akshare-one 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. akshare_one/__init__.py +214 -214
  2. akshare_one/eastmoney/client.py +80 -80
  3. akshare_one/eastmoney/utils.py +102 -102
  4. akshare_one/indicators.py +395 -395
  5. akshare_one/modules/cache.py +27 -27
  6. akshare_one/modules/financial/base.py +27 -27
  7. akshare_one/modules/financial/eastmoney_direct.py +183 -183
  8. akshare_one/modules/financial/factory.py +46 -46
  9. akshare_one/modules/financial/sina.py +292 -292
  10. akshare_one/modules/historical/base.py +47 -47
  11. akshare_one/modules/historical/eastmoney.py +236 -236
  12. akshare_one/modules/historical/eastmoney_direct.py +78 -78
  13. akshare_one/modules/historical/factory.py +48 -48
  14. akshare_one/modules/historical/sina.py +250 -250
  15. akshare_one/modules/indicators/base.py +158 -158
  16. akshare_one/modules/indicators/factory.py +33 -33
  17. akshare_one/modules/indicators/simple.py +384 -230
  18. akshare_one/modules/indicators/talib.py +263 -263
  19. akshare_one/modules/info/base.py +25 -25
  20. akshare_one/modules/info/eastmoney.py +51 -51
  21. akshare_one/modules/info/factory.py +44 -44
  22. akshare_one/modules/insider/base.py +28 -28
  23. akshare_one/modules/insider/factory.py +44 -44
  24. akshare_one/modules/insider/xueqiu.py +110 -110
  25. akshare_one/modules/news/base.py +22 -22
  26. akshare_one/modules/news/eastmoney.py +43 -43
  27. akshare_one/modules/news/factory.py +44 -44
  28. akshare_one/modules/realtime/base.py +27 -27
  29. akshare_one/modules/realtime/eastmoney.py +53 -53
  30. akshare_one/modules/realtime/eastmoney_direct.py +36 -36
  31. akshare_one/modules/realtime/factory.py +48 -48
  32. akshare_one/modules/realtime/xueqiu.py +57 -57
  33. akshare_one/modules/utils.py +10 -10
  34. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/METADATA +74 -74
  35. akshare_one-0.3.8.dist-info/RECORD +39 -0
  36. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/licenses/LICENSE +21 -21
  37. akshare_one-0.3.6.dist-info/RECORD +0 -39
  38. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/WHEEL +0 -0
  39. {akshare_one-0.3.6.dist-info → akshare_one-0.3.8.dist-info}/top_level.txt +0 -0
@@ -1,230 +1,384 @@
1
- import pandas as pd
2
- from .base import BaseIndicatorCalculator
3
-
4
-
5
- class SimpleIndicatorCalculator(BaseIndicatorCalculator):
6
- """Basic pandas-based indicator implementations"""
7
-
8
- def calculate_sma(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
9
- return (
10
- df["close"]
11
- .rolling(window=window, min_periods=window)
12
- .mean()
13
- .to_frame("sma")
14
- )
15
-
16
- def calculate_ema(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
17
- return (
18
- df["close"]
19
- .ewm(span=window, adjust=False, min_periods=window)
20
- .mean()
21
- .to_frame("ema")
22
- )
23
-
24
- def calculate_rsi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
25
- delta = df["close"].diff()
26
- gain = delta.clip(lower=0)
27
- loss = -delta.clip(upper=0)
28
-
29
- avg_gain = gain.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
30
- avg_loss = loss.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
31
-
32
- rs = avg_gain / avg_loss
33
- rsi = 100 - (100 / (1 + rs))
34
-
35
- return rsi.clip(0, 100).to_frame("rsi")
36
-
37
- def calculate_macd(
38
- self, df: pd.DataFrame, fast: int, slow: int, signal: int
39
- ) -> pd.DataFrame:
40
- close = df["close"]
41
- ema_fast = close.ewm(span=fast, adjust=False, min_periods=fast).mean()
42
- ema_slow = close.ewm(span=slow, adjust=False, min_periods=slow).mean()
43
-
44
- macd_line = ema_fast - ema_slow
45
- signal_line = macd_line.ewm(
46
- span=signal, adjust=False, min_periods=signal
47
- ).mean()
48
-
49
- return pd.DataFrame(
50
- {
51
- "macd": macd_line,
52
- "signal": signal_line,
53
- "histogram": macd_line - signal_line,
54
- }
55
- )
56
-
57
- def calculate_bollinger_bands(
58
- self, df: pd.DataFrame, window: int, std: int
59
- ) -> pd.DataFrame:
60
- close = df["close"]
61
- sma = close.rolling(window=window, min_periods=window).mean()
62
- rolling_std = close.rolling(window=window, min_periods=window).std()
63
- upper_band = sma + (rolling_std * std)
64
- lower_band = sma - (rolling_std * std)
65
- return pd.DataFrame(
66
- {"upper_band": upper_band, "middle_band": sma, "lower_band": lower_band}
67
- )
68
-
69
- def calculate_stoch(
70
- self, df: pd.DataFrame, window: int, smooth_d: int, smooth_k: int
71
- ) -> pd.DataFrame:
72
- high = df["high"]
73
- low = df["low"]
74
- close = df["close"]
75
-
76
- lowest_low = low.rolling(window=window).min()
77
- highest_high = high.rolling(window=window).max()
78
-
79
- k = 100 * (close - lowest_low) / (highest_high - lowest_low)
80
- slow_k = k.rolling(window=smooth_k).mean()
81
- slow_d = slow_k.rolling(window=smooth_d).mean()
82
-
83
- return pd.DataFrame({"slow_k": slow_k, "slow_d": slow_d})
84
-
85
- def calculate_atr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
86
- high = df["high"]
87
- low = df["low"]
88
- close = df["close"]
89
-
90
- tr1 = high - low
91
- tr2 = abs(high - close.shift())
92
- tr3 = abs(low - close.shift())
93
- tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
94
-
95
- atr = tr.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
96
- return atr.to_frame("atr")
97
-
98
- def calculate_cci(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
99
- high = df["high"]
100
- low = df["low"]
101
- close = df["close"]
102
-
103
- tp = (high + low + close) / 3
104
- tp_sma = tp.rolling(window=window, min_periods=window).mean()
105
- mean_dev = tp.rolling(window=window, min_periods=window).apply(
106
- lambda x: (x - x.mean()).abs().mean()
107
- )
108
-
109
- cci = (tp - tp_sma) / (0.015 * mean_dev)
110
- return cci.to_frame("cci")
111
-
112
- def calculate_adx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
113
- high = df["high"]
114
- low = df["low"]
115
- close = df["close"]
116
-
117
- # Calculate +DM, -DM and TR
118
- move_up = high.diff()
119
- move_down = low.diff().apply(abs)
120
-
121
- plus_dm = pd.Series((move_up > move_down) & (move_up > 0)).astype(int) * move_up
122
- minus_dm = (
123
- pd.Series((move_down > move_up) & (move_down > 0)).astype(int) * move_down
124
- )
125
-
126
- tr1 = high - low
127
- tr2 = abs(high - close.shift())
128
- tr3 = abs(low - close.shift())
129
- tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
130
-
131
- # Smooth +DM, -DM and TR
132
- atr = tr.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
133
- plus_di = 100 * (
134
- plus_dm.ewm(alpha=1 / window, adjust=False, min_periods=window).mean() / atr
135
- )
136
- minus_di = 100 * (
137
- minus_dm.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
138
- / atr
139
- )
140
-
141
- # Calculate ADX
142
- dx = 100 * (abs(plus_di - minus_di) / (plus_di + minus_di))
143
- adx = dx.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
144
-
145
- return adx.to_frame("adx")
146
-
147
- def calculate_willr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
148
- raise NotImplementedError("WILLR not implemented in simple calculator")
149
-
150
- def calculate_ad(self, df: pd.DataFrame) -> pd.DataFrame:
151
- raise NotImplementedError("AD not implemented in simple calculator")
152
-
153
- def calculate_adosc(
154
- self, df: pd.DataFrame, fast_period: int, slow_period: int
155
- ) -> pd.DataFrame:
156
- raise NotImplementedError("ADOSC not implemented in simple calculator")
157
-
158
- def calculate_obv(self, df: pd.DataFrame) -> pd.DataFrame:
159
- raise NotImplementedError("OBV not implemented in simple calculator")
160
-
161
- def calculate_mom(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
162
- raise NotImplementedError("MOM not implemented in simple calculator")
163
-
164
- def calculate_sar(
165
- self, df: pd.DataFrame, acceleration: float, maximum: float
166
- ) -> pd.DataFrame:
167
- raise NotImplementedError("SAR not implemented in simple calculator")
168
-
169
- def calculate_tsf(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
170
- raise NotImplementedError("TSF not implemented in simple calculator")
171
-
172
- def calculate_apo(
173
- self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
174
- ) -> pd.DataFrame:
175
- raise NotImplementedError("APO not implemented in simple calculator")
176
-
177
- def calculate_aroon(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
178
- raise NotImplementedError("AROON not implemented in simple calculator")
179
-
180
- def calculate_aroonosc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
181
- raise NotImplementedError("AROONOSC not implemented in simple calculator")
182
-
183
- def calculate_bop(self, df: pd.DataFrame) -> pd.DataFrame:
184
- raise NotImplementedError("BOP not implemented in simple calculator")
185
-
186
- def calculate_cmo(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
187
- raise NotImplementedError("CMO not implemented in simple calculator")
188
-
189
- def calculate_dx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
190
- raise NotImplementedError("DX not implemented in simple calculator")
191
-
192
- def calculate_mfi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
193
- raise NotImplementedError("MFI not implemented in simple calculator")
194
-
195
- def calculate_minus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
196
- raise NotImplementedError("MINUS_DI not implemented in simple calculator")
197
-
198
- def calculate_minus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
199
- raise NotImplementedError("MINUS_DM not implemented in simple calculator")
200
-
201
- def calculate_plus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
202
- raise NotImplementedError("PLUS_DI not implemented in simple calculator")
203
-
204
- def calculate_plus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
205
- raise NotImplementedError("PLUS_DM not implemented in simple calculator")
206
-
207
- def calculate_ppo(
208
- self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
209
- ) -> pd.DataFrame:
210
- raise NotImplementedError("PPO not implemented in simple calculator")
211
-
212
- def calculate_roc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
213
- raise NotImplementedError("ROC not implemented in simple calculator")
214
-
215
- def calculate_rocp(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
216
- raise NotImplementedError("ROCP not implemented in simple calculator")
217
-
218
- def calculate_rocr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
219
- raise NotImplementedError("ROCR not implemented in simple calculator")
220
-
221
- def calculate_rocr100(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
222
- raise NotImplementedError("ROCR100 not implemented in simple calculator")
223
-
224
- def calculate_trix(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
225
- raise NotImplementedError("TRIX not implemented in simple calculator")
226
-
227
- def calculate_ultosc(
228
- self, df: pd.DataFrame, window1: int, window2: int, window3: int
229
- ) -> pd.DataFrame:
230
- raise NotImplementedError("ULTOSC not implemented in simple calculator")
1
+ import pandas as pd
2
+ import numpy as np
3
+ from .base import BaseIndicatorCalculator
4
+
5
+
6
+ class SimpleIndicatorCalculator(BaseIndicatorCalculator):
7
+ """Basic pandas-based indicator implementations"""
8
+
9
+ def _get_ma(self, series: pd.Series, window: int, ma_type: int) -> pd.Series:
10
+ if ma_type == 0:
11
+ return series.rolling(window=window, min_periods=window).mean()
12
+ elif ma_type == 1:
13
+ return series.ewm(span=window, adjust=False, min_periods=window).mean()
14
+ else:
15
+ raise ValueError(
16
+ f"Unsupported ma_type: {ma_type} in simple calculator. Only SMA (0) and EMA (1) are supported."
17
+ )
18
+
19
+ def _wilder_smooth(self, series: pd.Series, window: int) -> pd.Series:
20
+ return series.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
21
+
22
+ def calculate_sma(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
23
+ return (
24
+ df["close"]
25
+ .rolling(window=window, min_periods=window)
26
+ .mean()
27
+ .to_frame("sma")
28
+ )
29
+
30
+ def calculate_ema(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
31
+ return (
32
+ df["close"]
33
+ .ewm(span=window, adjust=False, min_periods=window)
34
+ .mean()
35
+ .to_frame("ema")
36
+ )
37
+
38
+ def calculate_rsi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
39
+ delta = df["close"].diff()
40
+ gain = delta.clip(lower=0)
41
+ loss = -delta.clip(upper=0)
42
+
43
+ avg_gain = gain.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
44
+ avg_loss = loss.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
45
+
46
+ rs = avg_gain / avg_loss
47
+ rsi = 100 - (100 / (1 + rs))
48
+
49
+ return rsi.clip(0, 100).to_frame("rsi")
50
+
51
+ def calculate_macd(
52
+ self, df: pd.DataFrame, fast: int, slow: int, signal: int
53
+ ) -> pd.DataFrame:
54
+ close = df["close"]
55
+ ema_fast = close.ewm(span=fast, adjust=False, min_periods=fast).mean()
56
+ ema_slow = close.ewm(span=slow, adjust=False, min_periods=slow).mean()
57
+
58
+ macd_line = ema_fast - ema_slow
59
+ signal_line = macd_line.ewm(
60
+ span=signal, adjust=False, min_periods=signal
61
+ ).mean()
62
+
63
+ return pd.DataFrame(
64
+ {
65
+ "macd": macd_line,
66
+ "signal": signal_line,
67
+ "histogram": macd_line - signal_line,
68
+ }
69
+ )
70
+
71
+ def calculate_bollinger_bands(
72
+ self, df: pd.DataFrame, window: int, std: int
73
+ ) -> pd.DataFrame:
74
+ close = df["close"]
75
+ sma = close.rolling(window=window, min_periods=window).mean()
76
+ rolling_std = close.rolling(window=window, min_periods=window).std()
77
+ upper_band = sma + (rolling_std * std)
78
+ lower_band = sma - (rolling_std * std)
79
+ return pd.DataFrame(
80
+ {"upper_band": upper_band, "middle_band": sma, "lower_band": lower_band}
81
+ )
82
+
83
+ def calculate_stoch(
84
+ self, df: pd.DataFrame, window: int, smooth_d: int, smooth_k: int
85
+ ) -> pd.DataFrame:
86
+ high = df["high"]
87
+ low = df["low"]
88
+ close = df["close"]
89
+
90
+ lowest_low = low.rolling(window=window).min()
91
+ highest_high = high.rolling(window=window).max()
92
+
93
+ k = 100 * (close - lowest_low) / (highest_high - lowest_low).replace(0, np.nan)
94
+ slow_k = k.rolling(window=smooth_k, min_periods=smooth_k).mean()
95
+ slow_d = slow_k.rolling(window=smooth_d, min_periods=smooth_d).mean()
96
+
97
+ return pd.DataFrame({"slow_k": slow_k, "slow_d": slow_d})
98
+
99
+ def calculate_atr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
100
+ high = df["high"]
101
+ low = df["low"]
102
+ close = df["close"]
103
+
104
+ tr1 = high - low
105
+ tr2 = abs(high - close.shift())
106
+ tr3 = abs(low - close.shift())
107
+ tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
108
+
109
+ atr = self._wilder_smooth(tr, window)
110
+ return atr.to_frame("atr")
111
+
112
+ def calculate_cci(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
113
+ high = df["high"]
114
+ low = df["low"]
115
+ close = df["close"]
116
+
117
+ tp = (high + low + close) / 3
118
+ tp_sma = tp.rolling(window=window, min_periods=window).mean()
119
+ mean_dev = tp.rolling(window=window, min_periods=window).apply(
120
+ lambda x: (x - x.mean()).abs().mean()
121
+ )
122
+
123
+ cci = (tp - tp_sma) / (0.015 * mean_dev)
124
+ return cci.to_frame("cci")
125
+
126
+ def calculate_adx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
127
+ dx = self.calculate_dx(df, window)["dx"]
128
+ adx = self._wilder_smooth(dx, window)
129
+ return adx.to_frame("adx")
130
+
131
+ def calculate_willr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
132
+ high = df["high"]
133
+ low = df["low"]
134
+ close = df["close"]
135
+ highest_high = high.rolling(window=window, min_periods=window).max()
136
+ lowest_low = low.rolling(window=window, min_periods=window).min()
137
+ willr = -100 * (highest_high - close) / (highest_high - lowest_low)
138
+ return willr.to_frame("willr")
139
+
140
+ def calculate_ad(self, df: pd.DataFrame) -> pd.DataFrame:
141
+ high = df["high"]
142
+ low = df["low"]
143
+ close = df["close"]
144
+ volume = df["volume"]
145
+ mfm = ((close - low) - (high - close)) / (high - low).replace(0, np.nan)
146
+ mfm = mfm.fillna(0)
147
+ mfv = mfm * volume
148
+ ad = mfv.cumsum()
149
+ return ad.to_frame("ad")
150
+
151
+ def calculate_adosc(
152
+ self, df: pd.DataFrame, fast_period: int, slow_period: int
153
+ ) -> pd.DataFrame:
154
+ ad = self.calculate_ad(df)["ad"]
155
+ ema_fast = ad.ewm(span=fast_period, adjust=False).mean()
156
+ ema_slow = ad.ewm(span=slow_period, adjust=False).mean()
157
+ adosc = ema_fast - ema_slow
158
+ return adosc.to_frame("adosc")
159
+
160
+ def calculate_obv(self, df: pd.DataFrame) -> pd.DataFrame:
161
+ close = df["close"]
162
+ volume = df["volume"]
163
+ sign = (close > close.shift(1)).astype(int) - (close < close.shift(1)).astype(
164
+ int
165
+ )
166
+ obv = (volume * sign).cumsum()
167
+ return obv.to_frame("obv")
168
+
169
+ def calculate_mom(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
170
+ close = df["close"]
171
+ mom = close.diff(periods=window)
172
+ return mom.to_frame("mom")
173
+
174
+ def calculate_sar(
175
+ self, df: pd.DataFrame, acceleration: float, maximum: float
176
+ ) -> pd.DataFrame:
177
+ high, low = df["high"], df["low"]
178
+ sar = pd.Series(index=df.index, dtype=float)
179
+ uptrend = True
180
+ accel_factor = acceleration
181
+ extreme_point = high[0]
182
+ sar.iloc[0] = low[0]
183
+
184
+ for i in range(1, len(df)):
185
+ prev_sar = sar.iloc[i - 1]
186
+
187
+ if uptrend:
188
+ sar.iloc[i] = prev_sar + accel_factor * (extreme_point - prev_sar)
189
+ sar.iloc[i] = min(sar.iloc[i], low.iloc[i - 1])
190
+ if i > 1:
191
+ sar.iloc[i] = min(sar.iloc[i], low.iloc[i - 2])
192
+
193
+ if low[i] < sar.iloc[i]:
194
+ uptrend = False
195
+ sar.iloc[i] = extreme_point
196
+ extreme_point = low[i]
197
+ accel_factor = acceleration
198
+ else:
199
+ if high[i] > extreme_point:
200
+ extreme_point = high[i]
201
+ accel_factor = min(maximum, accel_factor + acceleration)
202
+ else:
203
+ sar.iloc[i] = prev_sar - accel_factor * (prev_sar - extreme_point)
204
+ sar.iloc[i] = max(sar.iloc[i], high.iloc[i - 1])
205
+ if i > 1:
206
+ sar.iloc[i] = max(sar.iloc[i], high.iloc[i - 2])
207
+
208
+ if high[i] > sar.iloc[i]:
209
+ uptrend = True
210
+ sar.iloc[i] = extreme_point
211
+ extreme_point = high[i]
212
+ accel_factor = acceleration
213
+ else:
214
+ if low[i] < extreme_point:
215
+ extreme_point = low[i]
216
+ accel_factor = min(maximum, accel_factor + acceleration)
217
+
218
+ return sar.to_frame("sar")
219
+
220
+ def calculate_tsf(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
221
+ close = df["close"]
222
+
223
+ def linear_reg_forecast(y):
224
+ x = np.arange(1, len(y) + 1)
225
+ b_num = len(x) * np.sum(x * y) - np.sum(x) * np.sum(y)
226
+ b_den = len(x) * np.sum(x * x) - np.sum(x) ** 2
227
+ b = b_num / b_den if b_den != 0 else 0
228
+ a = np.mean(y) - b * np.mean(x)
229
+ return a + b * len(y)
230
+
231
+ tsf = close.rolling(window=window, min_periods=window).apply(
232
+ linear_reg_forecast, raw=True
233
+ )
234
+ return tsf.to_frame("tsf")
235
+
236
+ def calculate_apo(
237
+ self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
238
+ ) -> pd.DataFrame:
239
+ close = df["close"]
240
+ fast_ma = self._get_ma(close, fast_period, ma_type)
241
+ slow_ma = self._get_ma(close, slow_period, ma_type)
242
+ apo = fast_ma - slow_ma
243
+ return apo.to_frame("apo")
244
+
245
+ def calculate_aroon(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
246
+ high = df["high"]
247
+ low = df["low"]
248
+ periods_since_high = high.rolling(window=window, min_periods=window).apply(
249
+ lambda x: len(x) - 1 - np.argmax(x), raw=True
250
+ )
251
+ periods_since_low = low.rolling(window=window, min_periods=window).apply(
252
+ lambda x: len(x) - 1 - np.argmin(x), raw=True
253
+ )
254
+ aroon_up = ((window - periods_since_high) / window) * 100
255
+ aroon_down = ((window - periods_since_low) / window) * 100
256
+ return pd.DataFrame({"aroon_up": aroon_up, "aroon_down": aroon_down})
257
+
258
+ def calculate_aroonosc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
259
+ aroon_df = self.calculate_aroon(df, window)
260
+ aroonosc = aroon_df["aroon_up"] - aroon_df["aroon_down"]
261
+ return aroonosc.to_frame("aroonosc")
262
+
263
+ def calculate_bop(self, df: pd.DataFrame) -> pd.DataFrame:
264
+ bop = (df["close"] - df["open"]) / (df["high"] - df["low"]).replace(0, np.nan)
265
+ bop = bop.fillna(0)
266
+ return bop.to_frame("bop")
267
+
268
+ def calculate_cmo(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
269
+ close_diff = df["close"].diff(1)
270
+ sum_up = close_diff.where(close_diff > 0, 0).rolling(window=window).sum()
271
+ sum_down = -close_diff.where(close_diff < 0, 0).rolling(window=window).sum()
272
+ cmo = 100 * (sum_up - sum_down) / (sum_up + sum_down).replace(0, np.nan)
273
+ cmo = cmo.fillna(0)
274
+ return cmo.to_frame("cmo")
275
+
276
+ def calculate_dx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
277
+ plus_di = self.calculate_plus_di(df, window)["plus_di"]
278
+ minus_di = self.calculate_minus_di(df, window)["minus_di"]
279
+ dx = 100 * abs(plus_di - minus_di) / (plus_di + minus_di).replace(0, np.nan)
280
+ dx = dx.fillna(0)
281
+ return dx.to_frame("dx")
282
+
283
+ def calculate_mfi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
284
+ typical_price = (df["high"] + df["low"] + df["close"]) / 3
285
+ money_flow = typical_price * df["volume"]
286
+ price_diff = typical_price.diff()
287
+ positive_mf = money_flow.where(price_diff > 0, 0)
288
+ negative_mf = money_flow.where(price_diff < 0, 0)
289
+ positive_mf_sum = positive_mf.rolling(window=window).sum()
290
+ negative_mf_sum = negative_mf.rolling(window=window).sum()
291
+ money_ratio = positive_mf_sum / negative_mf_sum.replace(0, np.nan)
292
+ money_ratio = money_ratio.fillna(0)
293
+ mfi = 100 - (100 / (1 + money_ratio))
294
+ return mfi.to_frame("mfi")
295
+
296
+ def calculate_minus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
297
+ atr = self.calculate_atr(df, window)["atr"]
298
+ minus_dm = self.calculate_minus_dm(df, window)["minus_dm"]
299
+ minus_di = 100 * (minus_dm / atr)
300
+ return minus_di.to_frame("minus_di")
301
+
302
+ def calculate_minus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
303
+ high = df["high"]
304
+ low = df["low"]
305
+ up_move = high.diff()
306
+ down_move = -low.diff()
307
+ minus_dm = down_move.where((down_move > up_move) & (down_move > 0), 0)
308
+ smoothed_minus_dm = self._wilder_smooth(minus_dm, window)
309
+ return smoothed_minus_dm.to_frame("minus_dm")
310
+
311
+ def calculate_plus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
312
+ atr = self.calculate_atr(df, window)["atr"]
313
+ plus_dm = self.calculate_plus_dm(df, window)["plus_dm"]
314
+ plus_di = 100 * (plus_dm / atr)
315
+ return plus_di.to_frame("plus_di")
316
+
317
+ def calculate_plus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
318
+ high = df["high"]
319
+ low = df["low"]
320
+ up_move = high.diff()
321
+ down_move = -low.diff()
322
+ plus_dm = up_move.where((up_move > down_move) & (up_move > 0), 0)
323
+ smoothed_plus_dm = self._wilder_smooth(plus_dm, window)
324
+ return smoothed_plus_dm.to_frame("plus_dm")
325
+
326
+ def calculate_ppo(
327
+ self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
328
+ ) -> pd.DataFrame:
329
+ close = df["close"]
330
+ fast_ma = self._get_ma(close, fast_period, ma_type)
331
+ slow_ma = self._get_ma(close, slow_period, ma_type)
332
+ ppo = ((fast_ma - slow_ma) / slow_ma) * 100
333
+ return ppo.to_frame("ppo")
334
+
335
+ def calculate_roc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
336
+ close = df["close"]
337
+ roc = (close.diff(window) / close.shift(window)) * 100
338
+ return roc.to_frame("roc")
339
+
340
+ def calculate_rocp(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
341
+ close = df["close"]
342
+ rocp = close.diff(window) / close.shift(window)
343
+ return rocp.to_frame("rocp")
344
+
345
+ def calculate_rocr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
346
+ close = df["close"]
347
+ rocr = close / close.shift(window)
348
+ return rocr.to_frame("rocr")
349
+
350
+ def calculate_rocr100(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
351
+ close = df["close"]
352
+ rocr100 = (close / close.shift(window)) * 100
353
+ return rocr100.to_frame("rocr100")
354
+
355
+ def calculate_trix(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
356
+ close = df["close"]
357
+ ema1 = close.ewm(span=window, adjust=False).mean()
358
+ ema2 = ema1.ewm(span=window, adjust=False).mean()
359
+ ema3 = ema2.ewm(span=window, adjust=False).mean()
360
+ trix = 100 * ema3.diff(1) / ema3.shift(1)
361
+ return trix.to_frame("trix")
362
+
363
+ def calculate_ultosc(
364
+ self, df: pd.DataFrame, window1: int, window2: int, window3: int
365
+ ) -> pd.DataFrame:
366
+ low = df["low"]
367
+ high = df["high"]
368
+ close = df["close"]
369
+ close_prev = close.shift(1)
370
+ true_low = pd.concat([low, close_prev], axis=1).min(axis=1)
371
+ true_high = pd.concat([high, close_prev], axis=1).max(axis=1)
372
+ bp = close - true_low
373
+ tr = true_high - true_low
374
+ tr_sum1 = tr.rolling(window=window1).sum()
375
+ tr_sum2 = tr.rolling(window=window2).sum()
376
+ tr_sum3 = tr.rolling(window=window3).sum()
377
+ avg1 = bp.rolling(window=window1).sum() / tr_sum1.replace(0, np.nan)
378
+ avg2 = bp.rolling(window=window2).sum() / tr_sum2.replace(0, np.nan)
379
+ avg3 = bp.rolling(window=window3).sum() / tr_sum3.replace(0, np.nan)
380
+ avg1 = avg1.fillna(0)
381
+ avg2 = avg2.fillna(0)
382
+ avg3 = avg3.fillna(0)
383
+ ultosc = 100 * (4 * avg1 + 2 * avg2 + 1 * avg3) / (4 + 2 + 1)
384
+ return ultosc.to_frame("ultosc")