akshare 1.14.88__py3-none-any.whl → 1.14.90__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of akshare might be problematic. Click here for more details.

akshare/__init__.py CHANGED
@@ -2899,9 +2899,11 @@ amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚
2899
2899
  1.14.86 fix: fix stock_comment_detail_scrd_focus_em interface
2900
2900
  1.14.87 fix: fix stock_hot_search_baidu interface
2901
2901
  1.14.88 fix: fix stock_hot_rank_relate_em interface
2902
+ 1.14.89 fix: fix bond_spot_deal interface
2903
+ 1.14.90 fix: fix stock_board_change_em interface
2902
2904
  """
2903
2905
 
2904
- __version__ = "1.14.88"
2906
+ __version__ = "1.14.90"
2905
2907
  __author__ = "AKFamily"
2906
2908
 
2907
2909
  import sys
@@ -1,18 +1,20 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding:utf-8 -*-
3
3
  """
4
- Date: 2024/3/12 14:00
4
+ Date: 2024/10/1 17:00
5
5
  Desc: 中国外汇交易中心暨全国银行间同业拆借中心
6
6
  中国外汇交易中心暨全国银行间同业拆借中心-市场数据-债券市场行情-现券市场做市报价
7
7
  中国外汇交易中心暨全国银行间同业拆借中心-市场数据-债券市场行情-现券市场成交行情
8
8
  https://www.chinamoney.com.cn/chinese/mkdatabond/
9
9
  """
10
+
10
11
  from io import StringIO
11
12
 
12
13
  import pandas as pd
13
14
  import requests
14
15
 
15
16
  from akshare.bond.bond_china_money import bond_china_close_return_map
17
+ from akshare.utils.cons import headers
16
18
 
17
19
 
18
20
  def bond_spot_quote() -> pd.DataFrame:
@@ -24,9 +26,6 @@ def bond_spot_quote() -> pd.DataFrame:
24
26
  """
25
27
  bond_china_close_return_map()
26
28
  url = "https://www.chinamoney.com.cn/ags/ms/cm-u-md-bond/CbMktMakQuot"
27
- headers = {
28
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36",
29
- }
30
29
  payload = {
31
30
  "flag": "1",
32
31
  "lang": "cn",
@@ -61,16 +60,24 @@ def bond_spot_quote() -> pd.DataFrame:
61
60
  "买入/卖出收益率",
62
61
  ]
63
62
  ]
64
- temp_df["买入净价"] = temp_df["买入/卖出净价"].str.split("/", expand=True).iloc[:, 0]
65
- temp_df["卖出净价"] = temp_df["买入/卖出净价"].str.split("/", expand=True).iloc[:, 1]
66
- temp_df["买入收益率"] = temp_df["买入/卖出收益率"].str.split("/", expand=True).iloc[:, 0]
67
- temp_df["卖出收益率"] = temp_df["买入/卖出收益率"].str.split("/", expand=True).iloc[:, 1]
63
+ temp_df["买入净价"] = (
64
+ temp_df["买入/卖出净价"].str.split("/", expand=True).iloc[:, 0]
65
+ )
66
+ temp_df["卖出净价"] = (
67
+ temp_df["买入/卖出净价"].str.split("/", expand=True).iloc[:, 1]
68
+ )
69
+ temp_df["买入收益率"] = (
70
+ temp_df["买入/卖出收益率"].str.split("/", expand=True).iloc[:, 0]
71
+ )
72
+ temp_df["卖出收益率"] = (
73
+ temp_df["买入/卖出收益率"].str.split("/", expand=True).iloc[:, 1]
74
+ )
68
75
  del temp_df["买入/卖出净价"]
69
76
  del temp_df["买入/卖出收益率"]
70
- temp_df['买入净价'] = pd.to_numeric(temp_df['买入净价'], errors="coerce")
71
- temp_df['卖出净价'] = pd.to_numeric(temp_df['卖出净价'], errors="coerce")
72
- temp_df['买入收益率'] = pd.to_numeric(temp_df['买入收益率'], errors="coerce")
73
- temp_df['卖出收益率'] = pd.to_numeric(temp_df['卖出收益率'], errors="coerce")
77
+ temp_df["买入净价"] = pd.to_numeric(temp_df["买入净价"], errors="coerce")
78
+ temp_df["卖出净价"] = pd.to_numeric(temp_df["卖出净价"], errors="coerce")
79
+ temp_df["买入收益率"] = pd.to_numeric(temp_df["买入收益率"], errors="coerce")
80
+ temp_df["卖出收益率"] = pd.to_numeric(temp_df["卖出收益率"], errors="coerce")
74
81
  return temp_df
75
82
 
76
83
 
@@ -82,9 +89,6 @@ def bond_spot_deal() -> pd.DataFrame:
82
89
  :rtype: pandas.DataFrame
83
90
  """
84
91
  url = "https://www.chinamoney.com.cn/ags/ms/cm-u-md-bond/CbtPri"
85
- headers = {
86
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36",
87
- }
88
92
  payload = {
89
93
  "flag": "1",
90
94
  "lang": "cn",
@@ -127,16 +131,16 @@ def bond_spot_deal() -> pd.DataFrame:
127
131
  "交易量",
128
132
  ]
129
133
  ]
130
- temp_df['成交净价'] = pd.to_numeric(temp_df['成交净价'], errors="coerce")
131
- temp_df['最新收益率'] = pd.to_numeric(temp_df['最新收益率'], errors="coerce")
132
- temp_df['涨跌'] = pd.to_numeric(temp_df['涨跌'], errors="coerce")
133
- temp_df['加权收益率'] = pd.to_numeric(temp_df['加权收益率'], errors="coerce")
134
- temp_df['交易量'] = pd.to_numeric(temp_df['交易量'], errors="coerce")
134
+ temp_df["成交净价"] = pd.to_numeric(temp_df["成交净价"], errors="coerce")
135
+ temp_df["最新收益率"] = pd.to_numeric(temp_df["最新收益率"], errors="coerce")
136
+ temp_df["涨跌"] = pd.to_numeric(temp_df["涨跌"], errors="coerce")
137
+ temp_df["加权收益率"] = pd.to_numeric(temp_df["加权收益率"], errors="coerce")
138
+ temp_df["交易量"] = pd.to_numeric(temp_df["交易量"], errors="coerce")
135
139
  return temp_df
136
140
 
137
141
 
138
142
  def bond_china_yield(
139
- start_date: str = "20200204", end_date: str = "20210124"
143
+ start_date: str = "20200204", end_date: str = "20210124"
140
144
  ) -> pd.DataFrame:
141
145
  """
142
146
  中国债券信息网-国债及其他债券收益率曲线
@@ -152,28 +156,25 @@ def bond_china_yield(
152
156
  """
153
157
  url = "https://yield.chinabond.com.cn/cbweb-pbc-web/pbc/historyQuery"
154
158
  params = {
155
- "startDate": '-'.join([start_date[:4], start_date[4:6], start_date[6:]]),
156
- "endDate": '-'.join([end_date[:4], end_date[4:6], end_date[6:]]),
159
+ "startDate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]),
160
+ "endDate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]),
157
161
  "gjqx": "0",
158
162
  "qxId": "ycqx",
159
163
  "locale": "cn_ZH",
160
164
  }
161
- headers = {
162
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36",
163
- }
164
165
  res = requests.get(url, params=params, headers=headers)
165
166
  data_text = res.text.replace("&nbsp", "")
166
167
  data_df = pd.read_html(StringIO(data_text), header=0)[1]
167
- data_df['日期'] = pd.to_datetime(data_df['日期'], errors="coerce").dt.date
168
- data_df['3月'] = pd.to_numeric(data_df['3月'], errors="coerce")
169
- data_df['6月'] = pd.to_numeric(data_df['6月'], errors="coerce")
170
- data_df['1年'] = pd.to_numeric(data_df['1年'], errors="coerce")
171
- data_df['3年'] = pd.to_numeric(data_df['3年'], errors="coerce")
172
- data_df['5年'] = pd.to_numeric(data_df['5年'], errors="coerce")
173
- data_df['7年'] = pd.to_numeric(data_df['7年'], errors="coerce")
174
- data_df['10年'] = pd.to_numeric(data_df['10年'], errors="coerce")
175
- data_df['30年'] = pd.to_numeric(data_df['30年'], errors="coerce")
176
- data_df.sort_values(by='日期', inplace=True)
168
+ data_df["日期"] = pd.to_datetime(data_df["日期"], errors="coerce").dt.date
169
+ data_df["3月"] = pd.to_numeric(data_df["3月"], errors="coerce")
170
+ data_df["6月"] = pd.to_numeric(data_df["6月"], errors="coerce")
171
+ data_df["1年"] = pd.to_numeric(data_df["1年"], errors="coerce")
172
+ data_df["3年"] = pd.to_numeric(data_df["3年"], errors="coerce")
173
+ data_df["5年"] = pd.to_numeric(data_df["5年"], errors="coerce")
174
+ data_df["7年"] = pd.to_numeric(data_df["7年"], errors="coerce")
175
+ data_df["10年"] = pd.to_numeric(data_df["10年"], errors="coerce")
176
+ data_df["30年"] = pd.to_numeric(data_df["30年"], errors="coerce")
177
+ data_df.sort_values(by="日期", inplace=True)
177
178
  data_df.reset_index(inplace=True, drop=True)
178
179
  return data_df
179
180
 
@@ -185,7 +186,5 @@ if __name__ == "__main__":
185
186
  bond_spot_deal_df = bond_spot_deal()
186
187
  print(bond_spot_deal_df)
187
188
 
188
- bond_china_yield_df = bond_china_yield(
189
- start_date="20210201", end_date="20220201"
190
- )
189
+ bond_china_yield_df = bond_china_yield(start_date="20210201", end_date="20220201")
191
190
  print(bond_china_yield_df)