akshare 1.14.88__py3-none-any.whl → 1.14.90__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of akshare might be problematic. Click here for more details.
- akshare/__init__.py +3 -1
- akshare/bond/bond_china.py +38 -39
- akshare/fund/fund_em.py +181 -155
- akshare/stock_feature/stock_gdhs.py +73 -49
- akshare/stock_feature/stock_pankou_em.py +72 -34
- {akshare-1.14.88.dist-info → akshare-1.14.90.dist-info}/METADATA +1 -1
- {akshare-1.14.88.dist-info → akshare-1.14.90.dist-info}/RECORD +10 -10
- {akshare-1.14.88.dist-info → akshare-1.14.90.dist-info}/LICENSE +0 -0
- {akshare-1.14.88.dist-info → akshare-1.14.90.dist-info}/WHEEL +0 -0
- {akshare-1.14.88.dist-info → akshare-1.14.90.dist-info}/top_level.txt +0 -0
|
@@ -1,12 +1,14 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2024/10/1 22:00
|
|
5
5
|
Desc: 东方财富网-数据中心-特色数据-股东户数
|
|
6
6
|
https://data.eastmoney.com/gdhs/
|
|
7
7
|
"""
|
|
8
|
+
|
|
8
9
|
import pandas as pd
|
|
9
10
|
import requests
|
|
11
|
+
|
|
10
12
|
from akshare.utils.tqdm import get_tqdm
|
|
11
13
|
|
|
12
14
|
|
|
@@ -27,7 +29,9 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
|
|
|
27
29
|
"pageSize": "500",
|
|
28
30
|
"pageNumber": "1",
|
|
29
31
|
"reportName": "RPT_HOLDERNUMLATEST",
|
|
30
|
-
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,
|
|
32
|
+
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,"
|
|
33
|
+
"TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,"
|
|
34
|
+
"HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
|
|
31
35
|
"quoteColumns": "f2,f3",
|
|
32
36
|
"source": "WEB",
|
|
33
37
|
"client": "WEB",
|
|
@@ -39,11 +43,13 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
|
|
|
39
43
|
"pageSize": "500",
|
|
40
44
|
"pageNumber": "1",
|
|
41
45
|
"reportName": "RPT_HOLDERNUM_DET",
|
|
42
|
-
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,
|
|
46
|
+
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,"
|
|
47
|
+
"AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,"
|
|
48
|
+
"PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
|
|
43
49
|
"quoteColumns": "f2,f3",
|
|
44
50
|
"source": "WEB",
|
|
45
51
|
"client": "WEB",
|
|
46
|
-
|
|
52
|
+
"filter": f"(END_DATE='{symbol[:4] + '-' + symbol[4:6] + '-' + symbol[6:]}')",
|
|
47
53
|
}
|
|
48
54
|
r = requests.get(url, params=params)
|
|
49
55
|
data_json = r.json()
|
|
@@ -51,13 +57,15 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
|
|
|
51
57
|
big_df = pd.DataFrame()
|
|
52
58
|
tqdm = get_tqdm()
|
|
53
59
|
for page_num in tqdm(range(1, total_page_num + 1), leave=False):
|
|
54
|
-
params.update(
|
|
55
|
-
|
|
56
|
-
|
|
60
|
+
params.update(
|
|
61
|
+
{
|
|
62
|
+
"pageNumber": page_num,
|
|
63
|
+
}
|
|
64
|
+
)
|
|
57
65
|
r = requests.get(url, params=params)
|
|
58
66
|
data_json = r.json()
|
|
59
67
|
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
60
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
68
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
61
69
|
big_df.columns = [
|
|
62
70
|
"代码",
|
|
63
71
|
"名称",
|
|
@@ -96,20 +104,26 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
|
|
|
96
104
|
"公告日期",
|
|
97
105
|
]
|
|
98
106
|
]
|
|
99
|
-
big_df[
|
|
100
|
-
big_df[
|
|
101
|
-
big_df[
|
|
102
|
-
big_df[
|
|
103
|
-
big_df[
|
|
104
|
-
big_df[
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
big_df[
|
|
108
|
-
big_df[
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
big_df[
|
|
112
|
-
|
|
107
|
+
big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce")
|
|
108
|
+
big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce")
|
|
109
|
+
big_df["股东户数-本次"] = pd.to_numeric(big_df["股东户数-本次"], errors="coerce")
|
|
110
|
+
big_df["股东户数-上次"] = pd.to_numeric(big_df["股东户数-上次"], errors="coerce")
|
|
111
|
+
big_df["股东户数-增减"] = pd.to_numeric(big_df["股东户数-增减"], errors="coerce")
|
|
112
|
+
big_df["股东户数-增减比例"] = pd.to_numeric(
|
|
113
|
+
big_df["股东户数-增减比例"], errors="coerce"
|
|
114
|
+
)
|
|
115
|
+
big_df["区间涨跌幅"] = pd.to_numeric(big_df["区间涨跌幅"], errors="coerce")
|
|
116
|
+
big_df["股东户数统计截止日-本次"] = pd.to_datetime(
|
|
117
|
+
big_df["股东户数统计截止日-本次"], errors="coerce"
|
|
118
|
+
).dt.date
|
|
119
|
+
big_df["股东户数统计截止日-上次"] = pd.to_datetime(
|
|
120
|
+
big_df["股东户数统计截止日-上次"], errors="coerce"
|
|
121
|
+
).dt.date
|
|
122
|
+
big_df["户均持股市值"] = pd.to_numeric(big_df["户均持股市值"], errors="coerce")
|
|
123
|
+
big_df["户均持股数量"] = pd.to_numeric(big_df["户均持股数量"], errors="coerce")
|
|
124
|
+
big_df["总市值"] = pd.to_numeric(big_df["总市值"], errors="coerce")
|
|
125
|
+
big_df["总股本"] = pd.to_numeric(big_df["总股本"], errors="coerce")
|
|
126
|
+
big_df["公告日期"] = pd.to_datetime(big_df["公告日期"], errors="coerce").dt.date
|
|
113
127
|
return big_df
|
|
114
128
|
|
|
115
129
|
|
|
@@ -124,16 +138,18 @@ def stock_zh_a_gdhs_detail_em(symbol: str = "000001") -> pd.DataFrame:
|
|
|
124
138
|
"""
|
|
125
139
|
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
126
140
|
params = {
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
141
|
+
"sortColumns": "END_DATE",
|
|
142
|
+
"sortTypes": "-1",
|
|
143
|
+
"pageSize": "500",
|
|
144
|
+
"pageNumber": "1",
|
|
145
|
+
"reportName": "RPT_HOLDERNUM_DET",
|
|
146
|
+
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,CHANGE_SHARES,CHANGE_REASON,END_DATE,INTERVAL_CHRATE,"
|
|
147
|
+
"AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,"
|
|
148
|
+
"PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
|
|
149
|
+
"quoteColumns": "f2,f3",
|
|
150
|
+
"filter": f'(SECURITY_CODE="{symbol}")',
|
|
151
|
+
"source": "WEB",
|
|
152
|
+
"client": "WEB",
|
|
137
153
|
}
|
|
138
154
|
r = requests.get(url, params=params)
|
|
139
155
|
data_json = r.json()
|
|
@@ -141,13 +157,15 @@ def stock_zh_a_gdhs_detail_em(symbol: str = "000001") -> pd.DataFrame:
|
|
|
141
157
|
big_df = pd.DataFrame()
|
|
142
158
|
tqdm = get_tqdm()
|
|
143
159
|
for page_num in tqdm(range(1, total_page_num + 1), leave=False):
|
|
144
|
-
params.update(
|
|
145
|
-
|
|
146
|
-
|
|
160
|
+
params.update(
|
|
161
|
+
{
|
|
162
|
+
"pageNumber": page_num,
|
|
163
|
+
}
|
|
164
|
+
)
|
|
147
165
|
r = requests.get(url, params=params)
|
|
148
166
|
data_json = r.json()
|
|
149
167
|
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
150
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
168
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
151
169
|
big_df.columns = [
|
|
152
170
|
"代码",
|
|
153
171
|
"名称",
|
|
@@ -187,23 +205,29 @@ def stock_zh_a_gdhs_detail_em(symbol: str = "000001") -> pd.DataFrame:
|
|
|
187
205
|
"名称",
|
|
188
206
|
]
|
|
189
207
|
]
|
|
190
|
-
big_df[
|
|
191
|
-
big_df[
|
|
192
|
-
big_df[
|
|
193
|
-
big_df[
|
|
194
|
-
big_df[
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
big_df[
|
|
198
|
-
big_df[
|
|
199
|
-
big_df[
|
|
200
|
-
big_df[
|
|
201
|
-
big_df[
|
|
208
|
+
big_df["区间涨跌幅"] = pd.to_numeric(big_df["区间涨跌幅"], errors="coerce")
|
|
209
|
+
big_df["股东户数-本次"] = pd.to_numeric(big_df["股东户数-本次"], errors="coerce")
|
|
210
|
+
big_df["股东户数-上次"] = pd.to_numeric(big_df["股东户数-上次"], errors="coerce")
|
|
211
|
+
big_df["股东户数-增减"] = pd.to_numeric(big_df["股东户数-增减"], errors="coerce")
|
|
212
|
+
big_df["股东户数-增减比例"] = pd.to_numeric(
|
|
213
|
+
big_df["股东户数-增减比例"], errors="coerce"
|
|
214
|
+
)
|
|
215
|
+
big_df["户均持股市值"] = pd.to_numeric(big_df["户均持股市值"], errors="coerce")
|
|
216
|
+
big_df["户均持股数量"] = pd.to_numeric(big_df["户均持股数量"], errors="coerce")
|
|
217
|
+
big_df["总市值"] = pd.to_numeric(big_df["总市值"], errors="coerce")
|
|
218
|
+
big_df["总股本"] = pd.to_numeric(big_df["总股本"], errors="coerce")
|
|
219
|
+
big_df["股本变动"] = pd.to_numeric(big_df["股本变动"], errors="coerce")
|
|
220
|
+
big_df["股东户数统计截止日"] = pd.to_datetime(
|
|
221
|
+
big_df["股东户数统计截止日"], errors="coerce"
|
|
222
|
+
).dt.date
|
|
223
|
+
big_df["股东户数公告日期"] = pd.to_datetime(
|
|
224
|
+
big_df["股东户数公告日期"], errors="coerce"
|
|
225
|
+
).dt.date
|
|
202
226
|
return big_df
|
|
203
227
|
|
|
204
228
|
|
|
205
229
|
if __name__ == "__main__":
|
|
206
|
-
stock_zh_a_gdhs_df = stock_zh_a_gdhs(symbol=
|
|
230
|
+
stock_zh_a_gdhs_df = stock_zh_a_gdhs(symbol="20230930")
|
|
207
231
|
print(stock_zh_a_gdhs_df)
|
|
208
232
|
|
|
209
233
|
stock_zh_a_gdhs_detail_em_df = stock_zh_a_gdhs_detail_em(symbol="000001")
|
|
@@ -5,6 +5,7 @@ Date: 2022/12/27 21:11
|
|
|
5
5
|
Desc: 东方财富-行情中心-盘口异动
|
|
6
6
|
https://quote.eastmoney.com/changes/
|
|
7
7
|
"""
|
|
8
|
+
|
|
8
9
|
import pandas as pd
|
|
9
10
|
import requests
|
|
10
11
|
|
|
@@ -13,12 +14,14 @@ def stock_changes_em(symbol: str = "大笔买入") -> pd.DataFrame:
|
|
|
13
14
|
"""
|
|
14
15
|
东方财富-行情中心-盘口异动
|
|
15
16
|
https://quote.eastmoney.com/changes/
|
|
16
|
-
:param symbol: choice of {'火箭发射', '快速反弹', '大笔买入', '封涨停板', '打开跌停板', '有大买盘',
|
|
17
|
+
:param symbol: choice of {'火箭发射', '快速反弹', '大笔买入', '封涨停板', '打开跌停板', '有大买盘',
|
|
18
|
+
'竞价上涨', '高开5日线', '向上缺口', '60日新高', '60日大幅上涨', '加速下跌', '高台跳水',
|
|
19
|
+
'大笔卖出', '封跌停板', '打开涨停板', '有大卖盘', '竞价下跌', '低开5日线', '向下缺口', '60日新低', '60日大幅下跌'}
|
|
17
20
|
:type symbol: str
|
|
18
21
|
:return: 盘口异动
|
|
19
22
|
:rtype: pandas.DataFrame
|
|
20
23
|
"""
|
|
21
|
-
url = "
|
|
24
|
+
url = "https://push2ex.eastmoney.com/getAllStockChanges"
|
|
22
25
|
symbol_map = {
|
|
23
26
|
"火箭发射": "8201",
|
|
24
27
|
"快速反弹": "8202",
|
|
@@ -85,54 +88,89 @@ def stock_board_change_em() -> pd.DataFrame:
|
|
|
85
88
|
:return: 当日板块异动详情页
|
|
86
89
|
:rtype: pandas.DataFrame
|
|
87
90
|
"""
|
|
88
|
-
url = "
|
|
91
|
+
url = "https://push2ex.eastmoney.com/getAllBKChanges"
|
|
89
92
|
params = {
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
93
|
+
"ut": "7eea3edcaed734bea9cbfc24409ed989",
|
|
94
|
+
"dpt": "wzchanges",
|
|
95
|
+
"pageindex": "0",
|
|
96
|
+
"pagesize": "5000",
|
|
97
|
+
"_": "1671978840598",
|
|
95
98
|
}
|
|
96
99
|
r = requests.get(url, params=params)
|
|
97
100
|
data_json = r.json()
|
|
98
|
-
data_df = pd.DataFrame(data_json[
|
|
101
|
+
data_df = pd.DataFrame(data_json["data"]["allbk"])
|
|
99
102
|
data_df.columns = [
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
103
|
+
"-",
|
|
104
|
+
"-",
|
|
105
|
+
"板块名称",
|
|
106
|
+
"涨跌幅",
|
|
107
|
+
"主力净流入",
|
|
108
|
+
"板块异动总次数",
|
|
106
109
|
"ms",
|
|
107
110
|
"板块具体异动类型列表及出现次数",
|
|
108
111
|
]
|
|
109
|
-
data_df[
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
data_df[
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
112
|
+
data_df["板块异动最频繁个股及所属类型-买卖方向"] = [
|
|
113
|
+
item["m"] for item in data_df["ms"]
|
|
114
|
+
]
|
|
115
|
+
data_df["板块异动最频繁个股及所属类型-股票代码"] = [
|
|
116
|
+
item["c"] for item in data_df["ms"]
|
|
117
|
+
]
|
|
118
|
+
data_df["板块异动最频繁个股及所属类型-股票名称"] = [
|
|
119
|
+
item["n"] for item in data_df["ms"]
|
|
120
|
+
]
|
|
121
|
+
data_df["板块异动最频繁个股及所属类型-买卖方向"] = data_df[
|
|
122
|
+
"板块异动最频繁个股及所属类型-买卖方向"
|
|
123
|
+
].map({0: "大笔买入", 1: "大笔卖出"})
|
|
124
|
+
data_df = data_df[
|
|
125
|
+
[
|
|
126
|
+
"板块名称",
|
|
127
|
+
"涨跌幅",
|
|
128
|
+
"主力净流入",
|
|
129
|
+
"板块异动总次数",
|
|
130
|
+
"板块异动最频繁个股及所属类型-股票代码",
|
|
131
|
+
"板块异动最频繁个股及所属类型-股票名称",
|
|
132
|
+
"板块异动最频繁个股及所属类型-买卖方向",
|
|
133
|
+
"板块具体异动类型列表及出现次数",
|
|
134
|
+
]
|
|
135
|
+
]
|
|
136
|
+
data_df["涨跌幅"] = pd.to_numeric(data_df["涨跌幅"], errors="coerce")
|
|
137
|
+
data_df["主力净流入"] = pd.to_numeric(data_df["主力净流入"], errors="coerce")
|
|
138
|
+
data_df["板块异动总次数"] = pd.to_numeric(
|
|
139
|
+
data_df["板块异动总次数"], errors="coerce"
|
|
140
|
+
)
|
|
126
141
|
return data_df
|
|
127
142
|
|
|
128
143
|
|
|
129
144
|
if __name__ == "__main__":
|
|
130
|
-
stock_changes_em_df = stock_changes_em(symbol=
|
|
145
|
+
stock_changes_em_df = stock_changes_em(symbol="大笔买入")
|
|
131
146
|
print(stock_changes_em_df)
|
|
132
147
|
|
|
133
148
|
stock_board_change_em_df = stock_board_change_em()
|
|
134
149
|
print(stock_board_change_em_df)
|
|
135
150
|
|
|
136
|
-
for item in {
|
|
151
|
+
for item in {
|
|
152
|
+
"火箭发射",
|
|
153
|
+
"快速反弹",
|
|
154
|
+
"大笔买入",
|
|
155
|
+
"封涨停板",
|
|
156
|
+
"打开跌停板",
|
|
157
|
+
"有大买盘",
|
|
158
|
+
"竞价上涨",
|
|
159
|
+
"高开5日线",
|
|
160
|
+
"向上缺口",
|
|
161
|
+
"60日新高",
|
|
162
|
+
"60日大幅上涨",
|
|
163
|
+
"加速下跌",
|
|
164
|
+
"高台跳水",
|
|
165
|
+
"大笔卖出",
|
|
166
|
+
"封跌停板",
|
|
167
|
+
"打开涨停板",
|
|
168
|
+
"有大卖盘",
|
|
169
|
+
"竞价下跌",
|
|
170
|
+
"低开5日线",
|
|
171
|
+
"向下缺口",
|
|
172
|
+
"60日新低",
|
|
173
|
+
"60日大幅下跌",
|
|
174
|
+
}:
|
|
137
175
|
stock_changes_em_df = stock_changes_em(symbol=item)
|
|
138
176
|
print(stock_changes_em_df)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
akshare/__init__.py,sha256=
|
|
1
|
+
akshare/__init__.py,sha256=H6s_sgiwergPca28QDiOa11XfE1brlRuzmAhfkF4zgE,182331
|
|
2
2
|
akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
|
|
3
3
|
akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
|
|
4
4
|
akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
|
|
@@ -20,7 +20,7 @@ akshare/bond/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
|
|
|
20
20
|
akshare/bond/bond_cb_sina.py,sha256=onLasmV1Y8eTIUkNu9S0o5PzMWCNC5jX6tOSjELimHQ,1811
|
|
21
21
|
akshare/bond/bond_cb_ths.py,sha256=sxpcGr5teUR0fSGolBKl1bDUkdA94gKdXdLvr5NSC0U,3079
|
|
22
22
|
akshare/bond/bond_cbond.py,sha256=2uMmzrZsGC4ZBoCcRAqITsRxpQzuTX1Nc0_m86x3GXM,6525
|
|
23
|
-
akshare/bond/bond_china.py,sha256=
|
|
23
|
+
akshare/bond/bond_china.py,sha256=Gjp2x2aNFRlGfHFpQYX_Prv19V9a4INiw5O946rLLtA,6535
|
|
24
24
|
akshare/bond/bond_china_money.py,sha256=IInePsQJDby5w0AYd84ipiJL_nbyVAaRC7SaHLWDP_E,13729
|
|
25
25
|
akshare/bond/bond_convert.py,sha256=9w94nIdSN4BUL27sPbVEUouBaAm30WMBiokYr4yM0sI,12649
|
|
26
26
|
akshare/bond/bond_em.py,sha256=Ck5hCloZ25I8updarLPzqHYYZPeOsjIFy4g2oaZvFMs,5318
|
|
@@ -83,7 +83,7 @@ akshare/fund/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
|
|
|
83
83
|
akshare/fund/fund_amac.py,sha256=Dml3EgpJhmVgkttb0OdaWN41ynOCIbJ0-1qAPDWF0oo,33800
|
|
84
84
|
akshare/fund/fund_announcement.py,sha256=g5rcIC9vQ4HapZd0b7cDbFYzHu9V6bOKhwxRHVfmv8k,1848
|
|
85
85
|
akshare/fund/fund_aum_em.py,sha256=dy1R1-0X48H8S-LPiuggNA5M-6MvQ08fnp5bytvCGPQ,3518
|
|
86
|
-
akshare/fund/fund_em.py,sha256=
|
|
86
|
+
akshare/fund/fund_em.py,sha256=L48mRByrBvOwtF6MyNHtXAP4F_RNkZJ-LWNdgjdQPCM,40824
|
|
87
87
|
akshare/fund/fund_etf_em.py,sha256=8HrEQbM3wSMHuTAle9g6iT4ULaPjsqCcTBVU7PrpqJA,17377
|
|
88
88
|
akshare/fund/fund_etf_sina.py,sha256=bhfxivhwClZxwwslqusaZwrNRdEkfCApQOli0QMrM3A,4899
|
|
89
89
|
akshare/fund/fund_etf_ths.py,sha256=vb_jy0h2-Kz2dNWUrwBYxPB0MAotv0KZgnFhE98ohSM,3432
|
|
@@ -309,7 +309,7 @@ akshare/stock_feature/stock_fhps_ths.py,sha256=NosH1xyT1Pif4T9tchdtJTBEpe6g1Wq2k
|
|
|
309
309
|
akshare/stock_feature/stock_fund_flow.py,sha256=cqBqsFrzwmuLP3k3wYQzvW085QUUfHZ4nBW8Zx7egkQ,18669
|
|
310
310
|
akshare/stock_feature/stock_gddh_em.py,sha256=I_MUJhyy0mwjNG46ZsQINEQvHR42EmS7gJBQujXr5Bw,3467
|
|
311
311
|
akshare/stock_feature/stock_gdfx_em.py,sha256=vrzyMdcNw8wZabXYH89wjzIAokAVfHDVcpNfC0MHsl4,37825
|
|
312
|
-
akshare/stock_feature/stock_gdhs.py,sha256=
|
|
312
|
+
akshare/stock_feature/stock_gdhs.py,sha256=Z6ZMy1A03BqMu9TghcIu2Sd_wwEtpIH7qawHun9G7ns,9036
|
|
313
313
|
akshare/stock_feature/stock_gdzjc_em.py,sha256=SHJH5iS3_NhvjTqRXF0vPooZl0s_ASeyZmNCC50ZYqs,4426
|
|
314
314
|
akshare/stock_feature/stock_gpzy_em.py,sha256=8NvLfWbLLQyjTlg6iSpg1LxlIAKLv534JZAiUAVxF1M,17443
|
|
315
315
|
akshare/stock_feature/stock_gxl_lg.py,sha256=I8TpDEpFzadZSSyZisyIk6163mJlRxup91dmlBH4t4U,2641
|
|
@@ -331,7 +331,7 @@ akshare/stock_feature/stock_margin_em.py,sha256=B8TDj3exQFQNupVYYExm0umyHAwhaTly
|
|
|
331
331
|
akshare/stock_feature/stock_margin_sse.py,sha256=yTc4sP7qyqe6qfeJpw2B3_m2Dc5XU3StP5r7VIqRGxM,6864
|
|
332
332
|
akshare/stock_feature/stock_margin_szse.py,sha256=KUxJ4lsLKi_pp934RAKWgJskfkVk4nJhfnnYddehacI,6412
|
|
333
333
|
akshare/stock_feature/stock_market_legu.py,sha256=_LeyGUGyZFeD-1fnJPc4eIQkeoWAmoc92aikwYW7EdU,1897
|
|
334
|
-
akshare/stock_feature/stock_pankou_em.py,sha256=
|
|
334
|
+
akshare/stock_feature/stock_pankou_em.py,sha256=A3lu1hKddXwMFo9vKPLCQfL3Zh77xr2IbcAtKs8Lc9Y,5599
|
|
335
335
|
akshare/stock_feature/stock_qsjy_em.py,sha256=7EHroLZC3-X_3WNhb7GV9MPQHbxjtkfKI_YEbTvnSb0,3913
|
|
336
336
|
akshare/stock_feature/stock_report_em.py,sha256=jhePrTKGIYzdz8idiPoDs1vEajd73XRIFpZyWQggKa4,18075
|
|
337
337
|
akshare/stock_feature/stock_research_report_em.py,sha256=XFQadpUI2l0-Ik8BQWf-eCC4uFC1xxt9VNiZ9NU2zp0,4888
|
|
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
|
|
|
380
380
|
akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
|
|
381
381
|
tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
|
|
382
382
|
tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
|
|
383
|
-
akshare-1.14.
|
|
384
|
-
akshare-1.14.
|
|
385
|
-
akshare-1.14.
|
|
386
|
-
akshare-1.14.
|
|
387
|
-
akshare-1.14.
|
|
383
|
+
akshare-1.14.90.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
|
|
384
|
+
akshare-1.14.90.dist-info/METADATA,sha256=dJfTNyF34l2ZyfXLBCrPpCNd8vAmjcr18IkXaTCrqrY,14112
|
|
385
|
+
akshare-1.14.90.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
386
|
+
akshare-1.14.90.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
|
|
387
|
+
akshare-1.14.90.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|