_to_text(
239
+ file_path, save_text, output_dir
240
+ )
241
+ message = self.client.messages.create(
242
+ model=self.model,
243
+ max_tokens=self.max_tokens,
244
+ messages=[
245
+ {
246
+ "role": "user",
247
+ "content": f"Document content:\n\n{text_content}\n\n{prompt}",
248
+ }
249
+ ],
250
+ )
251
+ self.log.info("Successfully analyzed HTML content")
252
+ return message.content[0].text
253
+
254
+ # For other file types, use the original base64 encoding method
255
+ mime_types = {
256
+ ".txt": "text/plain",
257
+ ".pdf": "application/pdf",
258
+ ".md": "text/markdown",
259
+ ".csv": "text/csv",
260
+ ".json": "application/json",
261
+ }
262
+
263
+ if media_type is None:
264
+ media_type = mime_types.get(ext, "application/octet-stream")
265
+ self.log.debug(f"Using media type: {media_type}")
266
+
267
+ with open(file_path, "rb") as f:
268
+ file_content = base64.b64encode(f.read()).decode("utf-8")
269
+ self.log.debug(f"File encoded, size: {len(file_content)} bytes")
270
+
271
+ self.log.info("Sending file for analysis")
272
+ message = self.client.messages.create(
273
+ model=self.model,
274
+ max_tokens=self.max_tokens,
275
+ messages=[
276
+ {
277
+ "role": "user",
278
+ "content": [
279
+ {
280
+ "type": "document",
281
+ "source": {
282
+ "type": "base64",
283
+ "media_type": media_type,
284
+ "data": file_content,
285
+ },
286
+ },
287
+ {"type": "text", "text": prompt},
288
+ ],
289
+ }
290
+ ],
291
+ )
292
+ self.log.info("Successfully analyzed file")
293
+ return message.content[0].text
294
+
295
+ except Exception as e:
296
+ self.log.error(f"Error analyzing file: {e}")
297
+ raise
298
+
299
+ def analyze_file_with_usage(
300
+ self,
301
+ file_path,
302
+ prompt,
303
+ media_type=None,
304
+ save_text=False,
305
+ output_dir="./output/claude",
306
+ ):
307
+ """
308
+ Analyze a file using Claude's file understanding capabilities with usage tracking.
309
+
310
+ Args:
311
+ file_path (str): Path to the file to analyze
312
+ prompt (str): The analysis prompt/question
313
+ media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
314
+ save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
315
+ output_dir (str, optional): The directory to save the output file
316
+
317
+ Returns:
318
+ dict: Contains 'content', 'usage', and 'cost' keys
319
+ """
320
+ self.log.info(f"Analyzing file with usage tracking: {file_path}")
321
+ ext = os.path.splitext(file_path)[1].lower()
322
+
323
+ try:
324
+ # For text-based files, read content directly as text
325
+ if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
326
+ if ext in [".html", ".htm"]:
327
+ text_content = self._convert_html_to_text(
328
+ file_path, save_text, output_dir
329
+ )
330
+ else:
331
+ # For other text files, read directly
332
+ with open(file_path, "r", encoding="utf-8") as f:
333
+ text_content = f.read()
334
+ self.log.debug(
335
+ f"Read text file, length: {len(text_content)} characters"
336
+ )
337
+ message = self.client.messages.create(
338
+ model=self.model,
339
+ max_tokens=self.max_tokens,
340
+ messages=[
341
+ {
342
+ "role": "user",
343
+ "content": f"Document content:\n\n{text_content}\n\n{prompt}",
344
+ }
345
+ ],
346
+ )
347
+ self.log.info(f"Successfully analyzed text content ({ext} file)")
348
+
349
+ # Extract usage and calculate cost
350
+ usage = {
351
+ "input_tokens": message.usage.input_tokens,
352
+ "output_tokens": message.usage.output_tokens,
353
+ "total_tokens": message.usage.input_tokens
354
+ + message.usage.output_tokens,
355
+ }
356
+ cost = self.calculate_cost(
357
+ usage["input_tokens"], usage["output_tokens"]
358
+ )
359
+
360
+ return {
361
+ "content": message.content[0].text,
362
+ "usage": usage,
363
+ "cost": cost,
364
+ }
365
+
366
+ # For binary file types (primarily PDFs), use base64 encoding with document format
367
+ mime_types = {
368
+ ".pdf": "application/pdf",
369
+ }
370
+
371
+ if media_type is None:
372
+ media_type = mime_types.get(ext)
373
+ if media_type is None:
374
+ raise ValueError(
375
+ f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
376
+ )
377
+ self.log.debug(f"Using media type: {media_type}")
378
+
379
+ with open(file_path, "rb") as f:
380
+ file_content = base64.b64encode(f.read()).decode("utf-8")
381
+ self.log.debug(f"File encoded, size: {len(file_content)} bytes")
382
+
383
+ self.log.info("Sending file for analysis")
384
+ message = self.client.messages.create(
385
+ model=self.model,
386
+ max_tokens=self.max_tokens,
387
+ messages=[
388
+ {
389
+ "role": "user",
390
+ "content": [
391
+ {
392
+ "type": "document",
393
+ "source": {
394
+ "type": "base64",
395
+ "media_type": media_type,
396
+ "data": file_content,
397
+ },
398
+ },
399
+ {"type": "text", "text": prompt},
400
+ ],
401
+ }
402
+ ],
403
+ )
404
+ self.log.info("Successfully analyzed file")
405
+
406
+ # Extract usage and calculate cost
407
+ usage = {
408
+ "input_tokens": message.usage.input_tokens,
409
+ "output_tokens": message.usage.output_tokens,
410
+ "total_tokens": message.usage.input_tokens
411
+ + message.usage.output_tokens,
412
+ }
413
+ cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
414
+
415
+ return {"content": message.content[0].text, "usage": usage, "cost": cost}
416
+
417
+ except Exception as e:
418
+ self.log.error(f"Error analyzing file: {e}")
419
+ raise
420
+
421
+ def count_file_tokens(
422
+ self, file_path, prompt="", media_type=None, output_dir="./output/claude"
423
+ ):
424
+ """
425
+ Count tokens for a file and optional prompt combination.
426
+
427
+ Args:
428
+ file_path (str): Path to the file to analyze
429
+ prompt (str, optional): Additional prompt text to include in token count
430
+ media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
431
+
432
+ Returns:
433
+ int: Total token count
434
+ """
435
+ self.log.info(f"Counting tokens for file: {file_path}")
436
+ ext = os.path.splitext(file_path)[1].lower()
437
+
438
+ try:
439
+ # For text-based files, count tokens of extracted text
440
+ if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
441
+ if ext in [".html", ".htm"]:
442
+ text_content = self._convert_html_to_text(
443
+ file_path, save_text=False, output_dir=output_dir
444
+ )
445
+ else:
446
+ # For other text files, read directly
447
+ with open(file_path, "r", encoding="utf-8") as f:
448
+ text_content = f.read()
449
+
450
+ content = f"Document content:\n\n{text_content}\n\n{prompt}"
451
+ token_count = self.count_tokens(content)
452
+ self.log.info(
453
+ f"Text file ({ext}) token count: {token_count.input_tokens}"
454
+ )
455
+ return token_count.input_tokens
456
+
457
+ # For binary file types (primarily PDFs), encode and count
458
+ mime_types = {
459
+ ".pdf": "application/pdf",
460
+ }
461
+
462
+ if media_type is None:
463
+ media_type = mime_types.get(ext)
464
+ if media_type is None:
465
+ raise ValueError(
466
+ f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
467
+ )
468
+ self.log.debug(f"Using media type: {media_type}")
469
+
470
+ with open(file_path, "rb") as f:
471
+ file_content = base64.b64encode(f.read()).decode("utf-8")
472
+
473
+ message_content = [
474
+ {
475
+ "type": "document",
476
+ "source": {
477
+ "type": "base64",
478
+ "media_type": media_type,
479
+ "data": file_content,
480
+ },
481
+ }
482
+ ]
483
+
484
+ if prompt:
485
+ message_content.append({"type": "text", "text": prompt})
486
+
487
+ token_count = self.client.messages.count_tokens(
488
+ model=self.model,
489
+ messages=[{"role": "user", "content": message_content}],
490
+ )
491
+
492
+ self.log.info(f"File token count: {token_count.input_tokens}")
493
+ return token_count.input_tokens
494
+
495
+ except Exception as e:
496
+ self.log.error(f"Error counting tokens: {e}")
497
+ raise
498
+
499
+
500
+ # Example usage
501
+ if __name__ == "__main__":
502
+ client = ClaudeClient()
503
+
504
+ # Test file analysis with Blender introduction document
505
+ file_path = "./data/html/blender/introduction.html"
506
+ prompt = (
507
+ "Given this document, generate a set of short queries a user "
508
+ "may ask about the document and produce a set of ground truth "
509
+ "answers to be used in validating a RAG system. Include a "
510
+ "summary of the document in the queries. Return a json "
511
+ "formatted list of query-response pairs formatted as follows:"
512
+ "{'source': 'path/to/document', 'summary': 'summarized document', "
513
+ "'qa_pairs': [{'query': 'query1', 'response': 'response1'}, "
514
+ "{'query': 'query2', 'response': 'response2'}, ...]}"
515
+ )
516
+
517
+ analysis = client.analyze_file(
518
+ file_path, prompt, save_text=True, output_dir="./output/claude"
519
+ )
520
+ print(client.count_file_tokens(file_path, prompt))
521
+
522
+ # Prepare enhanced output with metadata
523
+ from datetime import datetime
524
+
525
+ output_data = {
526
+ "metadata": {
527
+ "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
528
+ "model": client.model,
529
+ "source_file": file_path,
530
+ "prompt": prompt,
531
+ "token_count": client.count_file_tokens(file_path, prompt),
532
+ },
533
+ "analysis": json.loads(analysis), # Parse JSON string into dictionary
534
+ }
535
+
536
+ # Save analysis to JSON file
537
+ output_dir = "./output/claude"
538
+ os.makedirs(output_dir, exist_ok=True)
539
+ output_path = f"{output_dir}/{Path(file_path).stem}.out.json"
540
+ with open(output_path, "w", encoding="utf-8") as f:
541
+ json.dump(output_data, f, indent=2)
542
+ print(f"Analysis saved to: {output_path}")