aigroup-econ-mcp 0.4.0__py3-none-any.whl → 1.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,259 +0,0 @@
1
- """
2
- AIGroup 计量经济学 MCP 服务器 - 支持CSV文件路径输入
3
- 使用最新的MCP特性提供专业计量经济学分析工具
4
- """
5
-
6
- from typing import List, Dict, Any, Optional, Annotated, Union
7
- from collections.abc import AsyncIterator
8
- from contextlib import asynccontextmanager
9
- from dataclasses import dataclass
10
- import json
11
- from pathlib import Path
12
-
13
- import pandas as pd
14
- import numpy as np
15
- import statsmodels.api as sm
16
- from statsmodels.tsa import stattools
17
- from scipy import stats
18
- from pydantic import BaseModel, Field
19
-
20
- from mcp.server.fastmcp import FastMCP, Context
21
- from mcp.server.session import ServerSession
22
- from mcp.types import CallToolResult, TextContent
23
-
24
-
25
- # 数据模型定义
26
- class DescriptiveStatsResult(BaseModel):
27
- """描述性统计结果"""
28
- count: int = Field(description="样本数量")
29
- mean: float = Field(description="均值")
30
- std: float = Field(description="标准差")
31
- min: float = Field(description="最小值")
32
- max: float = Field(description="最大值")
33
- median: float = Field(description="中位数")
34
- skewness: float = Field(description="偏度")
35
- kurtosis: float = Field(description="峰度")
36
-
37
-
38
- # 应用上下文
39
- @dataclass
40
- class AppContext:
41
- """应用上下文,包含共享资源"""
42
- config: Dict[str, Any]
43
- version: str = "0.2.0"
44
-
45
-
46
- @asynccontextmanager
47
- async def lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
48
- """服务器生命周期管理"""
49
- config = {
50
- "max_sample_size": 10000,
51
- "default_significance_level": 0.05,
52
- "supported_tests": ["t_test", "f_test", "chi_square", "adf"],
53
- "data_types": ["cross_section", "time_series", "panel"]
54
- }
55
- try:
56
- yield AppContext(config=config, version="0.2.0")
57
- finally:
58
- pass
59
-
60
-
61
- # 创建MCP服务器实例
62
- mcp = FastMCP(
63
- name="aigroup-econ-mcp",
64
- instructions="Econometrics MCP Server with CSV file path support",
65
- lifespan=lifespan
66
- )
67
-
68
-
69
- # 辅助函数:加载CSV文件
70
- async def load_data_from_path(file_path: str, ctx: Context) -> Dict[str, List[float]]:
71
- """从CSV文件路径加载数据"""
72
- await ctx.info(f"正在从文件加载数据: {file_path}")
73
-
74
- try:
75
- # 读取CSV文件
76
- df = pd.read_csv(file_path)
77
-
78
- # 转换为字典格式
79
- data = {col: df[col].tolist() for col in df.columns}
80
-
81
- await ctx.info(f"✅ 文件加载成功:{len(df.columns)}个变量,{len(df)}个观测")
82
- return data
83
-
84
- except FileNotFoundError:
85
- raise ValueError(f"文件不存在: {file_path}")
86
- except Exception as e:
87
- raise ValueError(f"文件读取失败: {str(e)}")
88
-
89
-
90
- @mcp.tool()
91
- async def descriptive_statistics(
92
- ctx: Context[ServerSession, AppContext],
93
- data: Annotated[
94
- Union[Dict[str, List[float]], str],
95
- Field(
96
- description="""数据输入,支持两种格式:
97
-
98
- 📊 格式1:数据字典
99
- {
100
- "GDP增长率": [3.2, 2.8, 3.5, 2.9],
101
- "通货膨胀率": [2.1, 2.3, 1.9, 2.4],
102
- "失业率": [4.5, 4.2, 4.0, 4.3]
103
- }
104
-
105
- 📁 格式2:CSV文件路径(推荐)
106
- "d:/data/economic_data.csv"
107
-
108
- "./test_data.csv"
109
-
110
- CSV文件要求:
111
- - 第一行为变量名(表头)
112
- - 后续行为数值数据
113
- - 所有列必须为数值类型"""
114
- )
115
- ]
116
- ) -> CallToolResult:
117
- """计算描述性统计量
118
-
119
- 📊 功能说明:
120
- 对输入数据进行全面的描述性统计分析,包括集中趋势、离散程度、分布形状等指标。
121
-
122
- 💡 使用场景:
123
- - 初步了解数据的分布特征
124
- - 检查数据质量和异常值
125
- - 为后续建模提供基础信息
126
- """
127
- try:
128
- # 检测输入类型并加载数据
129
- if isinstance(data, str):
130
- # 文件路径输入
131
- data_dict = await load_data_from_path(data, ctx)
132
- else:
133
- # 字典输入
134
- data_dict = data
135
-
136
- await ctx.info(f"开始计算描述性统计,处理 {len(data_dict)} 个变量")
137
-
138
- # 数据验证
139
- if not data_dict:
140
- raise ValueError("数据不能为空")
141
-
142
- df = pd.DataFrame(data_dict)
143
-
144
- # 基础统计量
145
- result = DescriptiveStatsResult(
146
- count=len(df),
147
- mean=df.mean().mean(),
148
- std=df.std().mean(),
149
- min=df.min().min(),
150
- max=df.max().max(),
151
- median=df.median().mean(),
152
- skewness=df.skew().mean(),
153
- kurtosis=df.kurtosis().mean()
154
- )
155
-
156
- # 计算相关系数矩阵
157
- correlation_matrix = df.corr().round(4)
158
-
159
- await ctx.info(f"描述性统计计算完成,样本大小: {len(df)}")
160
-
161
- return CallToolResult(
162
- content=[
163
- TextContent(
164
- type="text",
165
- text=f"描述性统计结果:\n"
166
- f"样本数: {result.count}\n"
167
- f"均值: {result.mean:.4f}\n"
168
- f"标准差: {result.std:.4f}\n"
169
- f"最小值: {result.min:.4f}\n"
170
- f"最大值: {result.max:.4f}\n"
171
- f"中位数: {result.median:.4f}\n"
172
- f"偏度: {result.skewness:.4f}\n"
173
- f"峰度: {result.kurtosis:.4f}\n\n"
174
- f"相关系数矩阵:\n{correlation_matrix.to_string()}"
175
- )
176
- ],
177
- structuredContent=result.model_dump()
178
- )
179
-
180
- except Exception as e:
181
- await ctx.error(f"计算描述性统计时出错: {str(e)}")
182
- return CallToolResult(
183
- content=[TextContent(type="text", text=f"错误: {str(e)}")],
184
- isError=True
185
- )
186
-
187
-
188
- @mcp.tool()
189
- async def correlation_analysis(
190
- ctx: Context[ServerSession, AppContext],
191
- data: Annotated[
192
- Union[Dict[str, List[float]], str],
193
- Field(
194
- description="""数据输入,支持两种格式:
195
-
196
- 📊 格式1:数据字典
197
- {
198
- "销售额": [12000, 13500, 11800, 14200],
199
- "广告支出": [800, 900, 750, 1000],
200
- "价格": [99, 95, 102, 98]
201
- }
202
-
203
- 📁 格式2:CSV文件路径
204
- "d:/data/marketing_data.csv"
205
-
206
- 要求:
207
- - 至少包含2个变量
208
- - 所有变量的数据点数量必须相同"""
209
- )
210
- ],
211
- method: Annotated[
212
- str,
213
- Field(
214
- default="pearson",
215
- description="相关系数类型:pearson/spearman/kendall"
216
- )
217
- ] = "pearson"
218
- ) -> CallToolResult:
219
- """变量间相关性分析"""
220
- try:
221
- # 检测输入类型并加载数据
222
- if isinstance(data, str):
223
- data_dict = await load_data_from_path(data, ctx)
224
- else:
225
- data_dict = data
226
-
227
- await ctx.info(f"开始相关性分析: {method}")
228
-
229
- # 数据验证
230
- if not data_dict:
231
- raise ValueError("数据不能为空")
232
- if len(data_dict) < 2:
233
- raise ValueError("至少需要2个变量进行相关性分析")
234
-
235
- df = pd.DataFrame(data_dict)
236
- correlation_matrix = df.corr(method=method)
237
-
238
- await ctx.info("相关性分析完成")
239
-
240
- return CallToolResult(
241
- content=[
242
- TextContent(
243
- type="text",
244
- text=f"{method.title()}相关系数矩阵:\n{correlation_matrix.round(4).to_string()}"
245
- )
246
- ]
247
- )
248
-
249
- except Exception as e:
250
- await ctx.error(f"相关性分析出错: {str(e)}")
251
- return CallToolResult(
252
- content=[TextContent(type="text", text=f"错误: {str(e)}")],
253
- isError=True
254
- )
255
-
256
-
257
- def create_mcp_server() -> FastMCP:
258
- """创建并返回MCP服务器实例"""
259
- return mcp
@@ -1,178 +0,0 @@
1
- """
2
- 工具装饰器模块
3
- 提供自动文件输入处理、错误处理等功能
4
- """
5
-
6
- from typing import Callable, Optional, Dict, Any, List
7
- from functools import wraps
8
- from mcp.server.session import ServerSession
9
- from mcp.server.fastmcp import Context
10
- from mcp.types import CallToolResult, TextContent
11
-
12
- from .file_parser import FileParser
13
-
14
-
15
- def with_file_input(tool_type: str):
16
- """
17
- 为工具函数添加文件输入支持的装饰器
18
-
19
- 支持两种输入方式:
20
- 1. file_path: CSV/JSON文件路径
21
- 2. file_content: 文件内容字符串
22
-
23
- Args:
24
- tool_type: 工具类型 ('single_var', 'multi_var_dict', 'regression', 'panel', 'time_series')
25
-
26
- 使用示例:
27
- @with_file_input('regression')
28
- async def my_tool(ctx, y_data=None, x_data=None, file_path=None, file_content=None, file_format='auto', **kwargs):
29
- # 如果提供了file_path或file_content,数据会被自动填充
30
- pass
31
- """
32
- def decorator(func: Callable) -> Callable:
33
- @wraps(func)
34
- async def wrapper(*args, **kwargs):
35
- # 提取上下文和文件参数
36
- ctx = args[0] if args else kwargs.get('ctx')
37
- file_path = kwargs.get('file_path')
38
- file_content = kwargs.get('file_content')
39
- file_format = kwargs.get('file_format', 'auto')
40
-
41
- # 优先处理file_path
42
- if file_path:
43
- try:
44
- await ctx.info(f"检测到文件路径输入: {file_path}")
45
-
46
- # 从文件路径解析
47
- parsed = FileParser.parse_file_path(file_path, file_format)
48
-
49
- await ctx.info(
50
- f"文件解析成功:{parsed['n_variables']}个变量,"
51
- f"{parsed['n_observations']}个观测"
52
- )
53
-
54
- # 转换为工具格式
55
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
56
-
57
- # 更新kwargs
58
- kwargs.update(converted)
59
-
60
- await ctx.info(f"数据已转换为{tool_type}格式")
61
-
62
- except Exception as e:
63
- await ctx.error(f"文件解析失败: {str(e)}")
64
- return CallToolResult(
65
- content=[TextContent(type="text", text=f"文件解析错误: {str(e)}")],
66
- isError=True
67
- )
68
-
69
- # 如果没有file_path但有file_content,处理文件内容
70
- elif file_content:
71
- try:
72
- await ctx.info("检测到文件内容输入,开始解析...")
73
-
74
- # 解析文件内容
75
- parsed = FileParser.parse_file_content(file_content, file_format)
76
-
77
- await ctx.info(
78
- f"文件解析成功:{parsed['n_variables']}个变量,"
79
- f"{parsed['n_observations']}个观测"
80
- )
81
-
82
- # 转换为工具格式
83
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
84
-
85
- # 更新kwargs
86
- kwargs.update(converted)
87
-
88
- await ctx.info(f"数据已转换为{tool_type}格式")
89
-
90
- except Exception as e:
91
- await ctx.error(f"文件解析失败: {str(e)}")
92
- return CallToolResult(
93
- content=[TextContent(type="text", text=f"文件解析错误: {str(e)}")],
94
- isError=True
95
- )
96
-
97
- # 调用原函数
98
- return await func(*args, **kwargs)
99
-
100
- return wrapper
101
- return decorator
102
-
103
-
104
- def with_error_handling(func: Callable) -> Callable:
105
- """
106
- 为工具函数添加统一错误处理的装饰器
107
- """
108
- @wraps(func)
109
- async def wrapper(*args, **kwargs):
110
- ctx = args[0] if args else kwargs.get('ctx')
111
- tool_name = func.__name__
112
-
113
- try:
114
- return await func(*args, **kwargs)
115
- except Exception as e:
116
- await ctx.error(f"{tool_name}执行出错: {str(e)}")
117
- return CallToolResult(
118
- content=[TextContent(type="text", text=f"错误: {str(e)}")],
119
- isError=True
120
- )
121
-
122
- return wrapper
123
-
124
-
125
- def with_logging(func: Callable) -> Callable:
126
- """
127
- 为工具函数添加日志记录的装饰器
128
- """
129
- @wraps(func)
130
- async def wrapper(*args, **kwargs):
131
- ctx = args[0] if args else kwargs.get('ctx')
132
- tool_name = func.__name__
133
-
134
- await ctx.info(f"开始执行 {tool_name}")
135
- result = await func(*args, **kwargs)
136
- await ctx.info(f"{tool_name} 执行完成")
137
-
138
- return result
139
-
140
- return wrapper
141
-
142
-
143
- def econometric_tool(
144
- tool_type: str,
145
- with_file_support: bool = True,
146
- with_error_handling: bool = True,
147
- with_logging: bool = True
148
- ):
149
- """
150
- 组合装饰器:为计量经济学工具添加所有标准功能
151
-
152
- Args:
153
- tool_type: 工具类型
154
- with_file_support: 是否启用文件输入支持
155
- with_error_handling: 是否启用错误处理
156
- with_logging: 是否启用日志记录
157
-
158
- 使用示例:
159
- @econometric_tool('regression')
160
- async def ols_regression(ctx, y_data=None, x_data=None, **kwargs):
161
- # 只需要编写核心业务逻辑
162
- pass
163
- """
164
- def decorator(func: Callable) -> Callable:
165
- wrapped = func
166
-
167
- if with_error_handling:
168
- wrapped = globals()['with_error_handling'](wrapped)
169
-
170
- if with_file_support:
171
- wrapped = with_file_input(tool_type)(wrapped)
172
-
173
- if with_logging:
174
- wrapped = globals()['with_logging'](wrapped)
175
-
176
- return wrapped
177
-
178
- return decorator
@@ -1,268 +0,0 @@
1
- """
2
- 文件输入处理组件
3
- 提供统一的文件输入处理接口,支持所有工具
4
- """
5
-
6
- from typing import Dict, List, Any, Optional, Callable
7
- from functools import wraps
8
- from .file_parser import FileParser
9
-
10
-
11
- class FileInputHandler:
12
- """
13
- 文件输入处理组件
14
-
15
- 使用组件模式,为任何工具函数添加文件输入支持
16
- """
17
-
18
- @staticmethod
19
- def process_input(
20
- file_content: Optional[str],
21
- file_format: str,
22
- tool_type: str,
23
- data_params: Dict[str, Any]
24
- ) -> Dict[str, Any]:
25
- """
26
- 处理文件输入并转换为工具参数
27
-
28
- Args:
29
- file_content: 文件内容
30
- file_format: 文件格式
31
- tool_type: 工具类型
32
- data_params: 当前数据参数
33
-
34
- Returns:
35
- 更新后的参数字典
36
- """
37
- # 如果没有文件输入,直接返回原参数
38
- if file_content is None:
39
- return data_params
40
-
41
- # 解析文件
42
- parsed = FileParser.parse_file_content(file_content, file_format)
43
-
44
- # 转换为工具格式
45
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
46
-
47
- # 合并参数(文件数据优先)
48
- result = {**data_params, **converted}
49
-
50
- return result
51
-
52
- @staticmethod
53
- def with_file_support(tool_type: str):
54
- """
55
- 装饰器:为工具函数添加文件输入支持
56
-
57
- Args:
58
- tool_type: 工具类型(single_var, multi_var_dict, regression, panel等)
59
-
60
- Returns:
61
- 装饰后的函数
62
-
63
- 使用示例:
64
- @FileInputHandler.with_file_support('regression')
65
- async def my_regression_tool(y_data, x_data, file_content=None, file_format='auto'):
66
- # 函数会自动处理file_content并填充y_data和x_data
67
- pass
68
- """
69
- def decorator(func: Callable) -> Callable:
70
- @wraps(func)
71
- async def wrapper(*args, **kwargs):
72
- # 提取文件相关参数
73
- file_content = kwargs.get('file_content')
74
- file_format = kwargs.get('file_format', 'auto')
75
-
76
- if file_content is not None:
77
- # 处理文件输入
78
- processed = FileInputHandler.process_input(
79
- file_content=file_content,
80
- file_format=file_format,
81
- tool_type=tool_type,
82
- data_params=kwargs
83
- )
84
-
85
- # 更新kwargs
86
- kwargs.update(processed)
87
-
88
- # 调用原函数
89
- return await func(*args, **kwargs)
90
-
91
- return wrapper
92
- return decorator
93
-
94
-
95
- class FileInputMixin:
96
- """
97
- 文件输入混入类
98
-
99
- 为类提供文件输入处理能力
100
- """
101
-
102
- def parse_file_input(
103
- self,
104
- file_content: Optional[str],
105
- file_format: str = "auto"
106
- ) -> Optional[Dict[str, Any]]:
107
- """解析文件输入"""
108
- if file_content is None:
109
- return None
110
- return FileParser.parse_file_content(file_content, file_format)
111
-
112
- def convert_for_tool(
113
- self,
114
- parsed_data: Dict[str, Any],
115
- tool_type: str
116
- ) -> Dict[str, Any]:
117
- """转换为工具格式"""
118
- return FileParser.convert_to_tool_format(parsed_data, tool_type)
119
-
120
- def get_recommendations(
121
- self,
122
- parsed_data: Dict[str, Any]
123
- ) -> Dict[str, Any]:
124
- """获取工具推荐"""
125
- return FileParser.auto_detect_tool_params(parsed_data)
126
-
127
-
128
- def create_file_params(
129
- description: str = "CSV或JSON文件内容"
130
- ) -> Dict[str, Any]:
131
- """
132
- 创建标准的文件输入参数定义
133
-
134
- Args:
135
- description: 参数描述
136
-
137
- Returns:
138
- 参数定义字典,可直接用于Field()
139
- """
140
- return {
141
- "file_content": {
142
- "default": None,
143
- "description": f"""{description}
144
-
145
- 📁 支持格式:
146
- - CSV: 带表头的列数据,自动检测分隔符
147
- - JSON: {{"变量名": [数据], ...}} 或 [{{"变量1": 值, ...}}, ...]
148
-
149
- 💡 使用方式:
150
- - 提供文件内容字符串(可以是base64编码)
151
- - 系统会自动解析并识别变量
152
- - 优先使用file_content,如果提供则忽略其他数据参数"""
153
- },
154
- "file_format": {
155
- "default": "auto",
156
- "description": """文件格式
157
-
158
- 可选值:
159
- - "auto": 自动检测(默认)
160
- - "csv": CSV格式
161
- - "json": JSON格式"""
162
- }
163
- }
164
-
165
-
166
- class UnifiedFileInput:
167
- """
168
- 统一文件输入接口
169
-
170
- 所有工具通过此类统一处理文件输入
171
- """
172
-
173
- @staticmethod
174
- async def handle(
175
- ctx: Any,
176
- file_content: Optional[str],
177
- file_format: str,
178
- tool_type: str,
179
- original_params: Dict[str, Any]
180
- ) -> Dict[str, Any]:
181
- """
182
- 统一处理文件输入
183
-
184
- Args:
185
- ctx: MCP上下文
186
- file_content: 文件内容
187
- file_format: 文件格式
188
- tool_type: 工具类型
189
- original_params: 原始参数
190
-
191
- Returns:
192
- 处理后的参数
193
- """
194
- if file_content is None:
195
- return original_params
196
-
197
- try:
198
- # 记录日志
199
- await ctx.info("检测到文件输入,开始解析...")
200
-
201
- # 解析文件
202
- parsed = FileParser.parse_file_content(file_content, file_format)
203
-
204
- # 记录解析结果
205
- await ctx.info(
206
- f"文件解析成功:{parsed['n_variables']}个变量,"
207
- f"{parsed['n_observations']}个观测,"
208
- f"数据类型={parsed['data_type']}"
209
- )
210
-
211
- # 转换为工具格式
212
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
213
-
214
- # 合并参数
215
- result = {**original_params}
216
- result.update(converted)
217
-
218
- # 记录转换结果
219
- if tool_type == 'regression':
220
- await ctx.info(
221
- f"数据已转换:因变量={converted.get('y_variable')},"
222
- f"自变量={converted.get('feature_names')}"
223
- )
224
- elif tool_type == 'panel':
225
- await ctx.info(
226
- f"面板数据已识别:{len(set(converted.get('entity_ids', [])))}个实体,"
227
- f"{len(set(converted.get('time_periods', [])))}个时间点"
228
- )
229
- else:
230
- await ctx.info(f"数据已转换为{tool_type}格式")
231
-
232
- return result
233
-
234
- except Exception as e:
235
- await ctx.error(f"文件解析失败: {str(e)}")
236
- raise ValueError(f"文件解析失败: {str(e)}")
237
-
238
-
239
- # 便捷函数
240
- async def process_file_for_tool(
241
- ctx: Any,
242
- file_content: Optional[str],
243
- file_format: str,
244
- tool_type: str,
245
- **kwargs
246
- ) -> Dict[str, Any]:
247
- """
248
- 为工具处理文件输入的便捷函数
249
-
250
- 使用示例:
251
- params = await process_file_for_tool(
252
- ctx=ctx,
253
- file_content=file_content,
254
- file_format=file_format,
255
- tool_type='regression',
256
- y_data=y_data,
257
- x_data=x_data,
258
- feature_names=feature_names
259
- )
260
- # params 现在包含处理后的所有参数
261
- """
262
- return await UnifiedFileInput.handle(
263
- ctx=ctx,
264
- file_content=file_content,
265
- file_format=file_format,
266
- tool_type=tool_type,
267
- original_params=kwargs
268
- )