akshare 1.14.88__py3-none-any.whl → 1.14.90__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of akshare might be problematic. Click here for more details.

@@ -1,12 +1,14 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2023/12/29 18:00
4
+ Date: 2024/10/1 22:00
5
5
  Desc: 东方财富网-数据中心-特色数据-股东户数
6
6
  https://data.eastmoney.com/gdhs/
7
7
  """
8
+
8
9
  import pandas as pd
9
10
  import requests
11
+
10
12
  from akshare.utils.tqdm import get_tqdm
11
13
 
12
14
 
@@ -27,7 +29,9 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
27
29
  "pageSize": "500",
28
30
  "pageNumber": "1",
29
31
  "reportName": "RPT_HOLDERNUMLATEST",
30
- "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
32
+ "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,"
33
+ "TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,"
34
+ "HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
31
35
  "quoteColumns": "f2,f3",
32
36
  "source": "WEB",
33
37
  "client": "WEB",
@@ -39,11 +43,13 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
39
43
  "pageSize": "500",
40
44
  "pageNumber": "1",
41
45
  "reportName": "RPT_HOLDERNUM_DET",
42
- "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
46
+ "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,"
47
+ "AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,"
48
+ "PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
43
49
  "quoteColumns": "f2,f3",
44
50
  "source": "WEB",
45
51
  "client": "WEB",
46
- 'filter': f"(END_DATE='{symbol[:4] + '-' + symbol[4:6] + '-' + symbol[6:]}')",
52
+ "filter": f"(END_DATE='{symbol[:4] + '-' + symbol[4:6] + '-' + symbol[6:]}')",
47
53
  }
48
54
  r = requests.get(url, params=params)
49
55
  data_json = r.json()
@@ -51,13 +57,15 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
51
57
  big_df = pd.DataFrame()
52
58
  tqdm = get_tqdm()
53
59
  for page_num in tqdm(range(1, total_page_num + 1), leave=False):
54
- params.update({
55
- "pageNumber": page_num,
56
- })
60
+ params.update(
61
+ {
62
+ "pageNumber": page_num,
63
+ }
64
+ )
57
65
  r = requests.get(url, params=params)
58
66
  data_json = r.json()
59
67
  temp_df = pd.DataFrame(data_json["result"]["data"])
60
- big_df = pd.concat([big_df, temp_df], ignore_index=True)
68
+ big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
61
69
  big_df.columns = [
62
70
  "代码",
63
71
  "名称",
@@ -96,20 +104,26 @@ def stock_zh_a_gdhs(symbol: str = "20230930") -> pd.DataFrame:
96
104
  "公告日期",
97
105
  ]
98
106
  ]
99
- big_df['最新价'] = pd.to_numeric(big_df['最新价'], errors="coerce")
100
- big_df['涨跌幅'] = pd.to_numeric(big_df['涨跌幅'], errors="coerce")
101
- big_df['股东户数-本次'] = pd.to_numeric(big_df['股东户数-本次'], errors="coerce")
102
- big_df['股东户数-上次'] = pd.to_numeric(big_df['股东户数-上次'], errors="coerce")
103
- big_df['股东户数-增减'] = pd.to_numeric(big_df['股东户数-增减'], errors="coerce")
104
- big_df['股东户数-增减比例'] = pd.to_numeric(big_df['股东户数-增减比例'], errors="coerce")
105
- big_df['区间涨跌幅'] = pd.to_numeric(big_df['区间涨跌幅'], errors="coerce")
106
- big_df['股东户数统计截止日-本次'] = pd.to_datetime(big_df['股东户数统计截止日-本次'], errors="coerce").dt.date
107
- big_df['股东户数统计截止日-上次'] = pd.to_datetime(big_df['股东户数统计截止日-上次'], errors="coerce").dt.date
108
- big_df['户均持股市值'] = pd.to_numeric(big_df['户均持股市值'], errors="coerce")
109
- big_df['户均持股数量'] = pd.to_numeric(big_df['户均持股数量'], errors="coerce")
110
- big_df['总市值'] = pd.to_numeric(big_df['总市值'], errors="coerce")
111
- big_df['总股本'] = pd.to_numeric(big_df['总股本'], errors="coerce")
112
- big_df['公告日期'] = pd.to_datetime(big_df['公告日期'], errors="coerce").dt.date
107
+ big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce")
108
+ big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce")
109
+ big_df["股东户数-本次"] = pd.to_numeric(big_df["股东户数-本次"], errors="coerce")
110
+ big_df["股东户数-上次"] = pd.to_numeric(big_df["股东户数-上次"], errors="coerce")
111
+ big_df["股东户数-增减"] = pd.to_numeric(big_df["股东户数-增减"], errors="coerce")
112
+ big_df["股东户数-增减比例"] = pd.to_numeric(
113
+ big_df["股东户数-增减比例"], errors="coerce"
114
+ )
115
+ big_df["区间涨跌幅"] = pd.to_numeric(big_df["区间涨跌幅"], errors="coerce")
116
+ big_df["股东户数统计截止日-本次"] = pd.to_datetime(
117
+ big_df["股东户数统计截止日-本次"], errors="coerce"
118
+ ).dt.date
119
+ big_df["股东户数统计截止日-上次"] = pd.to_datetime(
120
+ big_df["股东户数统计截止日-上次"], errors="coerce"
121
+ ).dt.date
122
+ big_df["户均持股市值"] = pd.to_numeric(big_df["户均持股市值"], errors="coerce")
123
+ big_df["户均持股数量"] = pd.to_numeric(big_df["户均持股数量"], errors="coerce")
124
+ big_df["总市值"] = pd.to_numeric(big_df["总市值"], errors="coerce")
125
+ big_df["总股本"] = pd.to_numeric(big_df["总股本"], errors="coerce")
126
+ big_df["公告日期"] = pd.to_datetime(big_df["公告日期"], errors="coerce").dt.date
113
127
  return big_df
114
128
 
115
129
 
@@ -124,16 +138,18 @@ def stock_zh_a_gdhs_detail_em(symbol: str = "000001") -> pd.DataFrame:
124
138
  """
125
139
  url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
126
140
  params = {
127
- 'sortColumns': 'END_DATE',
128
- 'sortTypes': '-1',
129
- 'pageSize': '500',
130
- 'pageNumber': '1',
131
- 'reportName': 'RPT_HOLDERNUM_DET',
132
- 'columns': 'SECURITY_CODE,SECURITY_NAME_ABBR,CHANGE_SHARES,CHANGE_REASON,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE',
133
- 'quoteColumns': 'f2,f3',
134
- 'filter': f'(SECURITY_CODE="{symbol}")',
135
- 'source': 'WEB',
136
- 'client': 'WEB',
141
+ "sortColumns": "END_DATE",
142
+ "sortTypes": "-1",
143
+ "pageSize": "500",
144
+ "pageNumber": "1",
145
+ "reportName": "RPT_HOLDERNUM_DET",
146
+ "columns": "SECURITY_CODE,SECURITY_NAME_ABBR,CHANGE_SHARES,CHANGE_REASON,END_DATE,INTERVAL_CHRATE,"
147
+ "AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,"
148
+ "PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE",
149
+ "quoteColumns": "f2,f3",
150
+ "filter": f'(SECURITY_CODE="{symbol}")',
151
+ "source": "WEB",
152
+ "client": "WEB",
137
153
  }
138
154
  r = requests.get(url, params=params)
139
155
  data_json = r.json()
@@ -141,13 +157,15 @@ def stock_zh_a_gdhs_detail_em(symbol: str = "000001") -> pd.DataFrame:
141
157
  big_df = pd.DataFrame()
142
158
  tqdm = get_tqdm()
143
159
  for page_num in tqdm(range(1, total_page_num + 1), leave=False):
144
- params.update({
145
- "pageNumber": page_num,
146
- })
160
+ params.update(
161
+ {
162
+ "pageNumber": page_num,
163
+ }
164
+ )
147
165
  r = requests.get(url, params=params)
148
166
  data_json = r.json()
149
167
  temp_df = pd.DataFrame(data_json["result"]["data"])
150
- big_df = pd.concat([big_df, temp_df], ignore_index=True)
168
+ big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
151
169
  big_df.columns = [
152
170
  "代码",
153
171
  "名称",
@@ -187,23 +205,29 @@ def stock_zh_a_gdhs_detail_em(symbol: str = "000001") -> pd.DataFrame:
187
205
  "名称",
188
206
  ]
189
207
  ]
190
- big_df['区间涨跌幅'] = pd.to_numeric(big_df['区间涨跌幅'], errors="coerce")
191
- big_df['股东户数-本次'] = pd.to_numeric(big_df['股东户数-本次'], errors="coerce")
192
- big_df['股东户数-上次'] = pd.to_numeric(big_df['股东户数-上次'], errors="coerce")
193
- big_df['股东户数-增减'] = pd.to_numeric(big_df['股东户数-增减'], errors="coerce")
194
- big_df['股东户数-增减比例'] = pd.to_numeric(big_df['股东户数-增减比例'], errors="coerce")
195
- big_df['户均持股市值'] = pd.to_numeric(big_df['户均持股市值'], errors="coerce")
196
- big_df['户均持股数量'] = pd.to_numeric(big_df['户均持股数量'], errors="coerce")
197
- big_df['总市值'] = pd.to_numeric(big_df['总市值'], errors="coerce")
198
- big_df['总股本'] = pd.to_numeric(big_df['总股本'], errors="coerce")
199
- big_df['股本变动'] = pd.to_numeric(big_df['股本变动'], errors="coerce")
200
- big_df['股东户数统计截止日'] = pd.to_datetime(big_df['股东户数统计截止日'], errors="coerce").dt.date
201
- big_df['股东户数公告日期'] = pd.to_datetime(big_df['股东户数公告日期'], errors="coerce").dt.date
208
+ big_df["区间涨跌幅"] = pd.to_numeric(big_df["区间涨跌幅"], errors="coerce")
209
+ big_df["股东户数-本次"] = pd.to_numeric(big_df["股东户数-本次"], errors="coerce")
210
+ big_df["股东户数-上次"] = pd.to_numeric(big_df["股东户数-上次"], errors="coerce")
211
+ big_df["股东户数-增减"] = pd.to_numeric(big_df["股东户数-增减"], errors="coerce")
212
+ big_df["股东户数-增减比例"] = pd.to_numeric(
213
+ big_df["股东户数-增减比例"], errors="coerce"
214
+ )
215
+ big_df["户均持股市值"] = pd.to_numeric(big_df["户均持股市值"], errors="coerce")
216
+ big_df["户均持股数量"] = pd.to_numeric(big_df["户均持股数量"], errors="coerce")
217
+ big_df["总市值"] = pd.to_numeric(big_df["总市值"], errors="coerce")
218
+ big_df["总股本"] = pd.to_numeric(big_df["总股本"], errors="coerce")
219
+ big_df["股本变动"] = pd.to_numeric(big_df["股本变动"], errors="coerce")
220
+ big_df["股东户数统计截止日"] = pd.to_datetime(
221
+ big_df["股东户数统计截止日"], errors="coerce"
222
+ ).dt.date
223
+ big_df["股东户数公告日期"] = pd.to_datetime(
224
+ big_df["股东户数公告日期"], errors="coerce"
225
+ ).dt.date
202
226
  return big_df
203
227
 
204
228
 
205
229
  if __name__ == "__main__":
206
- stock_zh_a_gdhs_df = stock_zh_a_gdhs(symbol='20230930')
230
+ stock_zh_a_gdhs_df = stock_zh_a_gdhs(symbol="20230930")
207
231
  print(stock_zh_a_gdhs_df)
208
232
 
209
233
  stock_zh_a_gdhs_detail_em_df = stock_zh_a_gdhs_detail_em(symbol="000001")
@@ -5,6 +5,7 @@ Date: 2022/12/27 21:11
5
5
  Desc: 东方财富-行情中心-盘口异动
6
6
  https://quote.eastmoney.com/changes/
7
7
  """
8
+
8
9
  import pandas as pd
9
10
  import requests
10
11
 
@@ -13,12 +14,14 @@ def stock_changes_em(symbol: str = "大笔买入") -> pd.DataFrame:
13
14
  """
14
15
  东方财富-行情中心-盘口异动
15
16
  https://quote.eastmoney.com/changes/
16
- :param symbol: choice of {'火箭发射', '快速反弹', '大笔买入', '封涨停板', '打开跌停板', '有大买盘', '竞价上涨', '高开5日线', '向上缺口', '60日新高', '60日大幅上涨', '加速下跌', '高台跳水', '大笔卖出', '封跌停板', '打开涨停板', '有大卖盘', '竞价下跌', '低开5日线', '向下缺口', '60日新低', '60日大幅下跌'}
17
+ :param symbol: choice of {'火箭发射', '快速反弹', '大笔买入', '封涨停板', '打开跌停板', '有大买盘',
18
+ '竞价上涨', '高开5日线', '向上缺口', '60日新高', '60日大幅上涨', '加速下跌', '高台跳水',
19
+ '大笔卖出', '封跌停板', '打开涨停板', '有大卖盘', '竞价下跌', '低开5日线', '向下缺口', '60日新低', '60日大幅下跌'}
17
20
  :type symbol: str
18
21
  :return: 盘口异动
19
22
  :rtype: pandas.DataFrame
20
23
  """
21
- url = "http://push2ex.eastmoney.com/getAllStockChanges"
24
+ url = "https://push2ex.eastmoney.com/getAllStockChanges"
22
25
  symbol_map = {
23
26
  "火箭发射": "8201",
24
27
  "快速反弹": "8202",
@@ -85,54 +88,89 @@ def stock_board_change_em() -> pd.DataFrame:
85
88
  :return: 当日板块异动详情页
86
89
  :rtype: pandas.DataFrame
87
90
  """
88
- url = "http://push2ex.eastmoney.com/getAllBKChanges"
91
+ url = "https://push2ex.eastmoney.com/getAllBKChanges"
89
92
  params = {
90
- 'ut': '7eea3edcaed734bea9cbfc24409ed989',
91
- 'dpt': 'wzchanges',
92
- 'pageindex': '0',
93
- 'pagesize': '5000',
94
- '_': '1671978840598',
93
+ "ut": "7eea3edcaed734bea9cbfc24409ed989",
94
+ "dpt": "wzchanges",
95
+ "pageindex": "0",
96
+ "pagesize": "5000",
97
+ "_": "1671978840598",
95
98
  }
96
99
  r = requests.get(url, params=params)
97
100
  data_json = r.json()
98
- data_df = pd.DataFrame(data_json['data']['allbk'])
101
+ data_df = pd.DataFrame(data_json["data"]["allbk"])
99
102
  data_df.columns = [
100
- '-',
101
- '-',
102
- '板块名称',
103
- '涨跌幅',
104
- '主力净流入',
105
- '板块异动总次数',
103
+ "-",
104
+ "-",
105
+ "板块名称",
106
+ "涨跌幅",
107
+ "主力净流入",
108
+ "板块异动总次数",
106
109
  "ms",
107
110
  "板块具体异动类型列表及出现次数",
108
111
  ]
109
- data_df['板块异动最频繁个股及所属类型-买卖方向'] = [item['m'] for item in data_df['ms']]
110
- data_df['板块异动最频繁个股及所属类型-股票代码'] = [item['c'] for item in data_df['ms']]
111
- data_df['板块异动最频繁个股及所属类型-股票名称'] = [item['n'] for item in data_df['ms']]
112
- data_df['板块异动最频繁个股及所属类型-买卖方向'] = data_df['板块异动最频繁个股及所属类型-买卖方向'].map({0: "大笔买入", 1: "大笔卖出"})
113
- data_df = data_df[[
114
- '板块名称',
115
- '涨跌幅',
116
- '主力净流入',
117
- '板块异动总次数',
118
- '板块异动最频繁个股及所属类型-股票代码',
119
- '板块异动最频繁个股及所属类型-股票名称',
120
- '板块异动最频繁个股及所属类型-买卖方向',
121
- "板块具体异动类型列表及出现次数",
122
- ]]
123
- data_df['涨跌幅'] = pd.to_numeric(data_df['涨跌幅'], errors="coerce")
124
- data_df['主力净流入'] = pd.to_numeric(data_df['主力净流入'], errors="coerce")
125
- data_df['板块异动总次数'] = pd.to_numeric(data_df['板块异动总次数'], errors="coerce")
112
+ data_df["板块异动最频繁个股及所属类型-买卖方向"] = [
113
+ item["m"] for item in data_df["ms"]
114
+ ]
115
+ data_df["板块异动最频繁个股及所属类型-股票代码"] = [
116
+ item["c"] for item in data_df["ms"]
117
+ ]
118
+ data_df["板块异动最频繁个股及所属类型-股票名称"] = [
119
+ item["n"] for item in data_df["ms"]
120
+ ]
121
+ data_df["板块异动最频繁个股及所属类型-买卖方向"] = data_df[
122
+ "板块异动最频繁个股及所属类型-买卖方向"
123
+ ].map({0: "大笔买入", 1: "大笔卖出"})
124
+ data_df = data_df[
125
+ [
126
+ "板块名称",
127
+ "涨跌幅",
128
+ "主力净流入",
129
+ "板块异动总次数",
130
+ "板块异动最频繁个股及所属类型-股票代码",
131
+ "板块异动最频繁个股及所属类型-股票名称",
132
+ "板块异动最频繁个股及所属类型-买卖方向",
133
+ "板块具体异动类型列表及出现次数",
134
+ ]
135
+ ]
136
+ data_df["涨跌幅"] = pd.to_numeric(data_df["涨跌幅"], errors="coerce")
137
+ data_df["主力净流入"] = pd.to_numeric(data_df["主力净流入"], errors="coerce")
138
+ data_df["板块异动总次数"] = pd.to_numeric(
139
+ data_df["板块异动总次数"], errors="coerce"
140
+ )
126
141
  return data_df
127
142
 
128
143
 
129
144
  if __name__ == "__main__":
130
- stock_changes_em_df = stock_changes_em(symbol='火箭发射')
145
+ stock_changes_em_df = stock_changes_em(symbol="大笔买入")
131
146
  print(stock_changes_em_df)
132
147
 
133
148
  stock_board_change_em_df = stock_board_change_em()
134
149
  print(stock_board_change_em_df)
135
150
 
136
- for item in {'火箭发射', '快速反弹', '大笔买入', '封涨停板', '打开跌停板', '有大买盘', '竞价上涨', '高开5日线', '向上缺口', '60日新高', '60日大幅上涨', '加速下跌', '高台跳水', '大笔卖出', '封跌停板', '打开涨停板', '有大卖盘', '竞价下跌', '低开5日线', '向下缺口', '60日新低', '60日大幅下跌'}:
151
+ for item in {
152
+ "火箭发射",
153
+ "快速反弹",
154
+ "大笔买入",
155
+ "封涨停板",
156
+ "打开跌停板",
157
+ "有大买盘",
158
+ "竞价上涨",
159
+ "高开5日线",
160
+ "向上缺口",
161
+ "60日新高",
162
+ "60日大幅上涨",
163
+ "加速下跌",
164
+ "高台跳水",
165
+ "大笔卖出",
166
+ "封跌停板",
167
+ "打开涨停板",
168
+ "有大卖盘",
169
+ "竞价下跌",
170
+ "低开5日线",
171
+ "向下缺口",
172
+ "60日新低",
173
+ "60日大幅下跌",
174
+ }:
137
175
  stock_changes_em_df = stock_changes_em(symbol=item)
138
176
  print(stock_changes_em_df)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: akshare
3
- Version: 1.14.88
3
+ Version: 1.14.90
4
4
  Summary: AKShare is an elegant and simple financial data interface library for Python, built for human beings!
5
5
  Home-page: https://github.com/akfamily/akshare
6
6
  Author: AKFamily
@@ -1,4 +1,4 @@
1
- akshare/__init__.py,sha256=4F0-PLtgAppkRuO5zt0cos-yKzo0lsKQ-twPViOQ7iE,182240
1
+ akshare/__init__.py,sha256=H6s_sgiwergPca28QDiOa11XfE1brlRuzmAhfkF4zgE,182331
2
2
  akshare/datasets.py,sha256=-qdwaQjgBlftX84uM74KJqCYJYkQ50PV416_neA4uls,995
3
3
  akshare/air/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
4
4
  akshare/air/air_hebei.py,sha256=xIXNGLK7IGYqrkteM9fxnHAwWqk6PCQs6D9-ggZ7byY,4442
@@ -20,7 +20,7 @@ akshare/bond/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
20
20
  akshare/bond/bond_cb_sina.py,sha256=onLasmV1Y8eTIUkNu9S0o5PzMWCNC5jX6tOSjELimHQ,1811
21
21
  akshare/bond/bond_cb_ths.py,sha256=sxpcGr5teUR0fSGolBKl1bDUkdA94gKdXdLvr5NSC0U,3079
22
22
  akshare/bond/bond_cbond.py,sha256=2uMmzrZsGC4ZBoCcRAqITsRxpQzuTX1Nc0_m86x3GXM,6525
23
- akshare/bond/bond_china.py,sha256=soAask4fpfcnlYzufUHL2phBU0LtzAyWX_nZI_HisKU,6938
23
+ akshare/bond/bond_china.py,sha256=Gjp2x2aNFRlGfHFpQYX_Prv19V9a4INiw5O946rLLtA,6535
24
24
  akshare/bond/bond_china_money.py,sha256=IInePsQJDby5w0AYd84ipiJL_nbyVAaRC7SaHLWDP_E,13729
25
25
  akshare/bond/bond_convert.py,sha256=9w94nIdSN4BUL27sPbVEUouBaAm30WMBiokYr4yM0sI,12649
26
26
  akshare/bond/bond_em.py,sha256=Ck5hCloZ25I8updarLPzqHYYZPeOsjIFy4g2oaZvFMs,5318
@@ -83,7 +83,7 @@ akshare/fund/__init__.py,sha256=RMTf1bT5EOE3ttWpn3hGu1LtUmsVxDoa0W7W0gXHOy8,81
83
83
  akshare/fund/fund_amac.py,sha256=Dml3EgpJhmVgkttb0OdaWN41ynOCIbJ0-1qAPDWF0oo,33800
84
84
  akshare/fund/fund_announcement.py,sha256=g5rcIC9vQ4HapZd0b7cDbFYzHu9V6bOKhwxRHVfmv8k,1848
85
85
  akshare/fund/fund_aum_em.py,sha256=dy1R1-0X48H8S-LPiuggNA5M-6MvQ08fnp5bytvCGPQ,3518
86
- akshare/fund/fund_em.py,sha256=GFdPpse_N6EZzgM_xB_EsjSva5EiU7asHjq8wKHo0vU,41115
86
+ akshare/fund/fund_em.py,sha256=L48mRByrBvOwtF6MyNHtXAP4F_RNkZJ-LWNdgjdQPCM,40824
87
87
  akshare/fund/fund_etf_em.py,sha256=8HrEQbM3wSMHuTAle9g6iT4ULaPjsqCcTBVU7PrpqJA,17377
88
88
  akshare/fund/fund_etf_sina.py,sha256=bhfxivhwClZxwwslqusaZwrNRdEkfCApQOli0QMrM3A,4899
89
89
  akshare/fund/fund_etf_ths.py,sha256=vb_jy0h2-Kz2dNWUrwBYxPB0MAotv0KZgnFhE98ohSM,3432
@@ -309,7 +309,7 @@ akshare/stock_feature/stock_fhps_ths.py,sha256=NosH1xyT1Pif4T9tchdtJTBEpe6g1Wq2k
309
309
  akshare/stock_feature/stock_fund_flow.py,sha256=cqBqsFrzwmuLP3k3wYQzvW085QUUfHZ4nBW8Zx7egkQ,18669
310
310
  akshare/stock_feature/stock_gddh_em.py,sha256=I_MUJhyy0mwjNG46ZsQINEQvHR42EmS7gJBQujXr5Bw,3467
311
311
  akshare/stock_feature/stock_gdfx_em.py,sha256=vrzyMdcNw8wZabXYH89wjzIAokAVfHDVcpNfC0MHsl4,37825
312
- akshare/stock_feature/stock_gdhs.py,sha256=Fkrcs1HEOFNEXdQL4fO2-bMDvKV-Shu-fGECk4h7it0,8801
312
+ akshare/stock_feature/stock_gdhs.py,sha256=Z6ZMy1A03BqMu9TghcIu2Sd_wwEtpIH7qawHun9G7ns,9036
313
313
  akshare/stock_feature/stock_gdzjc_em.py,sha256=SHJH5iS3_NhvjTqRXF0vPooZl0s_ASeyZmNCC50ZYqs,4426
314
314
  akshare/stock_feature/stock_gpzy_em.py,sha256=8NvLfWbLLQyjTlg6iSpg1LxlIAKLv534JZAiUAVxF1M,17443
315
315
  akshare/stock_feature/stock_gxl_lg.py,sha256=I8TpDEpFzadZSSyZisyIk6163mJlRxup91dmlBH4t4U,2641
@@ -331,7 +331,7 @@ akshare/stock_feature/stock_margin_em.py,sha256=B8TDj3exQFQNupVYYExm0umyHAwhaTly
331
331
  akshare/stock_feature/stock_margin_sse.py,sha256=yTc4sP7qyqe6qfeJpw2B3_m2Dc5XU3StP5r7VIqRGxM,6864
332
332
  akshare/stock_feature/stock_margin_szse.py,sha256=KUxJ4lsLKi_pp934RAKWgJskfkVk4nJhfnnYddehacI,6412
333
333
  akshare/stock_feature/stock_market_legu.py,sha256=_LeyGUGyZFeD-1fnJPc4eIQkeoWAmoc92aikwYW7EdU,1897
334
- akshare/stock_feature/stock_pankou_em.py,sha256=HEQJAp9bx6i0SlERl_klp6Tp2PCPgR-J_fKU4i277Bc,5285
334
+ akshare/stock_feature/stock_pankou_em.py,sha256=A3lu1hKddXwMFo9vKPLCQfL3Zh77xr2IbcAtKs8Lc9Y,5599
335
335
  akshare/stock_feature/stock_qsjy_em.py,sha256=7EHroLZC3-X_3WNhb7GV9MPQHbxjtkfKI_YEbTvnSb0,3913
336
336
  akshare/stock_feature/stock_report_em.py,sha256=jhePrTKGIYzdz8idiPoDs1vEajd73XRIFpZyWQggKa4,18075
337
337
  akshare/stock_feature/stock_research_report_em.py,sha256=XFQadpUI2l0-Ik8BQWf-eCC4uFC1xxt9VNiZ9NU2zp0,4888
@@ -380,8 +380,8 @@ akshare/utils/token_process.py,sha256=K4rGXjh_tgugbRcyOK2h2x0jP3PT65IIK7nxhUKhOe
380
380
  akshare/utils/tqdm.py,sha256=MuPNwcswkOGjwWQOMWXi9ZvQ_RmW4obCWRj2i7HM7FE,847
381
381
  tests/__init__.py,sha256=gNzhlO0UPjFq6Ieb38kaVIODXv4cTDByrdohAZnDYt4,82
382
382
  tests/test_func.py,sha256=j1MGYbZI2if2j_LY1S4FLsf4qfq4NwVqD5wmRlv5Log,832
383
- akshare-1.14.88.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
- akshare-1.14.88.dist-info/METADATA,sha256=6ZNnAlPWpOh-PmpYl8kCC1p08erEZm71KdjK4OD8pb0,14112
385
- akshare-1.14.88.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
386
- akshare-1.14.88.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
- akshare-1.14.88.dist-info/RECORD,,
383
+ akshare-1.14.90.dist-info/LICENSE,sha256=mmSZCPgfHiVw34LXuFArd-SUgQtBJ_QsIlh-kWlDHfs,1073
384
+ akshare-1.14.90.dist-info/METADATA,sha256=dJfTNyF34l2ZyfXLBCrPpCNd8vAmjcr18IkXaTCrqrY,14112
385
+ akshare-1.14.90.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
386
+ akshare-1.14.90.dist-info/top_level.txt,sha256=jsf9ZzZPmHaISTVumQPsAw7vv7Yv-PdEVW70SMEelQQ,14
387
+ akshare-1.14.90.dist-info/RECORD,,