amd-gaia 0.15.0__py3-none-any.whl → 0.15.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (181) hide show
  1. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.1.dist-info}/METADATA +223 -223
  2. amd_gaia-0.15.1.dist-info/RECORD +178 -0
  3. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.1.dist-info}/entry_points.txt +1 -0
  4. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.1.dist-info}/licenses/LICENSE.md +20 -20
  5. gaia/__init__.py +29 -29
  6. gaia/agents/__init__.py +19 -19
  7. gaia/agents/base/__init__.py +9 -9
  8. gaia/agents/base/agent.py +2177 -2177
  9. gaia/agents/base/api_agent.py +120 -120
  10. gaia/agents/base/console.py +1841 -1841
  11. gaia/agents/base/errors.py +237 -237
  12. gaia/agents/base/mcp_agent.py +86 -86
  13. gaia/agents/base/tools.py +83 -83
  14. gaia/agents/blender/agent.py +556 -556
  15. gaia/agents/blender/agent_simple.py +133 -135
  16. gaia/agents/blender/app.py +211 -211
  17. gaia/agents/blender/app_simple.py +41 -41
  18. gaia/agents/blender/core/__init__.py +16 -16
  19. gaia/agents/blender/core/materials.py +506 -506
  20. gaia/agents/blender/core/objects.py +316 -316
  21. gaia/agents/blender/core/rendering.py +225 -225
  22. gaia/agents/blender/core/scene.py +220 -220
  23. gaia/agents/blender/core/view.py +146 -146
  24. gaia/agents/chat/__init__.py +9 -9
  25. gaia/agents/chat/agent.py +835 -835
  26. gaia/agents/chat/app.py +1058 -1058
  27. gaia/agents/chat/session.py +508 -508
  28. gaia/agents/chat/tools/__init__.py +15 -15
  29. gaia/agents/chat/tools/file_tools.py +96 -96
  30. gaia/agents/chat/tools/rag_tools.py +1729 -1729
  31. gaia/agents/chat/tools/shell_tools.py +436 -436
  32. gaia/agents/code/__init__.py +7 -7
  33. gaia/agents/code/agent.py +549 -549
  34. gaia/agents/code/cli.py +377 -0
  35. gaia/agents/code/models.py +135 -135
  36. gaia/agents/code/orchestration/__init__.py +24 -24
  37. gaia/agents/code/orchestration/checklist_executor.py +1763 -1763
  38. gaia/agents/code/orchestration/checklist_generator.py +713 -713
  39. gaia/agents/code/orchestration/factories/__init__.py +9 -9
  40. gaia/agents/code/orchestration/factories/base.py +63 -63
  41. gaia/agents/code/orchestration/factories/nextjs_factory.py +118 -118
  42. gaia/agents/code/orchestration/factories/python_factory.py +106 -106
  43. gaia/agents/code/orchestration/orchestrator.py +841 -841
  44. gaia/agents/code/orchestration/project_analyzer.py +391 -391
  45. gaia/agents/code/orchestration/steps/__init__.py +67 -67
  46. gaia/agents/code/orchestration/steps/base.py +188 -188
  47. gaia/agents/code/orchestration/steps/error_handler.py +314 -314
  48. gaia/agents/code/orchestration/steps/nextjs.py +828 -828
  49. gaia/agents/code/orchestration/steps/python.py +307 -307
  50. gaia/agents/code/orchestration/template_catalog.py +469 -469
  51. gaia/agents/code/orchestration/workflows/__init__.py +14 -14
  52. gaia/agents/code/orchestration/workflows/base.py +80 -80
  53. gaia/agents/code/orchestration/workflows/nextjs.py +186 -186
  54. gaia/agents/code/orchestration/workflows/python.py +94 -94
  55. gaia/agents/code/prompts/__init__.py +11 -11
  56. gaia/agents/code/prompts/base_prompt.py +77 -77
  57. gaia/agents/code/prompts/code_patterns.py +2036 -2036
  58. gaia/agents/code/prompts/nextjs_prompt.py +40 -40
  59. gaia/agents/code/prompts/python_prompt.py +109 -109
  60. gaia/agents/code/schema_inference.py +365 -365
  61. gaia/agents/code/system_prompt.py +41 -41
  62. gaia/agents/code/tools/__init__.py +42 -42
  63. gaia/agents/code/tools/cli_tools.py +1138 -1138
  64. gaia/agents/code/tools/code_formatting.py +319 -319
  65. gaia/agents/code/tools/code_tools.py +769 -769
  66. gaia/agents/code/tools/error_fixing.py +1347 -1347
  67. gaia/agents/code/tools/external_tools.py +180 -180
  68. gaia/agents/code/tools/file_io.py +845 -845
  69. gaia/agents/code/tools/prisma_tools.py +190 -190
  70. gaia/agents/code/tools/project_management.py +1016 -1016
  71. gaia/agents/code/tools/testing.py +321 -321
  72. gaia/agents/code/tools/typescript_tools.py +122 -122
  73. gaia/agents/code/tools/validation_parsing.py +461 -461
  74. gaia/agents/code/tools/validation_tools.py +806 -806
  75. gaia/agents/code/tools/web_dev_tools.py +1758 -1758
  76. gaia/agents/code/validators/__init__.py +16 -16
  77. gaia/agents/code/validators/antipattern_checker.py +241 -241
  78. gaia/agents/code/validators/ast_analyzer.py +197 -197
  79. gaia/agents/code/validators/requirements_validator.py +145 -145
  80. gaia/agents/code/validators/syntax_validator.py +171 -171
  81. gaia/agents/docker/__init__.py +7 -7
  82. gaia/agents/docker/agent.py +642 -642
  83. gaia/agents/emr/__init__.py +8 -8
  84. gaia/agents/emr/agent.py +1506 -1506
  85. gaia/agents/emr/cli.py +1322 -1322
  86. gaia/agents/emr/constants.py +475 -475
  87. gaia/agents/emr/dashboard/__init__.py +4 -4
  88. gaia/agents/emr/dashboard/server.py +1974 -1974
  89. gaia/agents/jira/__init__.py +11 -11
  90. gaia/agents/jira/agent.py +894 -894
  91. gaia/agents/jira/jql_templates.py +299 -299
  92. gaia/agents/routing/__init__.py +7 -7
  93. gaia/agents/routing/agent.py +567 -570
  94. gaia/agents/routing/system_prompt.py +75 -75
  95. gaia/agents/summarize/__init__.py +11 -0
  96. gaia/agents/summarize/agent.py +885 -0
  97. gaia/agents/summarize/prompts.py +129 -0
  98. gaia/api/__init__.py +23 -23
  99. gaia/api/agent_registry.py +238 -238
  100. gaia/api/app.py +305 -305
  101. gaia/api/openai_server.py +575 -575
  102. gaia/api/schemas.py +186 -186
  103. gaia/api/sse_handler.py +373 -373
  104. gaia/apps/__init__.py +4 -4
  105. gaia/apps/llm/__init__.py +6 -6
  106. gaia/apps/llm/app.py +173 -169
  107. gaia/apps/summarize/app.py +116 -633
  108. gaia/apps/summarize/html_viewer.py +133 -133
  109. gaia/apps/summarize/pdf_formatter.py +284 -284
  110. gaia/audio/__init__.py +2 -2
  111. gaia/audio/audio_client.py +439 -439
  112. gaia/audio/audio_recorder.py +269 -269
  113. gaia/audio/kokoro_tts.py +599 -599
  114. gaia/audio/whisper_asr.py +432 -432
  115. gaia/chat/__init__.py +16 -16
  116. gaia/chat/app.py +430 -430
  117. gaia/chat/prompts.py +522 -522
  118. gaia/chat/sdk.py +1228 -1225
  119. gaia/cli.py +5481 -5632
  120. gaia/database/__init__.py +10 -10
  121. gaia/database/agent.py +176 -176
  122. gaia/database/mixin.py +290 -290
  123. gaia/database/testing.py +64 -64
  124. gaia/eval/batch_experiment.py +2332 -2332
  125. gaia/eval/claude.py +542 -542
  126. gaia/eval/config.py +37 -37
  127. gaia/eval/email_generator.py +512 -512
  128. gaia/eval/eval.py +3179 -3179
  129. gaia/eval/groundtruth.py +1130 -1130
  130. gaia/eval/transcript_generator.py +582 -582
  131. gaia/eval/webapp/README.md +167 -167
  132. gaia/eval/webapp/package-lock.json +875 -875
  133. gaia/eval/webapp/package.json +20 -20
  134. gaia/eval/webapp/public/app.js +3402 -3402
  135. gaia/eval/webapp/public/index.html +87 -87
  136. gaia/eval/webapp/public/styles.css +3661 -3661
  137. gaia/eval/webapp/server.js +415 -415
  138. gaia/eval/webapp/test-setup.js +72 -72
  139. gaia/llm/__init__.py +9 -2
  140. gaia/llm/base_client.py +60 -0
  141. gaia/llm/exceptions.py +12 -0
  142. gaia/llm/factory.py +70 -0
  143. gaia/llm/lemonade_client.py +3236 -3221
  144. gaia/llm/lemonade_manager.py +294 -294
  145. gaia/llm/providers/__init__.py +9 -0
  146. gaia/llm/providers/claude.py +108 -0
  147. gaia/llm/providers/lemonade.py +120 -0
  148. gaia/llm/providers/openai_provider.py +79 -0
  149. gaia/llm/vlm_client.py +382 -382
  150. gaia/logger.py +189 -189
  151. gaia/mcp/agent_mcp_server.py +245 -245
  152. gaia/mcp/blender_mcp_client.py +138 -138
  153. gaia/mcp/blender_mcp_server.py +648 -648
  154. gaia/mcp/context7_cache.py +332 -332
  155. gaia/mcp/external_services.py +518 -518
  156. gaia/mcp/mcp_bridge.py +811 -550
  157. gaia/mcp/servers/__init__.py +6 -6
  158. gaia/mcp/servers/docker_mcp.py +83 -83
  159. gaia/perf_analysis.py +361 -0
  160. gaia/rag/__init__.py +10 -10
  161. gaia/rag/app.py +293 -293
  162. gaia/rag/demo.py +304 -304
  163. gaia/rag/pdf_utils.py +235 -235
  164. gaia/rag/sdk.py +2194 -2194
  165. gaia/security.py +163 -163
  166. gaia/talk/app.py +289 -289
  167. gaia/talk/sdk.py +538 -538
  168. gaia/testing/__init__.py +87 -87
  169. gaia/testing/assertions.py +330 -330
  170. gaia/testing/fixtures.py +333 -333
  171. gaia/testing/mocks.py +493 -493
  172. gaia/util.py +46 -46
  173. gaia/utils/__init__.py +33 -33
  174. gaia/utils/file_watcher.py +675 -675
  175. gaia/utils/parsing.py +223 -223
  176. gaia/version.py +100 -100
  177. amd_gaia-0.15.0.dist-info/RECORD +0 -168
  178. gaia/agents/code/app.py +0 -266
  179. gaia/llm/llm_client.py +0 -723
  180. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.1.dist-info}/WHEEL +0 -0
  181. {amd_gaia-0.15.0.dist-info → amd_gaia-0.15.1.dist-info}/top_level.txt +0 -0
gaia/eval/claude.py CHANGED
@@ -1,542 +1,542 @@
1
- # Copyright(C) 2025-2026 Advanced Micro Devices, Inc. All rights reserved.
2
- # SPDX-License-Identifier: MIT
3
-
4
- import base64
5
- import json
6
- import os
7
- from pathlib import Path
8
-
9
- try:
10
- import anthropic
11
- except ImportError:
12
- anthropic = None
13
-
14
- try:
15
- from bs4 import BeautifulSoup
16
- except ImportError:
17
- BeautifulSoup = None
18
-
19
- from dotenv import load_dotenv
20
-
21
- from gaia.eval.config import DEFAULT_CLAUDE_MODEL, MODEL_PRICING
22
- from gaia.logger import get_logger
23
-
24
- load_dotenv()
25
-
26
-
27
- class ClaudeClient:
28
- log = get_logger(__name__)
29
-
30
- def __init__(self, model=None, max_tokens=1024, max_retries=3):
31
- """
32
- Initialize Claude client with retry support.
33
-
34
- Args:
35
- model: Claude model to use (defaults to DEFAULT_CLAUDE_MODEL)
36
- max_tokens: Maximum tokens in response (default: 1024)
37
- max_retries: Maximum number of retry attempts for API calls with exponential backoff (default: 3)
38
- """
39
- # Check for required dependencies
40
- if anthropic is None:
41
- error_msg = (
42
- "\n❌ Error: Missing required package 'anthropic'\n\n"
43
- "Please install the eval dependencies:\n"
44
- ' uv pip install -e ".[eval]"\n\n'
45
- "Or install anthropic directly:\n"
46
- " uv pip install anthropic\n"
47
- )
48
- raise ImportError(error_msg)
49
-
50
- if BeautifulSoup is None:
51
- error_msg = (
52
- "\n❌ Error: Missing required package 'bs4' (BeautifulSoup4)\n\n"
53
- "Please install the eval dependencies:\n"
54
- ' uv pip install -e ".[eval]"\n\n'
55
- "Or install beautifulsoup4 directly:\n"
56
- " uv pip install beautifulsoup4\n"
57
- )
58
- raise ImportError(error_msg)
59
-
60
- if model is None:
61
- model = DEFAULT_CLAUDE_MODEL
62
- self.log = self.__class__.log # Use the class-level logger for instances
63
- self.api_key = os.getenv("ANTHROPIC_API_KEY")
64
- if not self.api_key:
65
- error_msg = (
66
- "ANTHROPIC_API_KEY not found in environment.\n"
67
- "Please add your Anthropic API key to the .env file:\n"
68
- " ANTHROPIC_API_KEY=your_api_key_here\n"
69
- "Alternatively, export it as an environment variable:\n"
70
- " export ANTHROPIC_API_KEY=your_api_key_here\n"
71
- )
72
- self.log.error(error_msg)
73
- raise ValueError(error_msg)
74
- # Initialize Anthropic client with retry support
75
- # The SDK handles exponential backoff automatically
76
- self.client = anthropic.Anthropic(
77
- api_key=self.api_key,
78
- max_retries=max_retries,
79
- timeout=300.0, # 5 minute timeout for large documents
80
- )
81
- self.model = model
82
- self.max_tokens = max_tokens
83
- self.max_retries = max_retries
84
- self.log.info(
85
- f"Initialized ClaudeClient with model: {model}, max_retries: {max_retries}"
86
- )
87
-
88
- def calculate_cost(self, input_tokens, output_tokens):
89
- """
90
- Calculate the cost of an API call based on token usage.
91
-
92
- Args:
93
- input_tokens (int): Number of input tokens
94
- output_tokens (int): Number of output tokens
95
-
96
- Returns:
97
- dict: Cost breakdown with input_cost, output_cost, and total_cost
98
- """
99
- # Get pricing for the current model, fallback to default if not found
100
- pricing = MODEL_PRICING.get(self.model, MODEL_PRICING["default"])
101
-
102
- # Calculate costs (convert tokens to millions)
103
- input_cost = (input_tokens / 1_000_000) * pricing["input_per_mtok"]
104
- output_cost = (output_tokens / 1_000_000) * pricing["output_per_mtok"]
105
- total_cost = input_cost + output_cost
106
-
107
- return {
108
- "input_cost": round(input_cost, 6),
109
- "output_cost": round(output_cost, 6),
110
- "total_cost": round(total_cost, 6),
111
- }
112
-
113
- def get_completion(self, prompt):
114
- self.log.debug("Getting completion from Claude")
115
- self.log.debug(f"Prompt token count: {self.count_tokens(prompt)}")
116
- try:
117
- message = self.client.messages.create(
118
- model=self.model,
119
- max_tokens=self.max_tokens,
120
- messages=[{"role": "user", "content": prompt}],
121
- )
122
- return message.content
123
- except Exception as e:
124
- self.log.error(f"Error getting completion: {e}")
125
- raise
126
-
127
- def get_completion_with_usage(self, prompt):
128
- """
129
- Get completion from Claude and return both content and usage/cost information.
130
-
131
- Args:
132
- prompt (str): The prompt to send to Claude
133
-
134
- Returns:
135
- dict: Contains 'content', 'usage', and 'cost' keys
136
- """
137
- self.log.info("Getting completion with usage tracking from Claude")
138
- try:
139
- message = self.client.messages.create(
140
- model=self.model,
141
- max_tokens=self.max_tokens,
142
- messages=[{"role": "user", "content": prompt}],
143
- )
144
-
145
- # Extract usage information
146
- usage = {
147
- "input_tokens": message.usage.input_tokens,
148
- "output_tokens": message.usage.output_tokens,
149
- "total_tokens": message.usage.input_tokens
150
- + message.usage.output_tokens,
151
- }
152
-
153
- # Calculate cost
154
- cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
155
-
156
- self.log.info(
157
- f"Usage: {usage['input_tokens']} input + {usage['output_tokens']} output = {usage['total_tokens']} total tokens"
158
- )
159
- self.log.info(
160
- f"Cost: ${cost['input_cost']:.4f} input + ${cost['output_cost']:.4f} output = ${cost['total_cost']:.4f} total"
161
- )
162
-
163
- return {"content": message.content, "usage": usage, "cost": cost}
164
- except Exception as e:
165
- self.log.error(f"Error getting completion with usage: {e}")
166
- raise
167
-
168
- def list_models(self):
169
- self.log.info("Retrieving available models")
170
- try:
171
- models = self.client.models.list(limit=20)
172
- self.log.info(f"Successfully retrieved {len(models)} models")
173
- return models
174
- except Exception as e:
175
- self.log.error(f"Error listing models: {e}")
176
- raise
177
-
178
- def count_tokens(self, prompt):
179
- return self.client.messages.count_tokens(
180
- model=self.model, messages=[{"role": "user", "content": prompt}]
181
- )
182
-
183
- def _convert_html_to_text(
184
- self, file_path, save_text=False, output_dir="./output/claude"
185
- ):
186
- """
187
- Convert HTML file content to plain text.
188
-
189
- Args:
190
- file_path (str): Path to the HTML file
191
- save_text (bool): If True, saves extracted text to a file
192
-
193
- Returns:
194
- str: Extracted text content
195
- """
196
- self.log.info("Converting HTML to text")
197
- with open(file_path, "r", encoding="utf-8") as f:
198
- soup = BeautifulSoup(f.read(), "html.parser")
199
- text_content = soup.get_text(separator="\n", strip=True)
200
- self.log.debug(f"Extracted {len(text_content)} characters of text")
201
-
202
- if save_text:
203
- # Create output directory if it doesn't exist
204
- os.makedirs(output_dir, exist_ok=True)
205
-
206
- filename = Path(file_path).stem
207
- output_path = f"{output_dir}/{filename}.soup.txt"
208
- with open(output_path, "w", encoding="utf-8") as f:
209
- f.write(text_content)
210
- self.log.info(f"Saved extracted text to: {output_path}")
211
-
212
- return text_content
213
-
214
- def analyze_file(
215
- self,
216
- file_path,
217
- prompt,
218
- media_type=None,
219
- save_text=False,
220
- output_dir="./output/claude",
221
- ):
222
- """
223
- Analyze a file using Claude's file understanding capabilities.
224
-
225
- Args:
226
- file_path (str): Path to the file to analyze
227
- prompt (str): The analysis prompt/question
228
- media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
229
- save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
230
- output_dir (str, optional): The directory to save the output file
231
- """
232
- self.log.info(f"Analyzing file: {file_path}")
233
- ext = os.path.splitext(file_path)[1].lower()
234
-
235
- try:
236
- # For HTML files, extract text using BeautifulSoup
237
- if ext in [".html", ".htm"]:
238
- text_content = self._convert_html_to_text(
239
- file_path, save_text, output_dir
240
- )
241
- message = self.client.messages.create(
242
- model=self.model,
243
- max_tokens=self.max_tokens,
244
- messages=[
245
- {
246
- "role": "user",
247
- "content": f"Document content:\n\n{text_content}\n\n{prompt}",
248
- }
249
- ],
250
- )
251
- self.log.info("Successfully analyzed HTML content")
252
- return message.content[0].text
253
-
254
- # For other file types, use the original base64 encoding method
255
- mime_types = {
256
- ".txt": "text/plain",
257
- ".pdf": "application/pdf",
258
- ".md": "text/markdown",
259
- ".csv": "text/csv",
260
- ".json": "application/json",
261
- }
262
-
263
- if media_type is None:
264
- media_type = mime_types.get(ext, "application/octet-stream")
265
- self.log.debug(f"Using media type: {media_type}")
266
-
267
- with open(file_path, "rb") as f:
268
- file_content = base64.b64encode(f.read()).decode("utf-8")
269
- self.log.debug(f"File encoded, size: {len(file_content)} bytes")
270
-
271
- self.log.info("Sending file for analysis")
272
- message = self.client.messages.create(
273
- model=self.model,
274
- max_tokens=self.max_tokens,
275
- messages=[
276
- {
277
- "role": "user",
278
- "content": [
279
- {
280
- "type": "document",
281
- "source": {
282
- "type": "base64",
283
- "media_type": media_type,
284
- "data": file_content,
285
- },
286
- },
287
- {"type": "text", "text": prompt},
288
- ],
289
- }
290
- ],
291
- )
292
- self.log.info("Successfully analyzed file")
293
- return message.content[0].text
294
-
295
- except Exception as e:
296
- self.log.error(f"Error analyzing file: {e}")
297
- raise
298
-
299
- def analyze_file_with_usage(
300
- self,
301
- file_path,
302
- prompt,
303
- media_type=None,
304
- save_text=False,
305
- output_dir="./output/claude",
306
- ):
307
- """
308
- Analyze a file using Claude's file understanding capabilities with usage tracking.
309
-
310
- Args:
311
- file_path (str): Path to the file to analyze
312
- prompt (str): The analysis prompt/question
313
- media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
314
- save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
315
- output_dir (str, optional): The directory to save the output file
316
-
317
- Returns:
318
- dict: Contains 'content', 'usage', and 'cost' keys
319
- """
320
- self.log.info(f"Analyzing file with usage tracking: {file_path}")
321
- ext = os.path.splitext(file_path)[1].lower()
322
-
323
- try:
324
- # For text-based files, read content directly as text
325
- if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
326
- if ext in [".html", ".htm"]:
327
- text_content = self._convert_html_to_text(
328
- file_path, save_text, output_dir
329
- )
330
- else:
331
- # For other text files, read directly
332
- with open(file_path, "r", encoding="utf-8") as f:
333
- text_content = f.read()
334
- self.log.debug(
335
- f"Read text file, length: {len(text_content)} characters"
336
- )
337
- message = self.client.messages.create(
338
- model=self.model,
339
- max_tokens=self.max_tokens,
340
- messages=[
341
- {
342
- "role": "user",
343
- "content": f"Document content:\n\n{text_content}\n\n{prompt}",
344
- }
345
- ],
346
- )
347
- self.log.info(f"Successfully analyzed text content ({ext} file)")
348
-
349
- # Extract usage and calculate cost
350
- usage = {
351
- "input_tokens": message.usage.input_tokens,
352
- "output_tokens": message.usage.output_tokens,
353
- "total_tokens": message.usage.input_tokens
354
- + message.usage.output_tokens,
355
- }
356
- cost = self.calculate_cost(
357
- usage["input_tokens"], usage["output_tokens"]
358
- )
359
-
360
- return {
361
- "content": message.content[0].text,
362
- "usage": usage,
363
- "cost": cost,
364
- }
365
-
366
- # For binary file types (primarily PDFs), use base64 encoding with document format
367
- mime_types = {
368
- ".pdf": "application/pdf",
369
- }
370
-
371
- if media_type is None:
372
- media_type = mime_types.get(ext)
373
- if media_type is None:
374
- raise ValueError(
375
- f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
376
- )
377
- self.log.debug(f"Using media type: {media_type}")
378
-
379
- with open(file_path, "rb") as f:
380
- file_content = base64.b64encode(f.read()).decode("utf-8")
381
- self.log.debug(f"File encoded, size: {len(file_content)} bytes")
382
-
383
- self.log.info("Sending file for analysis")
384
- message = self.client.messages.create(
385
- model=self.model,
386
- max_tokens=self.max_tokens,
387
- messages=[
388
- {
389
- "role": "user",
390
- "content": [
391
- {
392
- "type": "document",
393
- "source": {
394
- "type": "base64",
395
- "media_type": media_type,
396
- "data": file_content,
397
- },
398
- },
399
- {"type": "text", "text": prompt},
400
- ],
401
- }
402
- ],
403
- )
404
- self.log.info("Successfully analyzed file")
405
-
406
- # Extract usage and calculate cost
407
- usage = {
408
- "input_tokens": message.usage.input_tokens,
409
- "output_tokens": message.usage.output_tokens,
410
- "total_tokens": message.usage.input_tokens
411
- + message.usage.output_tokens,
412
- }
413
- cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
414
-
415
- return {"content": message.content[0].text, "usage": usage, "cost": cost}
416
-
417
- except Exception as e:
418
- self.log.error(f"Error analyzing file: {e}")
419
- raise
420
-
421
- def count_file_tokens(
422
- self, file_path, prompt="", media_type=None, output_dir="./output/claude"
423
- ):
424
- """
425
- Count tokens for a file and optional prompt combination.
426
-
427
- Args:
428
- file_path (str): Path to the file to analyze
429
- prompt (str, optional): Additional prompt text to include in token count
430
- media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
431
-
432
- Returns:
433
- int: Total token count
434
- """
435
- self.log.info(f"Counting tokens for file: {file_path}")
436
- ext = os.path.splitext(file_path)[1].lower()
437
-
438
- try:
439
- # For text-based files, count tokens of extracted text
440
- if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
441
- if ext in [".html", ".htm"]:
442
- text_content = self._convert_html_to_text(
443
- file_path, save_text=False, output_dir=output_dir
444
- )
445
- else:
446
- # For other text files, read directly
447
- with open(file_path, "r", encoding="utf-8") as f:
448
- text_content = f.read()
449
-
450
- content = f"Document content:\n\n{text_content}\n\n{prompt}"
451
- token_count = self.count_tokens(content)
452
- self.log.info(
453
- f"Text file ({ext}) token count: {token_count.input_tokens}"
454
- )
455
- return token_count.input_tokens
456
-
457
- # For binary file types (primarily PDFs), encode and count
458
- mime_types = {
459
- ".pdf": "application/pdf",
460
- }
461
-
462
- if media_type is None:
463
- media_type = mime_types.get(ext)
464
- if media_type is None:
465
- raise ValueError(
466
- f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
467
- )
468
- self.log.debug(f"Using media type: {media_type}")
469
-
470
- with open(file_path, "rb") as f:
471
- file_content = base64.b64encode(f.read()).decode("utf-8")
472
-
473
- message_content = [
474
- {
475
- "type": "document",
476
- "source": {
477
- "type": "base64",
478
- "media_type": media_type,
479
- "data": file_content,
480
- },
481
- }
482
- ]
483
-
484
- if prompt:
485
- message_content.append({"type": "text", "text": prompt})
486
-
487
- token_count = self.client.messages.count_tokens(
488
- model=self.model,
489
- messages=[{"role": "user", "content": message_content}],
490
- )
491
-
492
- self.log.info(f"File token count: {token_count.input_tokens}")
493
- return token_count.input_tokens
494
-
495
- except Exception as e:
496
- self.log.error(f"Error counting tokens: {e}")
497
- raise
498
-
499
-
500
- # Example usage
501
- if __name__ == "__main__":
502
- client = ClaudeClient()
503
-
504
- # Test file analysis with Blender introduction document
505
- file_path = "./data/html/blender/introduction.html"
506
- prompt = (
507
- "Given this document, generate a set of short queries a user "
508
- "may ask about the document and produce a set of ground truth "
509
- "answers to be used in validating a RAG system. Include a "
510
- "summary of the document in the queries. Return a json "
511
- "formatted list of query-response pairs formatted as follows:"
512
- "{'source': 'path/to/document', 'summary': 'summarized document', "
513
- "'qa_pairs': [{'query': 'query1', 'response': 'response1'}, "
514
- "{'query': 'query2', 'response': 'response2'}, ...]}"
515
- )
516
-
517
- analysis = client.analyze_file(
518
- file_path, prompt, save_text=True, output_dir="./output/claude"
519
- )
520
- print(client.count_file_tokens(file_path, prompt))
521
-
522
- # Prepare enhanced output with metadata
523
- from datetime import datetime
524
-
525
- output_data = {
526
- "metadata": {
527
- "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
528
- "model": client.model,
529
- "source_file": file_path,
530
- "prompt": prompt,
531
- "token_count": client.count_file_tokens(file_path, prompt),
532
- },
533
- "analysis": json.loads(analysis), # Parse JSON string into dictionary
534
- }
535
-
536
- # Save analysis to JSON file
537
- output_dir = "./output/claude"
538
- os.makedirs(output_dir, exist_ok=True)
539
- output_path = f"{output_dir}/{Path(file_path).stem}.out.json"
540
- with open(output_path, "w", encoding="utf-8") as f:
541
- json.dump(output_data, f, indent=2)
542
- print(f"Analysis saved to: {output_path}")
1
+ # Copyright(C) 2025-2026 Advanced Micro Devices, Inc. All rights reserved.
2
+ # SPDX-License-Identifier: MIT
3
+
4
+ import base64
5
+ import json
6
+ import os
7
+ from pathlib import Path
8
+
9
+ try:
10
+ import anthropic
11
+ except ImportError:
12
+ anthropic = None
13
+
14
+ try:
15
+ from bs4 import BeautifulSoup
16
+ except ImportError:
17
+ BeautifulSoup = None
18
+
19
+ from dotenv import load_dotenv
20
+
21
+ from gaia.eval.config import DEFAULT_CLAUDE_MODEL, MODEL_PRICING
22
+ from gaia.logger import get_logger
23
+
24
+ load_dotenv()
25
+
26
+
27
+ class ClaudeClient:
28
+ log = get_logger(__name__)
29
+
30
+ def __init__(self, model=None, max_tokens=1024, max_retries=3):
31
+ """
32
+ Initialize Claude client with retry support.
33
+
34
+ Args:
35
+ model: Claude model to use (defaults to DEFAULT_CLAUDE_MODEL)
36
+ max_tokens: Maximum tokens in response (default: 1024)
37
+ max_retries: Maximum number of retry attempts for API calls with exponential backoff (default: 3)
38
+ """
39
+ # Check for required dependencies
40
+ if anthropic is None:
41
+ error_msg = (
42
+ "\n❌ Error: Missing required package 'anthropic'\n\n"
43
+ "Please install the eval dependencies:\n"
44
+ ' uv pip install -e ".[eval]"\n\n'
45
+ "Or install anthropic directly:\n"
46
+ " uv pip install anthropic\n"
47
+ )
48
+ raise ImportError(error_msg)
49
+
50
+ if BeautifulSoup is None:
51
+ error_msg = (
52
+ "\n❌ Error: Missing required package 'bs4' (BeautifulSoup4)\n\n"
53
+ "Please install the eval dependencies:\n"
54
+ ' uv pip install -e ".[eval]"\n\n'
55
+ "Or install beautifulsoup4 directly:\n"
56
+ " uv pip install beautifulsoup4\n"
57
+ )
58
+ raise ImportError(error_msg)
59
+
60
+ if model is None:
61
+ model = DEFAULT_CLAUDE_MODEL
62
+ self.log = self.__class__.log # Use the class-level logger for instances
63
+ self.api_key = os.getenv("ANTHROPIC_API_KEY")
64
+ if not self.api_key:
65
+ error_msg = (
66
+ "ANTHROPIC_API_KEY not found in environment.\n"
67
+ "Please add your Anthropic API key to the .env file:\n"
68
+ " ANTHROPIC_API_KEY=your_api_key_here\n"
69
+ "Alternatively, export it as an environment variable:\n"
70
+ " export ANTHROPIC_API_KEY=your_api_key_here\n"
71
+ )
72
+ self.log.error(error_msg)
73
+ raise ValueError(error_msg)
74
+ # Initialize Anthropic client with retry support
75
+ # The SDK handles exponential backoff automatically
76
+ self.client = anthropic.Anthropic(
77
+ api_key=self.api_key,
78
+ max_retries=max_retries,
79
+ timeout=300.0, # 5 minute timeout for large documents
80
+ )
81
+ self.model = model
82
+ self.max_tokens = max_tokens
83
+ self.max_retries = max_retries
84
+ self.log.info(
85
+ f"Initialized ClaudeClient with model: {model}, max_retries: {max_retries}"
86
+ )
87
+
88
+ def calculate_cost(self, input_tokens, output_tokens):
89
+ """
90
+ Calculate the cost of an API call based on token usage.
91
+
92
+ Args:
93
+ input_tokens (int): Number of input tokens
94
+ output_tokens (int): Number of output tokens
95
+
96
+ Returns:
97
+ dict: Cost breakdown with input_cost, output_cost, and total_cost
98
+ """
99
+ # Get pricing for the current model, fallback to default if not found
100
+ pricing = MODEL_PRICING.get(self.model, MODEL_PRICING["default"])
101
+
102
+ # Calculate costs (convert tokens to millions)
103
+ input_cost = (input_tokens / 1_000_000) * pricing["input_per_mtok"]
104
+ output_cost = (output_tokens / 1_000_000) * pricing["output_per_mtok"]
105
+ total_cost = input_cost + output_cost
106
+
107
+ return {
108
+ "input_cost": round(input_cost, 6),
109
+ "output_cost": round(output_cost, 6),
110
+ "total_cost": round(total_cost, 6),
111
+ }
112
+
113
+ def get_completion(self, prompt):
114
+ self.log.debug("Getting completion from Claude")
115
+ self.log.debug(f"Prompt token count: {self.count_tokens(prompt)}")
116
+ try:
117
+ message = self.client.messages.create(
118
+ model=self.model,
119
+ max_tokens=self.max_tokens,
120
+ messages=[{"role": "user", "content": prompt}],
121
+ )
122
+ return message.content
123
+ except Exception as e:
124
+ self.log.error(f"Error getting completion: {e}")
125
+ raise
126
+
127
+ def get_completion_with_usage(self, prompt):
128
+ """
129
+ Get completion from Claude and return both content and usage/cost information.
130
+
131
+ Args:
132
+ prompt (str): The prompt to send to Claude
133
+
134
+ Returns:
135
+ dict: Contains 'content', 'usage', and 'cost' keys
136
+ """
137
+ self.log.info("Getting completion with usage tracking from Claude")
138
+ try:
139
+ message = self.client.messages.create(
140
+ model=self.model,
141
+ max_tokens=self.max_tokens,
142
+ messages=[{"role": "user", "content": prompt}],
143
+ )
144
+
145
+ # Extract usage information
146
+ usage = {
147
+ "input_tokens": message.usage.input_tokens,
148
+ "output_tokens": message.usage.output_tokens,
149
+ "total_tokens": message.usage.input_tokens
150
+ + message.usage.output_tokens,
151
+ }
152
+
153
+ # Calculate cost
154
+ cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
155
+
156
+ self.log.info(
157
+ f"Usage: {usage['input_tokens']} input + {usage['output_tokens']} output = {usage['total_tokens']} total tokens"
158
+ )
159
+ self.log.info(
160
+ f"Cost: ${cost['input_cost']:.4f} input + ${cost['output_cost']:.4f} output = ${cost['total_cost']:.4f} total"
161
+ )
162
+
163
+ return {"content": message.content, "usage": usage, "cost": cost}
164
+ except Exception as e:
165
+ self.log.error(f"Error getting completion with usage: {e}")
166
+ raise
167
+
168
+ def list_models(self):
169
+ self.log.info("Retrieving available models")
170
+ try:
171
+ models = self.client.models.list(limit=20)
172
+ self.log.info(f"Successfully retrieved {len(models)} models")
173
+ return models
174
+ except Exception as e:
175
+ self.log.error(f"Error listing models: {e}")
176
+ raise
177
+
178
+ def count_tokens(self, prompt):
179
+ return self.client.messages.count_tokens(
180
+ model=self.model, messages=[{"role": "user", "content": prompt}]
181
+ )
182
+
183
+ def _convert_html_to_text(
184
+ self, file_path, save_text=False, output_dir="./output/claude"
185
+ ):
186
+ """
187
+ Convert HTML file content to plain text.
188
+
189
+ Args:
190
+ file_path (str): Path to the HTML file
191
+ save_text (bool): If True, saves extracted text to a file
192
+
193
+ Returns:
194
+ str: Extracted text content
195
+ """
196
+ self.log.info("Converting HTML to text")
197
+ with open(file_path, "r", encoding="utf-8") as f:
198
+ soup = BeautifulSoup(f.read(), "html.parser")
199
+ text_content = soup.get_text(separator="\n", strip=True)
200
+ self.log.debug(f"Extracted {len(text_content)} characters of text")
201
+
202
+ if save_text:
203
+ # Create output directory if it doesn't exist
204
+ os.makedirs(output_dir, exist_ok=True)
205
+
206
+ filename = Path(file_path).stem
207
+ output_path = f"{output_dir}/{filename}.soup.txt"
208
+ with open(output_path, "w", encoding="utf-8") as f:
209
+ f.write(text_content)
210
+ self.log.info(f"Saved extracted text to: {output_path}")
211
+
212
+ return text_content
213
+
214
+ def analyze_file(
215
+ self,
216
+ file_path,
217
+ prompt,
218
+ media_type=None,
219
+ save_text=False,
220
+ output_dir="./output/claude",
221
+ ):
222
+ """
223
+ Analyze a file using Claude's file understanding capabilities.
224
+
225
+ Args:
226
+ file_path (str): Path to the file to analyze
227
+ prompt (str): The analysis prompt/question
228
+ media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
229
+ save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
230
+ output_dir (str, optional): The directory to save the output file
231
+ """
232
+ self.log.info(f"Analyzing file: {file_path}")
233
+ ext = os.path.splitext(file_path)[1].lower()
234
+
235
+ try:
236
+ # For HTML files, extract text using BeautifulSoup
237
+ if ext in [".html", ".htm"]:
238
+ text_content = self._convert_html_to_text(
239
+ file_path, save_text, output_dir
240
+ )
241
+ message = self.client.messages.create(
242
+ model=self.model,
243
+ max_tokens=self.max_tokens,
244
+ messages=[
245
+ {
246
+ "role": "user",
247
+ "content": f"Document content:\n\n{text_content}\n\n{prompt}",
248
+ }
249
+ ],
250
+ )
251
+ self.log.info("Successfully analyzed HTML content")
252
+ return message.content[0].text
253
+
254
+ # For other file types, use the original base64 encoding method
255
+ mime_types = {
256
+ ".txt": "text/plain",
257
+ ".pdf": "application/pdf",
258
+ ".md": "text/markdown",
259
+ ".csv": "text/csv",
260
+ ".json": "application/json",
261
+ }
262
+
263
+ if media_type is None:
264
+ media_type = mime_types.get(ext, "application/octet-stream")
265
+ self.log.debug(f"Using media type: {media_type}")
266
+
267
+ with open(file_path, "rb") as f:
268
+ file_content = base64.b64encode(f.read()).decode("utf-8")
269
+ self.log.debug(f"File encoded, size: {len(file_content)} bytes")
270
+
271
+ self.log.info("Sending file for analysis")
272
+ message = self.client.messages.create(
273
+ model=self.model,
274
+ max_tokens=self.max_tokens,
275
+ messages=[
276
+ {
277
+ "role": "user",
278
+ "content": [
279
+ {
280
+ "type": "document",
281
+ "source": {
282
+ "type": "base64",
283
+ "media_type": media_type,
284
+ "data": file_content,
285
+ },
286
+ },
287
+ {"type": "text", "text": prompt},
288
+ ],
289
+ }
290
+ ],
291
+ )
292
+ self.log.info("Successfully analyzed file")
293
+ return message.content[0].text
294
+
295
+ except Exception as e:
296
+ self.log.error(f"Error analyzing file: {e}")
297
+ raise
298
+
299
+ def analyze_file_with_usage(
300
+ self,
301
+ file_path,
302
+ prompt,
303
+ media_type=None,
304
+ save_text=False,
305
+ output_dir="./output/claude",
306
+ ):
307
+ """
308
+ Analyze a file using Claude's file understanding capabilities with usage tracking.
309
+
310
+ Args:
311
+ file_path (str): Path to the file to analyze
312
+ prompt (str): The analysis prompt/question
313
+ media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
314
+ save_text (bool, optional): If True, saves extracted text content to a file (for HTML files only)
315
+ output_dir (str, optional): The directory to save the output file
316
+
317
+ Returns:
318
+ dict: Contains 'content', 'usage', and 'cost' keys
319
+ """
320
+ self.log.info(f"Analyzing file with usage tracking: {file_path}")
321
+ ext = os.path.splitext(file_path)[1].lower()
322
+
323
+ try:
324
+ # For text-based files, read content directly as text
325
+ if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
326
+ if ext in [".html", ".htm"]:
327
+ text_content = self._convert_html_to_text(
328
+ file_path, save_text, output_dir
329
+ )
330
+ else:
331
+ # For other text files, read directly
332
+ with open(file_path, "r", encoding="utf-8") as f:
333
+ text_content = f.read()
334
+ self.log.debug(
335
+ f"Read text file, length: {len(text_content)} characters"
336
+ )
337
+ message = self.client.messages.create(
338
+ model=self.model,
339
+ max_tokens=self.max_tokens,
340
+ messages=[
341
+ {
342
+ "role": "user",
343
+ "content": f"Document content:\n\n{text_content}\n\n{prompt}",
344
+ }
345
+ ],
346
+ )
347
+ self.log.info(f"Successfully analyzed text content ({ext} file)")
348
+
349
+ # Extract usage and calculate cost
350
+ usage = {
351
+ "input_tokens": message.usage.input_tokens,
352
+ "output_tokens": message.usage.output_tokens,
353
+ "total_tokens": message.usage.input_tokens
354
+ + message.usage.output_tokens,
355
+ }
356
+ cost = self.calculate_cost(
357
+ usage["input_tokens"], usage["output_tokens"]
358
+ )
359
+
360
+ return {
361
+ "content": message.content[0].text,
362
+ "usage": usage,
363
+ "cost": cost,
364
+ }
365
+
366
+ # For binary file types (primarily PDFs), use base64 encoding with document format
367
+ mime_types = {
368
+ ".pdf": "application/pdf",
369
+ }
370
+
371
+ if media_type is None:
372
+ media_type = mime_types.get(ext)
373
+ if media_type is None:
374
+ raise ValueError(
375
+ f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
376
+ )
377
+ self.log.debug(f"Using media type: {media_type}")
378
+
379
+ with open(file_path, "rb") as f:
380
+ file_content = base64.b64encode(f.read()).decode("utf-8")
381
+ self.log.debug(f"File encoded, size: {len(file_content)} bytes")
382
+
383
+ self.log.info("Sending file for analysis")
384
+ message = self.client.messages.create(
385
+ model=self.model,
386
+ max_tokens=self.max_tokens,
387
+ messages=[
388
+ {
389
+ "role": "user",
390
+ "content": [
391
+ {
392
+ "type": "document",
393
+ "source": {
394
+ "type": "base64",
395
+ "media_type": media_type,
396
+ "data": file_content,
397
+ },
398
+ },
399
+ {"type": "text", "text": prompt},
400
+ ],
401
+ }
402
+ ],
403
+ )
404
+ self.log.info("Successfully analyzed file")
405
+
406
+ # Extract usage and calculate cost
407
+ usage = {
408
+ "input_tokens": message.usage.input_tokens,
409
+ "output_tokens": message.usage.output_tokens,
410
+ "total_tokens": message.usage.input_tokens
411
+ + message.usage.output_tokens,
412
+ }
413
+ cost = self.calculate_cost(usage["input_tokens"], usage["output_tokens"])
414
+
415
+ return {"content": message.content[0].text, "usage": usage, "cost": cost}
416
+
417
+ except Exception as e:
418
+ self.log.error(f"Error analyzing file: {e}")
419
+ raise
420
+
421
+ def count_file_tokens(
422
+ self, file_path, prompt="", media_type=None, output_dir="./output/claude"
423
+ ):
424
+ """
425
+ Count tokens for a file and optional prompt combination.
426
+
427
+ Args:
428
+ file_path (str): Path to the file to analyze
429
+ prompt (str, optional): Additional prompt text to include in token count
430
+ media_type (str, optional): The MIME type of the file. If None, will try to infer from extension
431
+
432
+ Returns:
433
+ int: Total token count
434
+ """
435
+ self.log.info(f"Counting tokens for file: {file_path}")
436
+ ext = os.path.splitext(file_path)[1].lower()
437
+
438
+ try:
439
+ # For text-based files, count tokens of extracted text
440
+ if ext in [".html", ".htm", ".txt", ".md", ".csv", ".json"]:
441
+ if ext in [".html", ".htm"]:
442
+ text_content = self._convert_html_to_text(
443
+ file_path, save_text=False, output_dir=output_dir
444
+ )
445
+ else:
446
+ # For other text files, read directly
447
+ with open(file_path, "r", encoding="utf-8") as f:
448
+ text_content = f.read()
449
+
450
+ content = f"Document content:\n\n{text_content}\n\n{prompt}"
451
+ token_count = self.count_tokens(content)
452
+ self.log.info(
453
+ f"Text file ({ext}) token count: {token_count.input_tokens}"
454
+ )
455
+ return token_count.input_tokens
456
+
457
+ # For binary file types (primarily PDFs), encode and count
458
+ mime_types = {
459
+ ".pdf": "application/pdf",
460
+ }
461
+
462
+ if media_type is None:
463
+ media_type = mime_types.get(ext)
464
+ if media_type is None:
465
+ raise ValueError(
466
+ f"Unsupported file type: {ext}. Supported types: {list(mime_types.keys())}"
467
+ )
468
+ self.log.debug(f"Using media type: {media_type}")
469
+
470
+ with open(file_path, "rb") as f:
471
+ file_content = base64.b64encode(f.read()).decode("utf-8")
472
+
473
+ message_content = [
474
+ {
475
+ "type": "document",
476
+ "source": {
477
+ "type": "base64",
478
+ "media_type": media_type,
479
+ "data": file_content,
480
+ },
481
+ }
482
+ ]
483
+
484
+ if prompt:
485
+ message_content.append({"type": "text", "text": prompt})
486
+
487
+ token_count = self.client.messages.count_tokens(
488
+ model=self.model,
489
+ messages=[{"role": "user", "content": message_content}],
490
+ )
491
+
492
+ self.log.info(f"File token count: {token_count.input_tokens}")
493
+ return token_count.input_tokens
494
+
495
+ except Exception as e:
496
+ self.log.error(f"Error counting tokens: {e}")
497
+ raise
498
+
499
+
500
+ # Example usage
501
+ if __name__ == "__main__":
502
+ client = ClaudeClient()
503
+
504
+ # Test file analysis with Blender introduction document
505
+ file_path = "./data/html/blender/introduction.html"
506
+ prompt = (
507
+ "Given this document, generate a set of short queries a user "
508
+ "may ask about the document and produce a set of ground truth "
509
+ "answers to be used in validating a RAG system. Include a "
510
+ "summary of the document in the queries. Return a json "
511
+ "formatted list of query-response pairs formatted as follows:"
512
+ "{'source': 'path/to/document', 'summary': 'summarized document', "
513
+ "'qa_pairs': [{'query': 'query1', 'response': 'response1'}, "
514
+ "{'query': 'query2', 'response': 'response2'}, ...]}"
515
+ )
516
+
517
+ analysis = client.analyze_file(
518
+ file_path, prompt, save_text=True, output_dir="./output/claude"
519
+ )
520
+ print(client.count_file_tokens(file_path, prompt))
521
+
522
+ # Prepare enhanced output with metadata
523
+ from datetime import datetime
524
+
525
+ output_data = {
526
+ "metadata": {
527
+ "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
528
+ "model": client.model,
529
+ "source_file": file_path,
530
+ "prompt": prompt,
531
+ "token_count": client.count_file_tokens(file_path, prompt),
532
+ },
533
+ "analysis": json.loads(analysis), # Parse JSON string into dictionary
534
+ }
535
+
536
+ # Save analysis to JSON file
537
+ output_dir = "./output/claude"
538
+ os.makedirs(output_dir, exist_ok=True)
539
+ output_path = f"{output_dir}/{Path(file_path).stem}.out.json"
540
+ with open(output_path, "w", encoding="utf-8") as f:
541
+ json.dump(output_data, f, indent=2)
542
+ print(f"Analysis saved to: {output_path}")