aigroup-econ-mcp 0.4.0__py3-none-any.whl → 1.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,718 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: aigroup-econ-mcp
3
- Version: 0.4.0
4
- Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析
5
- Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
6
- Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
7
- Project-URL: Issues, https://github.com/aigroup/aigroup-econ-mcp/issues
8
- Author-email: AIGroup <jackdark425@gmail.com>
9
- License-File: LICENSE
10
- Keywords: data-analysis,economics,mcp,regression,statistics
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Intended Audience :: Developers
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.8
16
- Classifier: Programming Language :: Python :: 3.9
17
- Classifier: Programming Language :: Python :: 3.10
18
- Classifier: Programming Language :: Python :: 3.11
19
- Classifier: Programming Language :: Python :: 3.12
20
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
21
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
22
- Requires-Python: >=3.10
23
- Requires-Dist: arch>=6.0.0
24
- Requires-Dist: click>=8.0.0
25
- Requires-Dist: linearmodels>=7.0
26
- Requires-Dist: matplotlib>=3.5.0
27
- Requires-Dist: mcp>=1.0.0
28
- Requires-Dist: numpy>=1.21.0
29
- Requires-Dist: pandas>=1.5.0
30
- Requires-Dist: psutil>=5.9.0
31
- Requires-Dist: pydantic>=2.0.0
32
- Requires-Dist: pyyaml>=6.0
33
- Requires-Dist: scikit-learn>=1.0.0
34
- Requires-Dist: scipy>=1.7.0
35
- Requires-Dist: statsmodels>=0.13.0
36
- Requires-Dist: uvicorn>=0.20.0
37
- Description-Content-Type: text/markdown
38
-
39
- # aigroup-econ-mcp - 专业计量经济学MCP工具
40
-
41
- 🎯 专为Roo-Code设计的计量经济学MCP服务 - 提供统计分析、回归建模、时间序列分析,无需复杂环境配置
42
-
43
- ![Python](https://img.shields.io/badge/Python-3.8+-blue.svg)
44
- ![MCP](https://img.shields.io/badge/MCP-1.0+-green.svg)
45
- ![License](https://img.shields.io/badge/License-MIT-yellow.svg)
46
-
47
- ## 功能特性
48
-
49
- - 📊 **描述性统计分析** - 自动计算均值、方差、偏度、峰度等统计量
50
- - 📈 **回归分析** - OLS回归、逐步回归、模型诊断
51
- - 🧪 **假设检验** - t检验、F检验、卡方检验、ADF检验
52
- - ⏰ **时间序列分析** - 平稳性检验、ARIMA模型、预测
53
- - 🔄 **结构化输出** - 完整的Pydantic模型支持
54
- - 🎯 **上下文管理** - 进度报告、日志记录、错误处理
55
- - 📁 **文件输入支持** - 支持CSV/JSON文件自动解析
56
- - 📊 **面板数据分析** - 固定效应、随机效应模型等
57
- - 🤖 **机器学习集成** - 随机森林、梯度提升等算法
58
-
59
- ## 🚀 快速开始(Roo-Code用户)
60
-
61
- ### 一键启动MCP服务
62
-
63
- ```bash
64
- # 使用uvx快速启动(推荐,无需安装)
65
- uvx aigroup-econ-mcp
66
- ```
67
-
68
- 就这么简单! MCP服务会自动:
69
-
70
- ✅ 下载最新版本
71
- ✅ 配置轻量级依赖(仅~50MB)
72
- ✅ 启动并连接到Roo-Code
73
- ✅ 提供21个专业计量经济学工具
74
-
75
- ### 配置Roo-Code
76
-
77
- 如果需要手动配置RooCode的MCP服务,请在RooCode的设置中添加以下配置:
78
-
79
- ```json
80
- {
81
- "mcpServers": {
82
- "aigroup-econ-mcp": {
83
- "command": "uvx",
84
- "args": [
85
- "aigroup-econ-mcp"
86
- ],
87
- "env": {},
88
- "alwaysAllow": [
89
- "descriptive_statistics",
90
- "ols_regression",
91
- "hypothesis_testing",
92
- "time_series_analysis",
93
- "correlation_analysis",
94
- "panel_fixed_effects",
95
- "panel_random_effects",
96
- "panel_hausman_test",
97
- "panel_unit_root_test",
98
- "var_model_analysis",
99
- "vecm_model_analysis",
100
- "garch_model_analysis",
101
- "state_space_model_analysis",
102
- "variance_decomposition_analysis",
103
- "random_forest_regression_analysis",
104
- "gradient_boosting_regression_analysis",
105
- "lasso_regression_analysis",
106
- "ridge_regression_analysis",
107
- "cross_validation_analysis",
108
- "feature_importance_analysis_tool"
109
- ]
110
- }
111
- }
112
- }
113
- ```
114
-
115
- 配置说明:
116
-
117
- - `command`: 使用uvx运行,无需本地安装
118
- - `args`: 启动参数
119
- - `alwaysAllow`: 允许访问的工具列表
120
- - `env`: 环境变量(可留空)
121
-
122
- 配置完成后,RooCode将自动连接到aigroup-econ-mcp服务,您可以直接使用以下工具:
123
-
124
- | 工具类别 | 工具 | 功能 |
125
- |---------|------|------|
126
- | **基础统计** | descriptive_statistics | 描述性统计分析 |
127
- | | ols_regression | OLS回归分析 |
128
- | | hypothesis_testing | 假设检验 |
129
- | | time_series_analysis | 时间序列分析 |
130
- | | correlation_analysis | 相关性分析 |
131
- | **面板数据** | panel_fixed_effects | 固定效应模型 |
132
- | | panel_random_effects | 随机效应模型 |
133
- | | panel_hausman_test | Hausman检验 |
134
- | | panel_unit_root_test | 面板单位根检验 |
135
- | **时间序列** | var_model_analysis | VAR模型分析 |
136
- | | vecm_model_analysis | VECM模型分析 |
137
- | | garch_model_analysis | GARCH模型分析 |
138
- | | state_space_model_analysis | 状态空间模型分析 |
139
- | | variance_decomposition_analysis | 方差分解分析 |
140
- | **机器学习** | random_forest_regression_analysis | 随机森林回归 |
141
- | | gradient_boosting_regression_analysis | 梯度提升树回归 |
142
- | | lasso_regression_analysis | Lasso回归 |
143
- | | ridge_regression_analysis | Ridge回归 |
144
- | | cross_validation_analysis | 交叉验证 |
145
- | | feature_importance_analysis_tool | 特征重要性分析 |
146
-
147
- ## 📦 安装方式
148
-
149
- ### 方式1:uvx(推荐,无需安装)
150
-
151
- ```bash
152
- # 直接运行最新版本
153
- uvx aigroup-econ-mcp
154
-
155
- # 或指定版本
156
- uvx aigroup-econ-mcp@1.0.0
157
- ```
158
-
159
- 优点:
160
-
161
- ⚡ 快速启动(几秒钟)
162
- 🔄 自动获取最新版本
163
- 💾 无需本地安装
164
- 🎯 轻量级依赖(~50MB,包含统计分析库)
165
-
166
- ### 方式2:pip安装
167
-
168
- ```bash
169
- # 基础安装(包含所有计量经济学功能)
170
- pip install aigroup-econ-mcp
171
-
172
- # 运行
173
- aigroup-econ-mcp
174
- ```
175
-
176
- 依赖说明:
177
-
178
- - **核心依赖**(默认):pandas, numpy, scipy, mcp, statsmodels, matplotlib
179
- - **扩展依赖**:linearmodels(面板数据), scikit-learn(机器学习), arch(GARCH模型)
180
- - **轻量级**:无需torch或其他重型依赖
181
- - **推荐**:直接使用基础安装,包含所有计量经济学功能!
182
-
183
- ## ✨ 核心特性
184
-
185
- 1️⃣ 智能数据分析
186
- ✅ 自动清洗:自动处理缺失值和异常值
187
- ✅ 统计计算:完整的描述性统计量
188
- ✅ 可视化:自动生成图表和报告
189
-
190
- 2️⃣ 专业回归分析
191
- 📊 OLS回归:完整的回归诊断和残差分析
192
- 🔧 逐步回归:特征选择和模型优化
193
- 📈 模型评估:R²、调整R²、F检验等指标
194
-
195
- 3️⃣ 假设检验套件
196
- 🧪 多样化检验:t检验、F检验、卡方检验、ADF检验
197
- 📊 详细报告:统计量、p值、置信区间
198
- 💡 结果解读:自动生成检验结论和建议
199
-
200
- 4️⃣ 时间序列专业工具
201
- ⏰ 平稳性检验:ADF、KPSS等完整检验套件
202
- 📈 ARIMA建模:自动定阶和参数估计
203
- 🔮 预测功能:点预测和区间预测
204
-
205
- 5️⃣ 面板数据分析
206
- 🏢 固定效应模型:控制个体/时间固定效应
207
- 📊 随机效应模型:处理随机效应
208
- 🔍 Hausman检验:模型选择
209
- 📉 面板单位根检验:面板数据平稳性分析
210
-
211
- 6️⃣ 机器学习集成
212
- 🌳 随机森林:非线性关系建模
213
- 🚀 梯度提升:高精度预测
214
- 🔗 正则化回归:Lasso/Ridge防止过拟合
215
- 🔍 交叉验证:模型性能评估
216
- 🎯 特征重要性:变量选择
217
-
218
- 7️⃣ 文件输入支持
219
- 📁 自动解析:支持CSV/JSON文件自动解析
220
- 🔄 向后兼容:保持原有直接数据输入方式
221
- ⚙️ 灵活输入:可混合使用文件和直接数据
222
-
223
- 8️⃣ 结构化输出
224
- 📋 Pydantic模型:类型安全的数据结构
225
- 📊 丰富格式:表格、JSON、Markdown报告
226
- 🎯 错误处理:详细的错误信息和建议
227
-
228
- ## 🔧 故障排除
229
-
230
- ### uvx安装卡住
231
- **问题**:`uvx aigroup-econ-mcp` 卡住不动
232
-
233
- **解决**:
234
- - 确保使用最新版本
235
- - 检查网络连接
236
- - 尝试清除缓存:`uvx --no-cache aigroup-econ-mcp`
237
-
238
- ### 工具返回错误
239
- **问题**:统计分析返回NoneType或错误
240
-
241
- **解决**:
242
- - 确保数据格式正确(列表或字典)
243
- - 检查数据中是否有缺失值
244
- - 查看详细错误信息和参数要求
245
-
246
- ### RooCode中无法使用MCP工具
247
- **问题**:在RooCode中看不到aigroup-econ-mcp工具
248
-
249
- **解决**:
250
- - 确保配置了正确的MCP服务配置
251
- - 检查uvx是否正常工作:`uvx --version`
252
- - 重启RooCode
253
- - 查看RooCode的MCP服务日志
254
-
255
- ### MCP服务连接失败
256
- **问题**:MCP服务启动失败或连接超时
257
-
258
- **解决**:
259
- - 检查网络连接
260
- - 尝试使用 `uvx --no-cache aigroup-econ-mcp` 清除缓存
261
- - 确保Python版本>=3.8
262
- - 查看详细错误日志
263
-
264
- ## 📂 项目结构
265
-
266
- ### 使用uvx安装运行(推荐)
267
-
268
- ```bash
269
- # 一键安装和运行
270
- uvx aigroup-econ-mcp
271
-
272
- # 指定端口运行
273
- uvx aigroup-econ-mcp --port 8080 --debug
274
-
275
- # 使用不同的传输协议
276
- uvx aigroup-econ-mcp --transport streamable-http --host 0.0.0.0 --port 8000
277
- ```
278
-
279
- ### 本地开发
280
-
281
- ```bash
282
- # 克隆项目
283
- git clone https://github.com/jackdark425/aigroup-econ-mcp
284
- cd aigroup-econ-mcp
285
-
286
- # 开发模式运行
287
- uv run aigroup-econ-mcp --port 8000 --debug
288
-
289
- # 或使用uvx
290
- uvx -p . aigroup-econ-mcp
291
- ```
292
-
293
- ## 与RooCode集成
294
-
295
- 在RooCode的MCP配置文件中添加:
296
-
297
- ```json
298
- "aigroup-econ-mcp": {
299
- "command": "uvx",
300
- "args": [
301
- "aigroup-econ-mcp"
302
- ],
303
- "alwaysAllow": [
304
- "descriptive_statistics",
305
- "ols_regression",
306
- "hypothesis_testing",
307
- "time_series_analysis",
308
- "correlation_analysis",
309
- "panel_fixed_effects",
310
- "panel_random_effects",
311
- "panel_hausman_test",
312
- "panel_unit_root_test",
313
- "var_model_analysis",
314
- "vecm_model_analysis",
315
- "garch_model_analysis",
316
- "state_space_model_analysis",
317
- "variance_decomposition_analysis",
318
- "random_forest_regression_analysis",
319
- "gradient_boosting_regression_analysis",
320
- "lasso_regression_analysis",
321
- "ridge_regression_analysis",
322
- "cross_validation_analysis",
323
- "feature_importance_analysis_tool"
324
- ],
325
- "disabled": true
326
- }
327
- ```
328
-
329
- ## 📋 工具详细说明
330
-
331
- ### 基础统计工具
332
-
333
- #### descriptive_statistics
334
- 描述性统计分析工具
335
-
336
- **参数:**
337
- - `data`: 数值数据列表或字典
338
- - `variables`: 变量名列表(可选)
339
- - `output_format`: 输出格式(table/json)
340
- - `file_path`: CSV/JSON文件路径(可选)
341
- - `file_content`: CSV/JSON文件内容(可选)
342
-
343
- **返回:**
344
- - 基础统计量(均值、方差、偏度、峰度)
345
- - 数据质量评估
346
- - 可视化图表
347
-
348
- #### ols_regression
349
- OLS回归分析工具
350
-
351
- **参数:**
352
- - `y_data`: 因变量数据
353
- - `x_data`: 自变量数据(列表或矩阵)
354
- - `feature_names`: 变量名称(可选)
355
- - `add_constant`: 是否添加常数项(默认true)
356
- - `output_detail`: 输出详细程度(可选)
357
- - `file_path`: CSV/JSON文件路径(可选)
358
- - `file_content`: CSV/JSON文件内容(可选)
359
-
360
- **返回:**
361
- - 回归系数和统计显著性
362
- - 模型拟合优度(R²、调整R²)
363
- - 模型诊断(残差分析、异方差检验)
364
- - 预测结果(如果提供预测数据)
365
-
366
- #### hypothesis_testing
367
- 假设检验工具
368
-
369
- **参数:**
370
- - `data1`: 第一组数据
371
- - `data2`: 第二组数据(可选)
372
- - `test_type`: 检验类型(t_test/f_test/chi2_test/adf_test)
373
- - `alpha`: 显著性水平(默认0.05)
374
- - `file_path`: 文件路径(可选)
375
- - `file_content`: 文件内容(可选)
376
-
377
- **返回:**
378
- - 检验统计量和p值
379
- - 检验结果和置信区间
380
- - 效应大小和统计功效
381
-
382
- #### time_series_analysis
383
- 时间序列分析工具
384
-
385
- **参数:**
386
- - `data`: 时间序列数据
387
- - `analysis_type`: 分析类型(stationarity/arima/forecast)
388
- - `lags`: 滞后期数(默认12)
389
- - `forecast_steps`: 预测步数(可选)
390
- - `file_path`: 文件路径(可选)
391
- - `file_content`: 文件内容(可选)
392
-
393
- **返回:**
394
- - 平稳性检验结果
395
- - ARIMA模型参数
396
- - 预测值和置信区间
397
- - 模型诊断图表
398
-
399
- #### correlation_analysis
400
- 相关性分析工具
401
-
402
- **参数:**
403
- - `data`: 变量数据字典
404
- - `method`: 相关系数类型(pearson/spearman/kendall)
405
- - `plot`: 是否生成可视化图表(默认true)
406
- - `file_path`: 文件路径(可选)
407
- - `file_content`: 文件内容(可选)
408
-
409
- **返回:**
410
- - 相关系数矩阵
411
- - 显著性检验结果
412
- - 相关性热力图
413
-
414
- ### 面板数据分析工具
415
-
416
- #### panel_fixed_effects
417
- 固定效应模型分析工具
418
-
419
- **参数:**
420
- - `y_data`: 因变量数据
421
- - `x_data`: 自变量数据
422
- - `entity_ids`: 实体标识符
423
- - `time_periods`: 时间标识符
424
- - `feature_names`: 特征名称(可选)
425
- - `entity_effects`: 是否包含实体效应(默认true)
426
- - `time_effects`: 是否包含时间效应(默认false)
427
- - `file_path`: CSV文件路径(可选)
428
- - `file_content`: CSV文件内容(可选)
429
-
430
- #### panel_random_effects
431
- 随机效应模型分析工具
432
-
433
- **参数:**
434
- - `y_data`: 因变量数据
435
- - `x_data`: 自变量数据
436
- - `entity_ids`: 实体标识符
437
- - `time_periods`: 时间标识符
438
- - `feature_names`: 特征名称(可选)
439
- - `entity_effects`: 是否包含实体效应(默认true)
440
- - `time_effects`: 是否包含时间效应(默认false)
441
- - `file_path`: CSV文件路径(可选)
442
- - `file_content`: CSV文件内容(可选)
443
-
444
- #### panel_hausman_test
445
- Hausman检验工具
446
-
447
- **参数:**
448
- - `y_data`: 因变量数据
449
- - `x_data`: 自变量数据
450
- - `entity_ids`: 实体标识符
451
- - `time_periods`: 时间标识符
452
- - `feature_names`: 特征名称(可选)
453
- - `file_path`: CSV文件路径(可选)
454
- - `file_content`: CSV文件内容(可选)
455
-
456
- #### panel_unit_root_test
457
- 面板单位根检验工具
458
-
459
- **参数:**
460
- - `data`: 时间序列数据
461
- - `y_data`: 因变量数据(可选)
462
- - `entity_ids`: 实体标识符
463
- - `time_periods`: 时间标识符
464
- - `feature_names`: 特征名称(可选)
465
- - `test_type`: 检验类型(默认levinlin)
466
- - `file_path`: CSV文件路径(可选)
467
- - `file_content`: CSV文件内容(可选)
468
-
469
- ### 高级时间序列工具
470
-
471
- #### var_model_analysis
472
- VAR模型分析工具
473
-
474
- **参数:**
475
- - `data`: 多变量时间序列数据
476
- - `max_lags`: 最大滞后阶数(默认5)
477
- - `ic`: 信息准则(默认aic)
478
- - `file_path`: 文件路径(可选)
479
- - `file_content`: 文件内容(可选)
480
-
481
- #### vecm_model_analysis
482
- VECM模型分析工具
483
-
484
- **参数:**
485
- - `data`: 多变量时间序列数据
486
- - `coint_rank`: 协整秩(默认1)
487
- - `deterministic`: 确定性项(默认co)
488
- - `max_lags`: 最大滞后阶数(默认5)
489
- - `file_path`: 文件路径(可选)
490
- - `file_content`: 文件内容(可选)
491
-
492
- #### garch_model_analysis
493
- GARCH模型分析工具
494
-
495
- **参数:**
496
- - `data`: 时间序列数据
497
- - `order`: GARCH模型阶数(默认(1, 1))
498
- - `dist`: 分布类型(默认normal)
499
- - `file_path`: 文件路径(可选)
500
- - `file_content`: 文件内容(可选)
501
-
502
- #### state_space_model_analysis
503
- 状态空间模型分析工具
504
-
505
- **参数:**
506
- - `data`: 时间序列数据
507
- - `state_dim`: 状态维度(默认1)
508
- - `observation_dim`: 观测维度(默认1)
509
- - `trend`: 是否包含趋势(默认true)
510
- - `seasonal`: 是否包含季节性(默认false)
511
- - `period`: 季节周期(默认12)
512
- - `file_path`: 文件路径(可选)
513
- - `file_content`: 文件内容(可选)
514
-
515
- #### variance_decomposition_analysis
516
- 方差分解分析工具
517
-
518
- **参数:**
519
- - `data`: 多变量时间序列数据
520
- - `periods`: 分解期数(默认10)
521
- - `max_lags`: 最大滞后阶数(默认5)
522
- - `file_path`: 文件路径(可选)
523
- - `file_content`: 文件内容(可选)
524
-
525
- ### 机器学习工具
526
-
527
- #### random_forest_regression_analysis
528
- 随机森林回归分析工具
529
-
530
- **参数:**
531
- - `y_data`: 因变量数据
532
- - `x_data`: 自变量数据
533
- - `feature_names`: 特征名称(可选)
534
- - `n_estimators`: 树的数量(默认100)
535
- - `max_depth`: 最大深度(可选)
536
- - `file_path`: 文件路径(可选)
537
- - `file_content`: 文件内容(可选)
538
-
539
- #### gradient_boosting_regression_analysis
540
- 梯度提升回归分析工具
541
-
542
- **参数:**
543
- - `y_data`: 因变量数据
544
- - `x_data`: 自变量数据
545
- - `feature_names`: 特征名称(可选)
546
- - `n_estimators`: 树的数量(默认100)
547
- - `learning_rate`: 学习率(默认0.1)
548
- - `max_depth`: 最大深度(默认3)
549
- - `file_path`: 文件路径(可选)
550
- - `file_content`: 文件内容(可选)
551
-
552
- #### lasso_regression_analysis
553
- Lasso回归分析工具
554
-
555
- **参数:**
556
- - `y_data`: 因变量数据
557
- - `x_data`: 自变量数据
558
- - `feature_names`: 特征名称(可选)
559
- - `alpha`: 正则化强度(默认1.0)
560
- - `file_path`: 文件路径(可选)
561
- - `file_content`: 文件内容(可选)
562
-
563
- #### ridge_regression_analysis
564
- Ridge回归分析工具
565
-
566
- **参数:**
567
- - `y_data`: 因变量数据
568
- - `x_data`: 自变量数据
569
- - `feature_names`: 特征名称(可选)
570
- - `alpha`: 正则化强度(默认1.0)
571
- - `file_path`: 文件路径(可选)
572
- - `file_content`: 文件内容(可选)
573
-
574
- #### cross_validation_analysis
575
- 交叉验证分析工具
576
-
577
- **参数:**
578
- - `y_data`: 因变量数据
579
- - `x_data`: 自变量数据
580
- - `feature_names`: 特征名称(可选)
581
- - `model_type`: 模型类型(默认random_forest)
582
- - `cv_folds`: 交叉验证折数(默认5)
583
- - `scoring`: 评分标准(默认r2)
584
- - `file_path`: 文件路径(可选)
585
- - `file_content`: 文件内容(可选)
586
-
587
- #### feature_importance_analysis_tool
588
- 特征重要性分析工具
589
-
590
- **参数:**
591
- - `y_data`: 因变量数据
592
- - `x_data`: 自变量数据
593
- - `feature_names`: 特征名称(可选)
594
- - `method`: 分析方法(默认random_forest)
595
- - `top_k`: 返回前k个重要特征(默认5)
596
- - `file_path`: 文件路径(可选)
597
- - `file_content`: 文件内容(可选)
598
-
599
- ## 可用资源
600
-
601
- ### 示例数据集
602
-
603
- ```
604
- resource://dataset/sample/economic_growth
605
- resource://dataset/sample/stock_returns
606
- resource://dataset/sample/time_series
607
- ```
608
-
609
- ### 提示模板
610
-
611
- ```
612
- prompt://economic_analysis?data_description=...&analysis_type=descriptive
613
- ```
614
-
615
- ## 项目结构
616
-
617
- ```
618
- aigroup-econ-mcp/
619
- ├── src/aigroup_econ_mcp/
620
- │ ├── __init__.py # 包初始化
621
- │ ├── server.py # MCP服务器核心
622
- │ ├── cli.py # 命令行入口
623
- │ └── tools/
624
- │ ├── __init__.py
625
- │ ├── statistics.py # 统计分析工具
626
- │ ├── regression.py # 回归分析工具
627
- │ ├── time_series.py # 时间序列工具
628
- │ ├── panel_data.py # 面板数据工具
629
- │ ├── machine_learning.py # 机器学习工具
630
- │ └── file_parser.py # 文件解析工具
631
- ├── pyproject.toml # 项目配置
632
- ├── README.md
633
- └── examples/
634
- ```
635
-
636
- ## 依赖要求
637
-
638
- - Python 3.8+
639
- - pandas >= 1.5.0
640
- - numpy >= 1.21.0
641
- - statsmodels >= 0.13.0
642
- - scipy >= 1.7.0
643
- - matplotlib >= 3.5.0
644
- - mcp >= 1.0.0
645
- - pydantic >= 2.0.0
646
- - linearmodels >= 7.0
647
- - scikit-learn >= 1.0.0
648
- - arch >= 6.0.0
649
-
650
- ## 开发
651
-
652
- ### 环境设置
653
-
654
- ```bash
655
- # 安装开发依赖
656
- uv add --dev pytest pytest-asyncio black isort mypy ruff
657
-
658
- # 运行测试
659
- uv run pytest
660
-
661
- # 代码格式化
662
- uv run black src/
663
- uv run isort src/
664
-
665
- # 类型检查
666
- uv run mypy src/
667
-
668
- # 代码检查
669
- uv run ruff check src/
670
- ```
671
-
672
- ### 构建和发布
673
-
674
- ```bash
675
- # 构建包
676
- uv build
677
-
678
- # 发布到PyPI
679
- uv publish
680
- ```
681
-
682
- ## 许可证
683
-
684
- MIT License
685
-
686
- ## 贡献
687
-
688
- 欢迎贡献代码!请查看[贡献指南](CONTRIBUTING.md)了解详情。
689
-
690
- ## 🤝 贡献
691
-
692
- 欢迎提交Issue和Pull Request!
693
-
694
- 1. Fork项目
695
- 2. 创建功能分支
696
- 3. 提交更改
697
- 4. 开启Pull Request
698
-
699
- ## 📄 许可证
700
-
701
- MIT License - 查看 LICENSE 了解详情
702
-
703
- ## 🙏 致谢
704
-
705
- - Model Context Protocol (MCP) - 模型上下文协议
706
- - Roo-Code - AI编程助手
707
- - statsmodels - 统计分析库
708
- - pandas - 数据处理库
709
- - scikit-learn - 机器学习库
710
- - linearmodels - 面板数据分析库
711
-
712
- ## 📞 支持
713
-
714
- 💬 提交 [GitHub Issues](https://github.com/jackdark425/aigroup-econ-mcp/issues)
715
- 📧 邮件:jackdark425@gmail.com
716
- 📚 文档:查看项目文档和示例
717
-
718
- **立即开始**: `uvx aigroup-econ-mcp` 🚀