akshare-one 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. akshare_one/__init__.py +214 -214
  2. akshare_one/eastmoney/client.py +80 -80
  3. akshare_one/eastmoney/utils.py +102 -102
  4. akshare_one/indicators.py +395 -395
  5. akshare_one/modules/cache.py +27 -27
  6. akshare_one/modules/financial/base.py +27 -27
  7. akshare_one/modules/financial/eastmoney_direct.py +183 -183
  8. akshare_one/modules/financial/factory.py +46 -46
  9. akshare_one/modules/financial/sina.py +292 -292
  10. akshare_one/modules/historical/base.py +47 -47
  11. akshare_one/modules/historical/eastmoney.py +236 -236
  12. akshare_one/modules/historical/eastmoney_direct.py +78 -78
  13. akshare_one/modules/historical/factory.py +48 -48
  14. akshare_one/modules/historical/sina.py +250 -250
  15. akshare_one/modules/indicators/base.py +158 -158
  16. akshare_one/modules/indicators/factory.py +33 -33
  17. akshare_one/modules/indicators/simple.py +384 -230
  18. akshare_one/modules/indicators/talib.py +263 -263
  19. akshare_one/modules/info/base.py +25 -25
  20. akshare_one/modules/info/eastmoney.py +51 -51
  21. akshare_one/modules/info/factory.py +44 -44
  22. akshare_one/modules/insider/base.py +28 -28
  23. akshare_one/modules/insider/factory.py +44 -44
  24. akshare_one/modules/insider/xueqiu.py +110 -110
  25. akshare_one/modules/news/base.py +22 -22
  26. akshare_one/modules/news/eastmoney.py +43 -43
  27. akshare_one/modules/news/factory.py +44 -44
  28. akshare_one/modules/realtime/base.py +27 -27
  29. akshare_one/modules/realtime/eastmoney.py +53 -53
  30. akshare_one/modules/realtime/eastmoney_direct.py +36 -36
  31. akshare_one/modules/realtime/factory.py +48 -48
  32. akshare_one/modules/realtime/xueqiu.py +57 -57
  33. akshare_one/modules/utils.py +10 -10
  34. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/METADATA +74 -74
  35. akshare_one-0.3.8.dist-info/RECORD +39 -0
  36. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/licenses/LICENSE +21 -21
  37. akshare_one-0.3.6.dist-info/RECORD +0 -39
  38. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/WHEEL +0 -0
  39. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/top_level.txt +0 -0
@@ -1,51 +1,51 @@
1
- import pandas as pd
2
- import akshare as ak
3
-
4
- from ..cache import cache
5
- from .base import InfoDataProvider
6
-
7
-
8
- class EastmoneyInfo(InfoDataProvider):
9
- _basic_info_rename_map = {
10
- "最新": "price",
11
- "股票代码": "symbol",
12
- "股票简称": "name",
13
- "总股本": "total_shares",
14
- "流通股": "float_shares",
15
- "总市值": "total_market_cap",
16
- "流通市值": "float_market_cap",
17
- "行业": "industry",
18
- "上市时间": "listing_date",
19
- }
20
-
21
- @cache(
22
- "info_cache",
23
- key=lambda self, symbol=None: f"eastmoney_{symbol}",
24
- )
25
- def get_basic_info(self) -> pd.DataFrame:
26
- """获取东方财富个股信息"""
27
- info_df = ak.stock_individual_info_em(symbol=self.symbol)
28
- info_df = info_df.set_index("item").T
29
- info_df.reset_index(drop=True, inplace=True)
30
- info_df.rename(columns=self._basic_info_rename_map, inplace=True)
31
-
32
- if "symbol" in info_df.columns:
33
- info_df["symbol"] = info_df["symbol"].astype(str)
34
-
35
- if "listing_date" in info_df.columns:
36
- info_df["listing_date"] = pd.to_datetime(
37
- info_df["listing_date"], format="%Y%m%d"
38
- )
39
-
40
- numeric_cols = [
41
- "price",
42
- "total_shares",
43
- "float_shares",
44
- "total_market_cap",
45
- "float_market_cap",
46
- ]
47
- for col in numeric_cols:
48
- if col in info_df.columns:
49
- info_df[col] = pd.to_numeric(info_df[col], errors="coerce")
50
-
51
- return info_df
1
+ import pandas as pd
2
+ import akshare as ak
3
+
4
+ from ..cache import cache
5
+ from .base import InfoDataProvider
6
+
7
+
8
+ class EastmoneyInfo(InfoDataProvider):
9
+ _basic_info_rename_map = {
10
+ "最新": "price",
11
+ "股票代码": "symbol",
12
+ "股票简称": "name",
13
+ "总股本": "total_shares",
14
+ "流通股": "float_shares",
15
+ "总市值": "total_market_cap",
16
+ "流通市值": "float_market_cap",
17
+ "行业": "industry",
18
+ "上市时间": "listing_date",
19
+ }
20
+
21
+ @cache(
22
+ "info_cache",
23
+ key=lambda self, symbol=None: f"eastmoney_{symbol}",
24
+ )
25
+ def get_basic_info(self) -> pd.DataFrame:
26
+ """获取东方财富个股信息"""
27
+ info_df = ak.stock_individual_info_em(symbol=self.symbol)
28
+ info_df = info_df.set_index("item").T
29
+ info_df.reset_index(drop=True, inplace=True)
30
+ info_df.rename(columns=self._basic_info_rename_map, inplace=True)
31
+
32
+ if "symbol" in info_df.columns:
33
+ info_df["symbol"] = info_df["symbol"].astype(str)
34
+
35
+ if "listing_date" in info_df.columns:
36
+ info_df["listing_date"] = pd.to_datetime(
37
+ info_df["listing_date"], format="%Y%m%d"
38
+ )
39
+
40
+ numeric_cols = [
41
+ "price",
42
+ "total_shares",
43
+ "float_shares",
44
+ "total_market_cap",
45
+ "float_market_cap",
46
+ ]
47
+ for col in numeric_cols:
48
+ if col in info_df.columns:
49
+ info_df[col] = pd.to_numeric(info_df[col], errors="coerce")
50
+
51
+ return info_df
@@ -1,44 +1,44 @@
1
- from .eastmoney import EastmoneyInfo
2
- from .base import InfoDataProvider
3
-
4
-
5
- class InfoDataFactory:
6
- """
7
- Factory class for creating info data providers
8
- """
9
-
10
- _providers = {
11
- "eastmoney": EastmoneyInfo,
12
- }
13
-
14
- @classmethod
15
- def get_provider(cls, provider_name: str, **kwargs) -> InfoDataProvider:
16
- """
17
- Get a info data provider by name
18
-
19
- Args:
20
- provider_name: Name of the provider (e.g., 'eastmoney')
21
- **kwargs: Additional arguments to pass to the provider's constructor
22
-
23
- Returns:
24
- InfoDataProvider: An instance of the requested provider
25
-
26
- Raises:
27
- ValueError: If the requested provider is not found
28
- """
29
- provider_class = cls._providers.get(provider_name.lower())
30
- if not provider_class:
31
- raise ValueError(f"Unknown info data provider: {provider_name}")
32
-
33
- return provider_class(**kwargs)
34
-
35
- @classmethod
36
- def register_provider(cls, name: str, provider_class: type):
37
- """
38
- Register a new info data provider
39
-
40
- Args:
41
- name: Name to associate with this provider
42
- provider_class: The provider class to register
43
- """
44
- cls._providers[name.lower()] = provider_class
1
+ from .eastmoney import EastmoneyInfo
2
+ from .base import InfoDataProvider
3
+
4
+
5
+ class InfoDataFactory:
6
+ """
7
+ Factory class for creating info data providers
8
+ """
9
+
10
+ _providers = {
11
+ "eastmoney": EastmoneyInfo,
12
+ }
13
+
14
+ @classmethod
15
+ def get_provider(cls, provider_name: str, **kwargs) -> InfoDataProvider:
16
+ """
17
+ Get a info data provider by name
18
+
19
+ Args:
20
+ provider_name: Name of the provider (e.g., 'eastmoney')
21
+ **kwargs: Additional arguments to pass to the provider's constructor
22
+
23
+ Returns:
24
+ InfoDataProvider: An instance of the requested provider
25
+
26
+ Raises:
27
+ ValueError: If the requested provider is not found
28
+ """
29
+ provider_class = cls._providers.get(provider_name.lower())
30
+ if not provider_class:
31
+ raise ValueError(f"Unknown info data provider: {provider_name}")
32
+
33
+ return provider_class(**kwargs)
34
+
35
+ @classmethod
36
+ def register_provider(cls, name: str, provider_class: type):
37
+ """
38
+ Register a new info data provider
39
+
40
+ Args:
41
+ name: Name to associate with this provider
42
+ provider_class: The provider class to register
43
+ """
44
+ cls._providers[name.lower()] = provider_class
@@ -1,28 +1,28 @@
1
- from abc import ABC, abstractmethod
2
- import pandas as pd
3
-
4
-
5
- class InsiderDataProvider(ABC):
6
- def __init__(self, symbol: str) -> None:
7
- self.symbol = symbol
8
-
9
- @abstractmethod
10
- def get_inner_trade_data(self) -> pd.DataFrame:
11
- """Fetches insider trade data
12
-
13
- Returns:
14
- pd.DataFrame:
15
- - symbol: 股票代码
16
- - issuer: 股票名称
17
- - name: 变动人
18
- - title: 董监高职务
19
- - transaction_date: 变动日期
20
- - transaction_shares: 变动股数
21
- - transaction_price_per_share: 成交均价
22
- - shares_owned_after_transaction: 变动后持股数
23
- - relationship: 与董监高关系
24
- - is_board_director: 是否为董事会成员
25
- - transaction_value: 交易金额(变动股数*成交均价)
26
- - shares_owned_before_transaction: 变动前持股数
27
- """
28
- pass
1
+ from abc import ABC, abstractmethod
2
+ import pandas as pd
3
+
4
+
5
+ class InsiderDataProvider(ABC):
6
+ def __init__(self, symbol: str) -> None:
7
+ self.symbol = symbol
8
+
9
+ @abstractmethod
10
+ def get_inner_trade_data(self) -> pd.DataFrame:
11
+ """Fetches insider trade data
12
+
13
+ Returns:
14
+ pd.DataFrame:
15
+ - symbol: 股票代码
16
+ - issuer: 股票名称
17
+ - name: 变动人
18
+ - title: 董监高职务
19
+ - transaction_date: 变动日期
20
+ - transaction_shares: 变动股数
21
+ - transaction_price_per_share: 成交均价
22
+ - shares_owned_after_transaction: 变动后持股数
23
+ - relationship: 与董监高关系
24
+ - is_board_director: 是否为董事会成员
25
+ - transaction_value: 交易金额(变动股数*成交均价)
26
+ - shares_owned_before_transaction: 变动前持股数
27
+ """
28
+ pass
@@ -1,44 +1,44 @@
1
- from .xueqiu import XueQiuInsider
2
- from .base import InsiderDataProvider
3
-
4
-
5
- class InsiderDataFactory:
6
- """
7
- Factory class for creating insider data providers
8
- """
9
-
10
- _providers = {
11
- "xueqiu": XueQiuInsider,
12
- }
13
-
14
- @classmethod
15
- def get_provider(cls, provider_name: str, **kwargs) -> InsiderDataProvider:
16
- """
17
- Get an insider data provider by name
18
-
19
- Args:
20
- provider_name: Name of the provider (e.g., 'xueqiu')
21
- **kwargs: Additional arguments to pass to the provider's constructor
22
-
23
- Returns:
24
- InsiderDataProvider: An instance of the requested provider
25
-
26
- Raises:
27
- ValueError: If the requested provider is not found
28
- """
29
- provider_class = cls._providers.get(provider_name.lower())
30
- if not provider_class:
31
- raise ValueError(f"Unknown insider data provider: {provider_name}")
32
-
33
- return provider_class(**kwargs)
34
-
35
- @classmethod
36
- def register_provider(cls, name: str, provider_class: type):
37
- """
38
- Register a new insider data provider
39
-
40
- Args:
41
- name: Name to associate with this provider
42
- provider_class: The provider class to register
43
- """
44
- cls._providers[name.lower()] = provider_class
1
+ from .xueqiu import XueQiuInsider
2
+ from .base import InsiderDataProvider
3
+
4
+
5
+ class InsiderDataFactory:
6
+ """
7
+ Factory class for creating insider data providers
8
+ """
9
+
10
+ _providers = {
11
+ "xueqiu": XueQiuInsider,
12
+ }
13
+
14
+ @classmethod
15
+ def get_provider(cls, provider_name: str, **kwargs) -> InsiderDataProvider:
16
+ """
17
+ Get an insider data provider by name
18
+
19
+ Args:
20
+ provider_name: Name of the provider (e.g., 'xueqiu')
21
+ **kwargs: Additional arguments to pass to the provider's constructor
22
+
23
+ Returns:
24
+ InsiderDataProvider: An instance of the requested provider
25
+
26
+ Raises:
27
+ ValueError: If the requested provider is not found
28
+ """
29
+ provider_class = cls._providers.get(provider_name.lower())
30
+ if not provider_class:
31
+ raise ValueError(f"Unknown insider data provider: {provider_name}")
32
+
33
+ return provider_class(**kwargs)
34
+
35
+ @classmethod
36
+ def register_provider(cls, name: str, provider_class: type):
37
+ """
38
+ Register a new insider data provider
39
+
40
+ Args:
41
+ name: Name to associate with this provider
42
+ provider_class: The provider class to register
43
+ """
44
+ cls._providers[name.lower()] = provider_class
@@ -1,110 +1,110 @@
1
- import pandas as pd
2
- import akshare as ak
3
- from .base import InsiderDataProvider
4
- from ..utils import convert_xieqiu_symbol
5
- from ..cache import cache
6
-
7
-
8
- class XueQiuInsider(InsiderDataProvider):
9
- """Provider for XueQiu insider trading data"""
10
-
11
- @cache(
12
- "financial_cache",
13
- key=lambda self, symbol=None: f"xueqiu_insider_{symbol if symbol else 'all'}",
14
- )
15
- def get_inner_trade_data(self) -> pd.DataFrame:
16
- """获取雪球内部交易数据
17
-
18
- Args:
19
- symbol: 可选股票代码,如"600000",不传则返回所有数据
20
-
21
- Returns:
22
- Standardized DataFrame with insider trading data:
23
- - symbol: 股票代码
24
- - name: 股票名称
25
- - change_date: 变动日期
26
- - insider: 变动人
27
- - shares_changed: 变动股数
28
- - avg_price: 成交均价
29
- - shares_after: 变动后持股数
30
- - relationship: 与董监高关系
31
- - position: 董监高职务
32
- """
33
- raw_df = ak.stock_inner_trade_xq()
34
- if self.symbol:
35
- xueqiu_symbol = convert_xieqiu_symbol(self.symbol)
36
- raw_df = raw_df[raw_df["股票代码"] == xueqiu_symbol]
37
- return self._clean_insider_data(raw_df)
38
-
39
- def _clean_insider_data(self, raw_df: pd.DataFrame) -> pd.DataFrame:
40
- """清理和标准化内部交易数据
41
-
42
- Args:
43
- raw_df: Raw DataFrame from XueQiu API
44
-
45
- Returns:
46
- Standardized DataFrame with consistent columns
47
- """
48
- column_mapping = {
49
- "股票代码": "symbol",
50
- "股票名称": "issuer",
51
- "变动人": "name",
52
- "董监高职务": "title",
53
- "变动日期": "transaction_date",
54
- "变动股数": "transaction_shares",
55
- "成交均价": "transaction_price_per_share",
56
- "变动后持股数": "shares_owned_after_transaction",
57
- "与董监高关系": "relationship",
58
- }
59
-
60
- df = raw_df.rename(columns=column_mapping)
61
-
62
- # Convert symbol back to original format (remove SH/SZ prefix)
63
- if "symbol" in df.columns:
64
- df["symbol"] = df["symbol"].str.replace(r"^[A-Z]{2}", "", regex=True)
65
-
66
- # Add is_board_director column
67
- df["is_board_director"] = df["title"].str.contains("董事")
68
-
69
- # Calculate transaction_value
70
- if (
71
- "transaction_shares" in df.columns
72
- and "transaction_price_per_share" in df.columns
73
- ):
74
- df["transaction_value"] = (
75
- df["transaction_shares"] * df["transaction_price_per_share"]
76
- )
77
-
78
- # Add shares_owned_before_transaction if possible
79
- if (
80
- "shares_owned_after_transaction" in df.columns
81
- and "transaction_shares" in df.columns
82
- ):
83
- df["shares_owned_before_transaction"] = (
84
- df["shares_owned_after_transaction"] - df["transaction_shares"]
85
- )
86
-
87
- # Convert date format
88
- if "transaction_date" in df.columns:
89
- df["transaction_date"] = pd.to_datetime(
90
- df["transaction_date"]
91
- ).dt.tz_localize("Asia/Shanghai")
92
-
93
- if "filing_date" in df.columns:
94
- df["filing_date"] = pd.to_datetime(df["filing_date"]).dt.tz_localize(
95
- "Asia/Shanghai"
96
- )
97
-
98
- # Convert numeric columns
99
- numeric_cols = [
100
- "transaction_shares",
101
- "transaction_price_per_share",
102
- "transaction_value",
103
- "shares_owned_before_transaction",
104
- "shares_owned_after_transaction",
105
- ]
106
- for col in numeric_cols:
107
- if col in df.columns:
108
- df[col] = pd.to_numeric(df[col], errors="coerce")
109
-
110
- return df.reset_index(drop=True)
1
+ import pandas as pd
2
+ import akshare as ak
3
+ from .base import InsiderDataProvider
4
+ from ..utils import convert_xieqiu_symbol
5
+ from ..cache import cache
6
+
7
+
8
+ class XueQiuInsider(InsiderDataProvider):
9
+ """Provider for XueQiu insider trading data"""
10
+
11
+ @cache(
12
+ "financial_cache",
13
+ key=lambda self, symbol=None: f"xueqiu_insider_{symbol if symbol else 'all'}",
14
+ )
15
+ def get_inner_trade_data(self) -> pd.DataFrame:
16
+ """获取雪球内部交易数据
17
+
18
+ Args:
19
+ symbol: 可选股票代码,如"600000",不传则返回所有数据
20
+
21
+ Returns:
22
+ Standardized DataFrame with insider trading data:
23
+ - symbol: 股票代码
24
+ - name: 股票名称
25
+ - change_date: 变动日期
26
+ - insider: 变动人
27
+ - shares_changed: 变动股数
28
+ - avg_price: 成交均价
29
+ - shares_after: 变动后持股数
30
+ - relationship: 与董监高关系
31
+ - position: 董监高职务
32
+ """
33
+ raw_df = ak.stock_inner_trade_xq()
34
+ if self.symbol:
35
+ xueqiu_symbol = convert_xieqiu_symbol(self.symbol)
36
+ raw_df = raw_df[raw_df["股票代码"] == xueqiu_symbol]
37
+ return self._clean_insider_data(raw_df)
38
+
39
+ def _clean_insider_data(self, raw_df: pd.DataFrame) -> pd.DataFrame:
40
+ """清理和标准化内部交易数据
41
+
42
+ Args:
43
+ raw_df: Raw DataFrame from XueQiu API
44
+
45
+ Returns:
46
+ Standardized DataFrame with consistent columns
47
+ """
48
+ column_mapping = {
49
+ "股票代码": "symbol",
50
+ "股票名称": "issuer",
51
+ "变动人": "name",
52
+ "董监高职务": "title",
53
+ "变动日期": "transaction_date",
54
+ "变动股数": "transaction_shares",
55
+ "成交均价": "transaction_price_per_share",
56
+ "变动后持股数": "shares_owned_after_transaction",
57
+ "与董监高关系": "relationship",
58
+ }
59
+
60
+ df = raw_df.rename(columns=column_mapping)
61
+
62
+ # Convert symbol back to original format (remove SH/SZ prefix)
63
+ if "symbol" in df.columns:
64
+ df["symbol"] = df["symbol"].str.replace(r"^[A-Z]{2}", "", regex=True)
65
+
66
+ # Add is_board_director column
67
+ df["is_board_director"] = df["title"].str.contains("董事")
68
+
69
+ # Calculate transaction_value
70
+ if (
71
+ "transaction_shares" in df.columns
72
+ and "transaction_price_per_share" in df.columns
73
+ ):
74
+ df["transaction_value"] = (
75
+ df["transaction_shares"] * df["transaction_price_per_share"]
76
+ )
77
+
78
+ # Add shares_owned_before_transaction if possible
79
+ if (
80
+ "shares_owned_after_transaction" in df.columns
81
+ and "transaction_shares" in df.columns
82
+ ):
83
+ df["shares_owned_before_transaction"] = (
84
+ df["shares_owned_after_transaction"] - df["transaction_shares"]
85
+ )
86
+
87
+ # Convert date format
88
+ if "transaction_date" in df.columns:
89
+ df["transaction_date"] = pd.to_datetime(
90
+ df["transaction_date"]
91
+ ).dt.tz_localize("Asia/Shanghai")
92
+
93
+ if "filing_date" in df.columns:
94
+ df["filing_date"] = pd.to_datetime(df["filing_date"]).dt.tz_localize(
95
+ "Asia/Shanghai"
96
+ )
97
+
98
+ # Convert numeric columns
99
+ numeric_cols = [
100
+ "transaction_shares",
101
+ "transaction_price_per_share",
102
+ "transaction_value",
103
+ "shares_owned_before_transaction",
104
+ "shares_owned_after_transaction",
105
+ ]
106
+ for col in numeric_cols:
107
+ if col in df.columns:
108
+ df[col] = pd.to_numeric(df[col], errors="coerce")
109
+
110
+ return df.reset_index(drop=True)
@@ -1,22 +1,22 @@
1
- from abc import ABC, abstractmethod
2
- import pandas as pd
3
-
4
-
5
- class NewsDataProvider(ABC):
6
- def __init__(self, symbol: str) -> None:
7
- self.symbol = symbol
8
-
9
- @abstractmethod
10
- def get_news_data(self) -> pd.DataFrame:
11
- """Fetches news data for given symbol
12
-
13
- Returns:
14
- pd.DataFrame:
15
- - keyword: 关键词
16
- - title: 新闻标题
17
- - content: 新闻内容
18
- - publish_time: 发布时间
19
- - source: 文章来源
20
- - url: 新闻链接
21
- """
22
- pass
1
+ from abc import ABC, abstractmethod
2
+ import pandas as pd
3
+
4
+
5
+ class NewsDataProvider(ABC):
6
+ def __init__(self, symbol: str) -> None:
7
+ self.symbol = symbol
8
+
9
+ @abstractmethod
10
+ def get_news_data(self) -> pd.DataFrame:
11
+ """Fetches news data for given symbol
12
+
13
+ Returns:
14
+ pd.DataFrame:
15
+ - keyword: 关键词
16
+ - title: 新闻标题
17
+ - content: 新闻内容
18
+ - publish_time: 发布时间
19
+ - source: 文章来源
20
+ - url: 新闻链接
21
+ """
22
+ pass