akshare-one 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- akshare_one/__init__.py +214 -214
- akshare_one/eastmoney/client.py +80 -80
- akshare_one/eastmoney/utils.py +102 -102
- akshare_one/indicators.py +395 -395
- akshare_one/modules/cache.py +27 -27
- akshare_one/modules/financial/base.py +27 -27
- akshare_one/modules/financial/eastmoney_direct.py +183 -183
- akshare_one/modules/financial/factory.py +46 -46
- akshare_one/modules/financial/sina.py +292 -292
- akshare_one/modules/historical/base.py +47 -47
- akshare_one/modules/historical/eastmoney.py +236 -236
- akshare_one/modules/historical/eastmoney_direct.py +78 -78
- akshare_one/modules/historical/factory.py +48 -48
- akshare_one/modules/historical/sina.py +250 -250
- akshare_one/modules/indicators/base.py +158 -158
- akshare_one/modules/indicators/factory.py +33 -33
- akshare_one/modules/indicators/simple.py +384 -230
- akshare_one/modules/indicators/talib.py +263 -263
- akshare_one/modules/info/base.py +25 -25
- akshare_one/modules/info/eastmoney.py +51 -51
- akshare_one/modules/info/factory.py +44 -44
- akshare_one/modules/insider/base.py +28 -28
- akshare_one/modules/insider/factory.py +44 -44
- akshare_one/modules/insider/xueqiu.py +110 -110
- akshare_one/modules/news/base.py +22 -22
- akshare_one/modules/news/eastmoney.py +43 -43
- akshare_one/modules/news/factory.py +44 -44
- akshare_one/modules/realtime/base.py +27 -27
- akshare_one/modules/realtime/eastmoney.py +53 -53
- akshare_one/modules/realtime/eastmoney_direct.py +36 -36
- akshare_one/modules/realtime/factory.py +48 -48
- akshare_one/modules/realtime/xueqiu.py +57 -57
- akshare_one/modules/utils.py +10 -10
- {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/METADATA +74 -74
- akshare_one-0.3.8.dist-info/RECORD +39 -0
- {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/licenses/LICENSE +21 -21
- akshare_one-0.3.6.dist-info/RECORD +0 -39
- {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/WHEEL +0 -0
- {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/top_level.txt +0 -0
@@ -1,230 +1,384 @@
|
|
1
|
-
import pandas as pd
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
.rolling(window=window, min_periods=window)
|
12
|
-
|
13
|
-
.
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
return
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
)
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
close = df["close"]
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
high = df["high"]
|
87
|
-
low = df["low"]
|
88
|
-
close = df["close"]
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
)
|
108
|
-
|
109
|
-
|
110
|
-
return
|
111
|
-
|
112
|
-
def
|
113
|
-
high = df["high"]
|
114
|
-
low = df["low"]
|
115
|
-
close = df["close"]
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
)
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
)
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
def
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
1
|
+
import pandas as pd
|
2
|
+
import numpy as np
|
3
|
+
from .base import BaseIndicatorCalculator
|
4
|
+
|
5
|
+
|
6
|
+
class SimpleIndicatorCalculator(BaseIndicatorCalculator):
|
7
|
+
"""Basic pandas-based indicator implementations"""
|
8
|
+
|
9
|
+
def _get_ma(self, series: pd.Series, window: int, ma_type: int) -> pd.Series:
|
10
|
+
if ma_type == 0:
|
11
|
+
return series.rolling(window=window, min_periods=window).mean()
|
12
|
+
elif ma_type == 1:
|
13
|
+
return series.ewm(span=window, adjust=False, min_periods=window).mean()
|
14
|
+
else:
|
15
|
+
raise ValueError(
|
16
|
+
f"Unsupported ma_type: {ma_type} in simple calculator. Only SMA (0) and EMA (1) are supported."
|
17
|
+
)
|
18
|
+
|
19
|
+
def _wilder_smooth(self, series: pd.Series, window: int) -> pd.Series:
|
20
|
+
return series.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
|
21
|
+
|
22
|
+
def calculate_sma(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
23
|
+
return (
|
24
|
+
df["close"]
|
25
|
+
.rolling(window=window, min_periods=window)
|
26
|
+
.mean()
|
27
|
+
.to_frame("sma")
|
28
|
+
)
|
29
|
+
|
30
|
+
def calculate_ema(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
31
|
+
return (
|
32
|
+
df["close"]
|
33
|
+
.ewm(span=window, adjust=False, min_periods=window)
|
34
|
+
.mean()
|
35
|
+
.to_frame("ema")
|
36
|
+
)
|
37
|
+
|
38
|
+
def calculate_rsi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
39
|
+
delta = df["close"].diff()
|
40
|
+
gain = delta.clip(lower=0)
|
41
|
+
loss = -delta.clip(upper=0)
|
42
|
+
|
43
|
+
avg_gain = gain.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
|
44
|
+
avg_loss = loss.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
|
45
|
+
|
46
|
+
rs = avg_gain / avg_loss
|
47
|
+
rsi = 100 - (100 / (1 + rs))
|
48
|
+
|
49
|
+
return rsi.clip(0, 100).to_frame("rsi")
|
50
|
+
|
51
|
+
def calculate_macd(
|
52
|
+
self, df: pd.DataFrame, fast: int, slow: int, signal: int
|
53
|
+
) -> pd.DataFrame:
|
54
|
+
close = df["close"]
|
55
|
+
ema_fast = close.ewm(span=fast, adjust=False, min_periods=fast).mean()
|
56
|
+
ema_slow = close.ewm(span=slow, adjust=False, min_periods=slow).mean()
|
57
|
+
|
58
|
+
macd_line = ema_fast - ema_slow
|
59
|
+
signal_line = macd_line.ewm(
|
60
|
+
span=signal, adjust=False, min_periods=signal
|
61
|
+
).mean()
|
62
|
+
|
63
|
+
return pd.DataFrame(
|
64
|
+
{
|
65
|
+
"macd": macd_line,
|
66
|
+
"signal": signal_line,
|
67
|
+
"histogram": macd_line - signal_line,
|
68
|
+
}
|
69
|
+
)
|
70
|
+
|
71
|
+
def calculate_bollinger_bands(
|
72
|
+
self, df: pd.DataFrame, window: int, std: int
|
73
|
+
) -> pd.DataFrame:
|
74
|
+
close = df["close"]
|
75
|
+
sma = close.rolling(window=window, min_periods=window).mean()
|
76
|
+
rolling_std = close.rolling(window=window, min_periods=window).std()
|
77
|
+
upper_band = sma + (rolling_std * std)
|
78
|
+
lower_band = sma - (rolling_std * std)
|
79
|
+
return pd.DataFrame(
|
80
|
+
{"upper_band": upper_band, "middle_band": sma, "lower_band": lower_band}
|
81
|
+
)
|
82
|
+
|
83
|
+
def calculate_stoch(
|
84
|
+
self, df: pd.DataFrame, window: int, smooth_d: int, smooth_k: int
|
85
|
+
) -> pd.DataFrame:
|
86
|
+
high = df["high"]
|
87
|
+
low = df["low"]
|
88
|
+
close = df["close"]
|
89
|
+
|
90
|
+
lowest_low = low.rolling(window=window).min()
|
91
|
+
highest_high = high.rolling(window=window).max()
|
92
|
+
|
93
|
+
k = 100 * (close - lowest_low) / (highest_high - lowest_low).replace(0, np.nan)
|
94
|
+
slow_k = k.rolling(window=smooth_k, min_periods=smooth_k).mean()
|
95
|
+
slow_d = slow_k.rolling(window=smooth_d, min_periods=smooth_d).mean()
|
96
|
+
|
97
|
+
return pd.DataFrame({"slow_k": slow_k, "slow_d": slow_d})
|
98
|
+
|
99
|
+
def calculate_atr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
100
|
+
high = df["high"]
|
101
|
+
low = df["low"]
|
102
|
+
close = df["close"]
|
103
|
+
|
104
|
+
tr1 = high - low
|
105
|
+
tr2 = abs(high - close.shift())
|
106
|
+
tr3 = abs(low - close.shift())
|
107
|
+
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
|
108
|
+
|
109
|
+
atr = self._wilder_smooth(tr, window)
|
110
|
+
return atr.to_frame("atr")
|
111
|
+
|
112
|
+
def calculate_cci(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
113
|
+
high = df["high"]
|
114
|
+
low = df["low"]
|
115
|
+
close = df["close"]
|
116
|
+
|
117
|
+
tp = (high + low + close) / 3
|
118
|
+
tp_sma = tp.rolling(window=window, min_periods=window).mean()
|
119
|
+
mean_dev = tp.rolling(window=window, min_periods=window).apply(
|
120
|
+
lambda x: (x - x.mean()).abs().mean()
|
121
|
+
)
|
122
|
+
|
123
|
+
cci = (tp - tp_sma) / (0.015 * mean_dev)
|
124
|
+
return cci.to_frame("cci")
|
125
|
+
|
126
|
+
def calculate_adx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
127
|
+
dx = self.calculate_dx(df, window)["dx"]
|
128
|
+
adx = self._wilder_smooth(dx, window)
|
129
|
+
return adx.to_frame("adx")
|
130
|
+
|
131
|
+
def calculate_willr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
132
|
+
high = df["high"]
|
133
|
+
low = df["low"]
|
134
|
+
close = df["close"]
|
135
|
+
highest_high = high.rolling(window=window, min_periods=window).max()
|
136
|
+
lowest_low = low.rolling(window=window, min_periods=window).min()
|
137
|
+
willr = -100 * (highest_high - close) / (highest_high - lowest_low)
|
138
|
+
return willr.to_frame("willr")
|
139
|
+
|
140
|
+
def calculate_ad(self, df: pd.DataFrame) -> pd.DataFrame:
|
141
|
+
high = df["high"]
|
142
|
+
low = df["low"]
|
143
|
+
close = df["close"]
|
144
|
+
volume = df["volume"]
|
145
|
+
mfm = ((close - low) - (high - close)) / (high - low).replace(0, np.nan)
|
146
|
+
mfm = mfm.fillna(0)
|
147
|
+
mfv = mfm * volume
|
148
|
+
ad = mfv.cumsum()
|
149
|
+
return ad.to_frame("ad")
|
150
|
+
|
151
|
+
def calculate_adosc(
|
152
|
+
self, df: pd.DataFrame, fast_period: int, slow_period: int
|
153
|
+
) -> pd.DataFrame:
|
154
|
+
ad = self.calculate_ad(df)["ad"]
|
155
|
+
ema_fast = ad.ewm(span=fast_period, adjust=False).mean()
|
156
|
+
ema_slow = ad.ewm(span=slow_period, adjust=False).mean()
|
157
|
+
adosc = ema_fast - ema_slow
|
158
|
+
return adosc.to_frame("adosc")
|
159
|
+
|
160
|
+
def calculate_obv(self, df: pd.DataFrame) -> pd.DataFrame:
|
161
|
+
close = df["close"]
|
162
|
+
volume = df["volume"]
|
163
|
+
sign = (close > close.shift(1)).astype(int) - (close < close.shift(1)).astype(
|
164
|
+
int
|
165
|
+
)
|
166
|
+
obv = (volume * sign).cumsum()
|
167
|
+
return obv.to_frame("obv")
|
168
|
+
|
169
|
+
def calculate_mom(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
170
|
+
close = df["close"]
|
171
|
+
mom = close.diff(periods=window)
|
172
|
+
return mom.to_frame("mom")
|
173
|
+
|
174
|
+
def calculate_sar(
|
175
|
+
self, df: pd.DataFrame, acceleration: float, maximum: float
|
176
|
+
) -> pd.DataFrame:
|
177
|
+
high, low = df["high"], df["low"]
|
178
|
+
sar = pd.Series(index=df.index, dtype=float)
|
179
|
+
uptrend = True
|
180
|
+
accel_factor = acceleration
|
181
|
+
extreme_point = high[0]
|
182
|
+
sar.iloc[0] = low[0]
|
183
|
+
|
184
|
+
for i in range(1, len(df)):
|
185
|
+
prev_sar = sar.iloc[i - 1]
|
186
|
+
|
187
|
+
if uptrend:
|
188
|
+
sar.iloc[i] = prev_sar + accel_factor * (extreme_point - prev_sar)
|
189
|
+
sar.iloc[i] = min(sar.iloc[i], low.iloc[i - 1])
|
190
|
+
if i > 1:
|
191
|
+
sar.iloc[i] = min(sar.iloc[i], low.iloc[i - 2])
|
192
|
+
|
193
|
+
if low[i] < sar.iloc[i]:
|
194
|
+
uptrend = False
|
195
|
+
sar.iloc[i] = extreme_point
|
196
|
+
extreme_point = low[i]
|
197
|
+
accel_factor = acceleration
|
198
|
+
else:
|
199
|
+
if high[i] > extreme_point:
|
200
|
+
extreme_point = high[i]
|
201
|
+
accel_factor = min(maximum, accel_factor + acceleration)
|
202
|
+
else:
|
203
|
+
sar.iloc[i] = prev_sar - accel_factor * (prev_sar - extreme_point)
|
204
|
+
sar.iloc[i] = max(sar.iloc[i], high.iloc[i - 1])
|
205
|
+
if i > 1:
|
206
|
+
sar.iloc[i] = max(sar.iloc[i], high.iloc[i - 2])
|
207
|
+
|
208
|
+
if high[i] > sar.iloc[i]:
|
209
|
+
uptrend = True
|
210
|
+
sar.iloc[i] = extreme_point
|
211
|
+
extreme_point = high[i]
|
212
|
+
accel_factor = acceleration
|
213
|
+
else:
|
214
|
+
if low[i] < extreme_point:
|
215
|
+
extreme_point = low[i]
|
216
|
+
accel_factor = min(maximum, accel_factor + acceleration)
|
217
|
+
|
218
|
+
return sar.to_frame("sar")
|
219
|
+
|
220
|
+
def calculate_tsf(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
221
|
+
close = df["close"]
|
222
|
+
|
223
|
+
def linear_reg_forecast(y):
|
224
|
+
x = np.arange(1, len(y) + 1)
|
225
|
+
b_num = len(x) * np.sum(x * y) - np.sum(x) * np.sum(y)
|
226
|
+
b_den = len(x) * np.sum(x * x) - np.sum(x) ** 2
|
227
|
+
b = b_num / b_den if b_den != 0 else 0
|
228
|
+
a = np.mean(y) - b * np.mean(x)
|
229
|
+
return a + b * len(y)
|
230
|
+
|
231
|
+
tsf = close.rolling(window=window, min_periods=window).apply(
|
232
|
+
linear_reg_forecast, raw=True
|
233
|
+
)
|
234
|
+
return tsf.to_frame("tsf")
|
235
|
+
|
236
|
+
def calculate_apo(
|
237
|
+
self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
|
238
|
+
) -> pd.DataFrame:
|
239
|
+
close = df["close"]
|
240
|
+
fast_ma = self._get_ma(close, fast_period, ma_type)
|
241
|
+
slow_ma = self._get_ma(close, slow_period, ma_type)
|
242
|
+
apo = fast_ma - slow_ma
|
243
|
+
return apo.to_frame("apo")
|
244
|
+
|
245
|
+
def calculate_aroon(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
246
|
+
high = df["high"]
|
247
|
+
low = df["low"]
|
248
|
+
periods_since_high = high.rolling(window=window, min_periods=window).apply(
|
249
|
+
lambda x: len(x) - 1 - np.argmax(x), raw=True
|
250
|
+
)
|
251
|
+
periods_since_low = low.rolling(window=window, min_periods=window).apply(
|
252
|
+
lambda x: len(x) - 1 - np.argmin(x), raw=True
|
253
|
+
)
|
254
|
+
aroon_up = ((window - periods_since_high) / window) * 100
|
255
|
+
aroon_down = ((window - periods_since_low) / window) * 100
|
256
|
+
return pd.DataFrame({"aroon_up": aroon_up, "aroon_down": aroon_down})
|
257
|
+
|
258
|
+
def calculate_aroonosc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
259
|
+
aroon_df = self.calculate_aroon(df, window)
|
260
|
+
aroonosc = aroon_df["aroon_up"] - aroon_df["aroon_down"]
|
261
|
+
return aroonosc.to_frame("aroonosc")
|
262
|
+
|
263
|
+
def calculate_bop(self, df: pd.DataFrame) -> pd.DataFrame:
|
264
|
+
bop = (df["close"] - df["open"]) / (df["high"] - df["low"]).replace(0, np.nan)
|
265
|
+
bop = bop.fillna(0)
|
266
|
+
return bop.to_frame("bop")
|
267
|
+
|
268
|
+
def calculate_cmo(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
269
|
+
close_diff = df["close"].diff(1)
|
270
|
+
sum_up = close_diff.where(close_diff > 0, 0).rolling(window=window).sum()
|
271
|
+
sum_down = -close_diff.where(close_diff < 0, 0).rolling(window=window).sum()
|
272
|
+
cmo = 100 * (sum_up - sum_down) / (sum_up + sum_down).replace(0, np.nan)
|
273
|
+
cmo = cmo.fillna(0)
|
274
|
+
return cmo.to_frame("cmo")
|
275
|
+
|
276
|
+
def calculate_dx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
277
|
+
plus_di = self.calculate_plus_di(df, window)["plus_di"]
|
278
|
+
minus_di = self.calculate_minus_di(df, window)["minus_di"]
|
279
|
+
dx = 100 * abs(plus_di - minus_di) / (plus_di + minus_di).replace(0, np.nan)
|
280
|
+
dx = dx.fillna(0)
|
281
|
+
return dx.to_frame("dx")
|
282
|
+
|
283
|
+
def calculate_mfi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
284
|
+
typical_price = (df["high"] + df["low"] + df["close"]) / 3
|
285
|
+
money_flow = typical_price * df["volume"]
|
286
|
+
price_diff = typical_price.diff()
|
287
|
+
positive_mf = money_flow.where(price_diff > 0, 0)
|
288
|
+
negative_mf = money_flow.where(price_diff < 0, 0)
|
289
|
+
positive_mf_sum = positive_mf.rolling(window=window).sum()
|
290
|
+
negative_mf_sum = negative_mf.rolling(window=window).sum()
|
291
|
+
money_ratio = positive_mf_sum / negative_mf_sum.replace(0, np.nan)
|
292
|
+
money_ratio = money_ratio.fillna(0)
|
293
|
+
mfi = 100 - (100 / (1 + money_ratio))
|
294
|
+
return mfi.to_frame("mfi")
|
295
|
+
|
296
|
+
def calculate_minus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
297
|
+
atr = self.calculate_atr(df, window)["atr"]
|
298
|
+
minus_dm = self.calculate_minus_dm(df, window)["minus_dm"]
|
299
|
+
minus_di = 100 * (minus_dm / atr)
|
300
|
+
return minus_di.to_frame("minus_di")
|
301
|
+
|
302
|
+
def calculate_minus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
303
|
+
high = df["high"]
|
304
|
+
low = df["low"]
|
305
|
+
up_move = high.diff()
|
306
|
+
down_move = -low.diff()
|
307
|
+
minus_dm = down_move.where((down_move > up_move) & (down_move > 0), 0)
|
308
|
+
smoothed_minus_dm = self._wilder_smooth(minus_dm, window)
|
309
|
+
return smoothed_minus_dm.to_frame("minus_dm")
|
310
|
+
|
311
|
+
def calculate_plus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
312
|
+
atr = self.calculate_atr(df, window)["atr"]
|
313
|
+
plus_dm = self.calculate_plus_dm(df, window)["plus_dm"]
|
314
|
+
plus_di = 100 * (plus_dm / atr)
|
315
|
+
return plus_di.to_frame("plus_di")
|
316
|
+
|
317
|
+
def calculate_plus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
318
|
+
high = df["high"]
|
319
|
+
low = df["low"]
|
320
|
+
up_move = high.diff()
|
321
|
+
down_move = -low.diff()
|
322
|
+
plus_dm = up_move.where((up_move > down_move) & (up_move > 0), 0)
|
323
|
+
smoothed_plus_dm = self._wilder_smooth(plus_dm, window)
|
324
|
+
return smoothed_plus_dm.to_frame("plus_dm")
|
325
|
+
|
326
|
+
def calculate_ppo(
|
327
|
+
self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
|
328
|
+
) -> pd.DataFrame:
|
329
|
+
close = df["close"]
|
330
|
+
fast_ma = self._get_ma(close, fast_period, ma_type)
|
331
|
+
slow_ma = self._get_ma(close, slow_period, ma_type)
|
332
|
+
ppo = ((fast_ma - slow_ma) / slow_ma) * 100
|
333
|
+
return ppo.to_frame("ppo")
|
334
|
+
|
335
|
+
def calculate_roc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
336
|
+
close = df["close"]
|
337
|
+
roc = (close.diff(window) / close.shift(window)) * 100
|
338
|
+
return roc.to_frame("roc")
|
339
|
+
|
340
|
+
def calculate_rocp(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
341
|
+
close = df["close"]
|
342
|
+
rocp = close.diff(window) / close.shift(window)
|
343
|
+
return rocp.to_frame("rocp")
|
344
|
+
|
345
|
+
def calculate_rocr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
346
|
+
close = df["close"]
|
347
|
+
rocr = close / close.shift(window)
|
348
|
+
return rocr.to_frame("rocr")
|
349
|
+
|
350
|
+
def calculate_rocr100(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
351
|
+
close = df["close"]
|
352
|
+
rocr100 = (close / close.shift(window)) * 100
|
353
|
+
return rocr100.to_frame("rocr100")
|
354
|
+
|
355
|
+
def calculate_trix(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
|
356
|
+
close = df["close"]
|
357
|
+
ema1 = close.ewm(span=window, adjust=False).mean()
|
358
|
+
ema2 = ema1.ewm(span=window, adjust=False).mean()
|
359
|
+
ema3 = ema2.ewm(span=window, adjust=False).mean()
|
360
|
+
trix = 100 * ema3.diff(1) / ema3.shift(1)
|
361
|
+
return trix.to_frame("trix")
|
362
|
+
|
363
|
+
def calculate_ultosc(
|
364
|
+
self, df: pd.DataFrame, window1: int, window2: int, window3: int
|
365
|
+
) -> pd.DataFrame:
|
366
|
+
low = df["low"]
|
367
|
+
high = df["high"]
|
368
|
+
close = df["close"]
|
369
|
+
close_prev = close.shift(1)
|
370
|
+
true_low = pd.concat([low, close_prev], axis=1).min(axis=1)
|
371
|
+
true_high = pd.concat([high, close_prev], axis=1).max(axis=1)
|
372
|
+
bp = close - true_low
|
373
|
+
tr = true_high - true_low
|
374
|
+
tr_sum1 = tr.rolling(window=window1).sum()
|
375
|
+
tr_sum2 = tr.rolling(window=window2).sum()
|
376
|
+
tr_sum3 = tr.rolling(window=window3).sum()
|
377
|
+
avg1 = bp.rolling(window=window1).sum() / tr_sum1.replace(0, np.nan)
|
378
|
+
avg2 = bp.rolling(window=window2).sum() / tr_sum2.replace(0, np.nan)
|
379
|
+
avg3 = bp.rolling(window=window3).sum() / tr_sum3.replace(0, np.nan)
|
380
|
+
avg1 = avg1.fillna(0)
|
381
|
+
avg2 = avg2.fillna(0)
|
382
|
+
avg3 = avg3.fillna(0)
|
383
|
+
ultosc = 100 * (4 * avg1 + 2 * avg2 + 1 * avg3) / (4 + 2 + 1)
|
384
|
+
return ultosc.to_frame("ultosc")
|