aiagents4pharma 1.8.3__py3-none-any.whl → 1.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/__init__.py +9 -6
- aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml +3 -1
- aiagents4pharma/talk2biomodels/__init__.py +1 -1
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +1 -1
- aiagents4pharma/talk2biomodels/tests/test_langgraph.py +71 -20
- aiagents4pharma/talk2biomodels/tools/ask_question.py +16 -7
- aiagents4pharma/talk2biomodels/tools/custom_plotter.py +20 -14
- aiagents4pharma/talk2biomodels/tools/get_modelinfo.py +6 -6
- aiagents4pharma/talk2biomodels/tools/simulate_model.py +26 -12
- aiagents4pharma/talk2competitors/__init__.py +5 -0
- aiagents4pharma/talk2competitors/agents/__init__.py +6 -0
- aiagents4pharma/talk2competitors/agents/main_agent.py +130 -0
- aiagents4pharma/talk2competitors/agents/s2_agent.py +75 -0
- aiagents4pharma/talk2competitors/config/__init__.py +5 -0
- aiagents4pharma/talk2competitors/config/config.py +110 -0
- aiagents4pharma/talk2competitors/state/__init__.py +5 -0
- aiagents4pharma/talk2competitors/state/state_talk2competitors.py +32 -0
- aiagents4pharma/talk2competitors/tests/__init__.py +3 -0
- aiagents4pharma/talk2competitors/tests/test_langgraph.py +274 -0
- aiagents4pharma/talk2competitors/tools/__init__.py +7 -0
- aiagents4pharma/talk2competitors/tools/s2/__init__.py +8 -0
- aiagents4pharma/talk2competitors/tools/s2/display_results.py +25 -0
- aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py +132 -0
- aiagents4pharma/talk2competitors/tools/s2/search.py +119 -0
- aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py +141 -0
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/METADATA +37 -18
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/RECORD +30 -15
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,119 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
This tool is used to search for academic papers on Semantic Scholar.
|
5
|
+
"""
|
6
|
+
|
7
|
+
import logging
|
8
|
+
from typing import Annotated, Any, Dict, Optional
|
9
|
+
|
10
|
+
import pandas as pd
|
11
|
+
import requests
|
12
|
+
from langchain_core.messages import ToolMessage
|
13
|
+
from langchain_core.tools import tool
|
14
|
+
from langchain_core.tools.base import InjectedToolCallId
|
15
|
+
from langgraph.types import Command
|
16
|
+
from pydantic import BaseModel, Field
|
17
|
+
|
18
|
+
|
19
|
+
class SearchInput(BaseModel):
|
20
|
+
"""Input schema for the search papers tool."""
|
21
|
+
|
22
|
+
query: str = Field(
|
23
|
+
description="Search query string to find academic papers."
|
24
|
+
"Be specific and include relevant academic terms."
|
25
|
+
)
|
26
|
+
limit: int = Field(
|
27
|
+
default=2, description="Maximum number of results to return", ge=1, le=100
|
28
|
+
)
|
29
|
+
year: Optional[str] = Field(
|
30
|
+
default=None,
|
31
|
+
description="Year range in format: YYYY for specific year, "
|
32
|
+
"YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
|
33
|
+
)
|
34
|
+
tool_call_id: Annotated[str, InjectedToolCallId]
|
35
|
+
|
36
|
+
|
37
|
+
@tool(args_schema=SearchInput)
|
38
|
+
def search_tool(
|
39
|
+
query: str,
|
40
|
+
tool_call_id: Annotated[str, InjectedToolCallId],
|
41
|
+
limit: int = 2,
|
42
|
+
year: Optional[str] = None,
|
43
|
+
) -> Dict[str, Any]:
|
44
|
+
"""
|
45
|
+
Search for academic papers on Semantic Scholar.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
query (str): The search query string to find academic papers.
|
49
|
+
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
|
50
|
+
limit (int, optional): The maximum number of results to return. Defaults to 2.
|
51
|
+
year (str, optional): Year range for papers.
|
52
|
+
Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
|
53
|
+
|
54
|
+
Returns:
|
55
|
+
Dict[str, Any]: The search results and related information.
|
56
|
+
"""
|
57
|
+
print("Starting paper search...")
|
58
|
+
endpoint = "https://api.semanticscholar.org/graph/v1/paper/search"
|
59
|
+
params = {
|
60
|
+
"query": query,
|
61
|
+
"limit": min(limit, 100),
|
62
|
+
# "fields": "paperId,title,abstract,year,authors,
|
63
|
+
# citationCount,url,publicationTypes,openAccessPdf",
|
64
|
+
"fields": "paperId,title,abstract,year,authors,citationCount,url",
|
65
|
+
}
|
66
|
+
|
67
|
+
# Add year parameter if provided
|
68
|
+
if year:
|
69
|
+
params["year"] = year
|
70
|
+
|
71
|
+
response = requests.get(endpoint, params=params, timeout=10)
|
72
|
+
data = response.json()
|
73
|
+
papers = data.get("data", [])
|
74
|
+
|
75
|
+
# Create a dictionary to store the papers
|
76
|
+
filtered_papers = {
|
77
|
+
paper["paperId"]: {
|
78
|
+
"Title": paper.get("title", "N/A"),
|
79
|
+
"Abstract": paper.get("abstract", "N/A"),
|
80
|
+
"Year": paper.get("year", "N/A"),
|
81
|
+
"Citation Count": paper.get("citationCount", "N/A"),
|
82
|
+
"URL": paper.get("url", "N/A"),
|
83
|
+
# "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
|
84
|
+
# if paper.get("publicationTypes")
|
85
|
+
# else "N/A",
|
86
|
+
# "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
|
87
|
+
# if paper.get("openAccessPdf") is not None
|
88
|
+
# else "N/A",
|
89
|
+
}
|
90
|
+
for paper in papers
|
91
|
+
if paper.get("title") and paper.get("authors")
|
92
|
+
}
|
93
|
+
|
94
|
+
df = pd.DataFrame(filtered_papers)
|
95
|
+
|
96
|
+
# Format papers for state update
|
97
|
+
papers = [
|
98
|
+
f"Paper ID: {paper_id}\n"
|
99
|
+
f"Title: {paper_data['Title']}\n"
|
100
|
+
f"Abstract: {paper_data['Abstract']}\n"
|
101
|
+
f"Year: {paper_data['Year']}\n"
|
102
|
+
f"Citations: {paper_data['Citation Count']}\n"
|
103
|
+
f"URL: {paper_data['URL']}\n"
|
104
|
+
# f"Publication Type: {paper_data['Publication Type']}\n"
|
105
|
+
# f"Open Access PDF: {paper_data['Open Access PDF']}"
|
106
|
+
for paper_id, paper_data in filtered_papers.items()
|
107
|
+
]
|
108
|
+
|
109
|
+
markdown_table = df.to_markdown(tablefmt="grid")
|
110
|
+
logging.info("Search results: %s", papers)
|
111
|
+
|
112
|
+
return Command(
|
113
|
+
update={
|
114
|
+
"papers": filtered_papers, # Now sending the dictionary directly
|
115
|
+
"messages": [
|
116
|
+
ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
|
117
|
+
],
|
118
|
+
}
|
119
|
+
)
|
@@ -0,0 +1,141 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
This tool is used to return recommendations for a single paper.
|
5
|
+
"""
|
6
|
+
|
7
|
+
import logging
|
8
|
+
from typing import Annotated, Any, Dict, Optional
|
9
|
+
|
10
|
+
import pandas as pd
|
11
|
+
import requests
|
12
|
+
from langchain_core.messages import ToolMessage
|
13
|
+
from langchain_core.tools import tool
|
14
|
+
from langchain_core.tools.base import InjectedToolCallId
|
15
|
+
from langgraph.types import Command
|
16
|
+
from pydantic import BaseModel, Field
|
17
|
+
|
18
|
+
# Configure logging
|
19
|
+
logging.basicConfig(level=logging.INFO)
|
20
|
+
logger = logging.getLogger(__name__)
|
21
|
+
|
22
|
+
|
23
|
+
class SinglePaperRecInput(BaseModel):
|
24
|
+
"""Input schema for single paper recommendation tool."""
|
25
|
+
|
26
|
+
paper_id: str = Field(
|
27
|
+
description="Semantic Scholar Paper ID to get recommendations for (40-character string)"
|
28
|
+
)
|
29
|
+
limit: int = Field(
|
30
|
+
default=2,
|
31
|
+
description="Maximum number of recommendations to return",
|
32
|
+
ge=1,
|
33
|
+
le=500,
|
34
|
+
)
|
35
|
+
year: Optional[str] = Field(
|
36
|
+
default=None,
|
37
|
+
description="Year range in format: YYYY for specific year, "
|
38
|
+
"YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
|
39
|
+
)
|
40
|
+
tool_call_id: Annotated[str, InjectedToolCallId]
|
41
|
+
model_config = {"arbitrary_types_allowed": True}
|
42
|
+
|
43
|
+
|
44
|
+
@tool(args_schema=SinglePaperRecInput)
|
45
|
+
def get_single_paper_recommendations(
|
46
|
+
paper_id: str,
|
47
|
+
tool_call_id: Annotated[str, InjectedToolCallId],
|
48
|
+
limit: int = 2,
|
49
|
+
year: Optional[str] = None,
|
50
|
+
) -> Dict[str, Any]:
|
51
|
+
"""
|
52
|
+
Get paper recommendations based on a single paper.
|
53
|
+
|
54
|
+
Args:
|
55
|
+
paper_id (str): The Semantic Scholar Paper ID to get recommendations for.
|
56
|
+
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
|
57
|
+
limit (int, optional): The maximum number of recommendations to return. Defaults to 2.
|
58
|
+
year (str, optional): Year range for papers.
|
59
|
+
Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
|
60
|
+
|
61
|
+
Returns:
|
62
|
+
Dict[str, Any]: The recommendations and related information.
|
63
|
+
"""
|
64
|
+
logger.info("Starting single paper recommendations search.")
|
65
|
+
|
66
|
+
endpoint = (
|
67
|
+
f"https://api.semanticscholar.org/recommendations/v1/papers/forpaper/{paper_id}"
|
68
|
+
)
|
69
|
+
params = {
|
70
|
+
"limit": min(limit, 500), # Max 500 per API docs
|
71
|
+
"fields": "paperId,title,abstract,year,authors,citationCount,url",
|
72
|
+
"from": "all-cs", # Using all-cs pool as specified in docs
|
73
|
+
}
|
74
|
+
|
75
|
+
# Add year parameter if provided
|
76
|
+
if year:
|
77
|
+
params["year"] = year
|
78
|
+
|
79
|
+
response = requests.get(endpoint, params=params, timeout=10)
|
80
|
+
data = response.json()
|
81
|
+
papers = data.get("data", [])
|
82
|
+
response = requests.get(endpoint, params=params, timeout=10)
|
83
|
+
# print(f"API Response Status: {response.status_code}")
|
84
|
+
logging.info(
|
85
|
+
"API Response Status for recommendations of paper %s: %s",
|
86
|
+
paper_id,
|
87
|
+
response.status_code,
|
88
|
+
)
|
89
|
+
# print(f"Request params: {params}")
|
90
|
+
logging.info("Request params: %s", params)
|
91
|
+
|
92
|
+
data = response.json()
|
93
|
+
recommendations = data.get("recommendedPapers", [])
|
94
|
+
|
95
|
+
# Extract paper ID and title from recommendations
|
96
|
+
filtered_papers = {
|
97
|
+
paper["paperId"]: {
|
98
|
+
"Title": paper.get("title", "N/A"),
|
99
|
+
"Abstract": paper.get("abstract", "N/A"),
|
100
|
+
"Year": paper.get("year", "N/A"),
|
101
|
+
"Citation Count": paper.get("citationCount", "N/A"),
|
102
|
+
"URL": paper.get("url", "N/A"),
|
103
|
+
# "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
|
104
|
+
# if paper.get("publicationTypes")
|
105
|
+
# else "N/A",
|
106
|
+
# "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
|
107
|
+
# if paper.get("openAccessPdf") is not None
|
108
|
+
# else "N/A",
|
109
|
+
}
|
110
|
+
for paper in recommendations
|
111
|
+
if paper.get("title") and paper.get("authors")
|
112
|
+
}
|
113
|
+
|
114
|
+
# Create a DataFrame for pretty printing
|
115
|
+
df = pd.DataFrame(filtered_papers)
|
116
|
+
|
117
|
+
# Format papers for state update
|
118
|
+
papers = [
|
119
|
+
f"Paper ID: {paper_id}\n"
|
120
|
+
f"Title: {paper_data['Title']}\n"
|
121
|
+
f"Abstract: {paper_data['Abstract']}\n"
|
122
|
+
f"Year: {paper_data['Year']}\n"
|
123
|
+
f"Citations: {paper_data['Citation Count']}\n"
|
124
|
+
f"URL: {paper_data['URL']}\n"
|
125
|
+
# f"Publication Type: {paper_data['Publication Type']}\n"
|
126
|
+
# f"Open Access PDF: {paper_data['Open Access PDF']}"
|
127
|
+
for paper_id, paper_data in filtered_papers.items()
|
128
|
+
]
|
129
|
+
|
130
|
+
# Convert DataFrame to markdown table
|
131
|
+
markdown_table = df.to_markdown(tablefmt="grid")
|
132
|
+
logging.info("Search results: %s", papers)
|
133
|
+
|
134
|
+
return Command(
|
135
|
+
update={
|
136
|
+
"papers": filtered_papers, # Now sending the dictionary directly
|
137
|
+
"messages": [
|
138
|
+
ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
|
139
|
+
],
|
140
|
+
}
|
141
|
+
)
|
@@ -1,11 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.10.0
|
4
4
|
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
7
7
|
Classifier: Operating System :: OS Independent
|
8
|
-
Requires-Python: >=3.
|
8
|
+
Requires-Python: >=3.12
|
9
9
|
Description-Content-Type: text/markdown
|
10
10
|
License-File: LICENSE
|
11
11
|
Requires-Dist: copasi_basico==0.78
|
@@ -48,6 +48,9 @@ Requires-Dist: streamlit-feedback
|
|
48
48
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml)
|
49
49
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2knowledgegraphs.yml)
|
50
50
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2competitors.yml)
|
51
|
+

|
52
|
+

|
53
|
+
|
51
54
|
|
52
55
|
<h1 align="center" style="border-bottom: none;">🤖 AIAgents4Pharma</h1>
|
53
56
|
|
@@ -56,9 +59,9 @@ Welcome to **AIAgents4Pharma** – an open-source project by [Team VPE](https://
|
|
56
59
|
Our toolkit currently consists of three intelligent agents, each designed to simplify and enhance access to specialized data in biology:
|
57
60
|
|
58
61
|
- **Talk2BioModels**: Engage directly with mathematical models in systems biology.
|
59
|
-
- **Talk2Cells**
|
60
|
-
- **Talk2KnowledgeGraphs**
|
61
|
-
- **Talk2Competitors**
|
62
|
+
- **Talk2Cells** _(Work in progress)_: Query and analyze sequencing data with ease.
|
63
|
+
- **Talk2KnowledgeGraphs** _(Work in progress)_: Access and explore complex biological knowledge graphs for insightful data connections.
|
64
|
+
- **Talk2Competitors** _(Coming soon)_: Get recommendations for articles related to your choice. Download, query, and write/retrieve them to your reference manager (currently supporting Zotero).
|
62
65
|
|
63
66
|
---
|
64
67
|
|
@@ -72,15 +75,15 @@ Our toolkit currently consists of three intelligent agents, each designed to sim
|
|
72
75
|
- Adjust parameters within the model to simulate different conditions.
|
73
76
|
- Query simulation results.
|
74
77
|
|
75
|
-
### 2. Talk2Cells
|
78
|
+
### 2. Talk2Cells _(Work in Progress)_
|
76
79
|
|
77
80
|
**Talk2Cells** is being developed to provide direct access to and analysis of sequencing data, such as RNA-Seq or DNA-Seq, using natural language.
|
78
81
|
|
79
|
-
### 3. Talk2KnowledgeGraphs
|
82
|
+
### 3. Talk2KnowledgeGraphs _(Work in Progress)_
|
80
83
|
|
81
84
|
**Talk2KnowledgeGraphs** is an agent designed to enable interaction with biological knowledge graphs (KGs). KGs integrate vast amounts of structured biological data into a format that highlights relationships between entities, such as proteins, genes, and diseases.
|
82
85
|
|
83
|
-
### 4.
|
86
|
+
### 4. Talk2Competitors _(Coming soon)_
|
84
87
|
|
85
88
|
## Getting Started
|
86
89
|
|
@@ -91,48 +94,60 @@ Our toolkit currently consists of three intelligent agents, each designed to sim
|
|
91
94
|
- Required libraries specified in `requirements.txt`
|
92
95
|
|
93
96
|
### Installation
|
97
|
+
|
94
98
|
#### Option 1: PyPI
|
95
|
-
|
96
|
-
|
97
|
-
|
99
|
+
|
100
|
+
```bash
|
101
|
+
pip install aiagents4pharma
|
102
|
+
```
|
98
103
|
|
99
104
|
Check out the tutorials on each agent for detailed instrcutions.
|
100
105
|
|
101
106
|
#### Option 2: git
|
107
|
+
|
102
108
|
1. **Clone the repository:**
|
109
|
+
|
103
110
|
```bash
|
104
111
|
git clone https://github.com/VirtualPatientEngine/AIAgents4Pharma
|
105
112
|
cd AIAgents4Pharma
|
106
113
|
```
|
107
114
|
|
108
115
|
2. **Install dependencies:**
|
116
|
+
|
109
117
|
```bash
|
110
118
|
pip install .
|
111
119
|
```
|
112
120
|
|
113
121
|
3. **Initialize OPENAI_API_KEY**
|
122
|
+
|
114
123
|
```bash
|
115
|
-
export OPENAI_API_KEY
|
124
|
+
export OPENAI_API_KEY=....
|
116
125
|
```
|
117
126
|
|
118
127
|
4. **[Optional] Set up login credentials**
|
128
|
+
|
119
129
|
```bash
|
120
130
|
vi .streamlit/secrets.toml
|
121
131
|
```
|
132
|
+
|
122
133
|
and enter
|
134
|
+
|
123
135
|
```
|
124
136
|
password='XXX'
|
125
137
|
```
|
126
|
-
|
138
|
+
|
139
|
+
Please note that the passoword will be same for all the users.
|
127
140
|
|
128
141
|
5. **[Optional] Initialize LANGSMITH_API_KEY**
|
142
|
+
|
129
143
|
```bash
|
130
144
|
export LANGCHAIN_TRACING_V2=true
|
131
145
|
export LANGCHAIN_API_KEY=<your-api-key>
|
132
146
|
```
|
133
|
-
|
134
|
-
|
135
|
-
|
147
|
+
|
148
|
+
Please note that this will create a new tracing project in your Langsmith
|
149
|
+
account with the name `<user_name>@<uuid>`, where `user_name` is the name
|
150
|
+
you provided in the previous step. If you skip the previous step, it will
|
136
151
|
default to `default`. <uuid> will be the 128 bit unique ID created for the
|
137
152
|
session.
|
138
153
|
|
@@ -164,6 +179,7 @@ We welcome contributions to AIAgents4Pharma! Here’s how you can help:
|
|
164
179
|
5. **Open a pull request**
|
165
180
|
|
166
181
|
### Current Needs
|
182
|
+
|
167
183
|
- **Beta testers** for Talk2BioModels.
|
168
184
|
- **Developers** with experience in natural language processing, bioinformatics, or knowledge graphs for contributions to AIAgents4Pharma.
|
169
185
|
|
@@ -174,19 +190,22 @@ Check out our [CONTRIBUTING.md](CONTRIBUTING.md) for more information.
|
|
174
190
|
## Roadmap
|
175
191
|
|
176
192
|
### Completed
|
193
|
+
|
177
194
|
- **Talk2BioModels**: Initial release with core capabilities for interacting with systems biology models.
|
178
195
|
|
179
196
|
### Planned
|
197
|
+
|
180
198
|
- **User Interface**: Interactive web UI for all agents.
|
181
199
|
- **Talk2Cells**: Integration of sequencing data analysis tools.
|
182
200
|
- **Talk2KnowledgeGraphs**: Interface for biological knowledge graph interaction.
|
183
|
-
- **Talk2Competitors
|
201
|
+
- **Talk2Competitors**: Interface for exploring articles
|
184
202
|
|
185
|
-
We’re excited to bring AIAgents4Pharma to the bioinformatics and pharmaceutical research community. Together, let’s make data-driven biological research more accessible and insightful.
|
203
|
+
We’re excited to bring AIAgents4Pharma to the bioinformatics and pharmaceutical research community. Together, let’s make data-driven biological research more accessible and insightful.
|
186
204
|
|
187
205
|
**Get Started** with AIAgents4Pharma today and transform the way you interact with biological data.
|
188
206
|
|
189
207
|
---
|
190
208
|
|
191
209
|
## Feedback
|
210
|
+
|
192
211
|
Questions/Bug reports/Feature requests/Comments/Suggestions? We welcome all. Please use the `Isssues` tab 😀
|
@@ -1,29 +1,29 @@
|
|
1
|
-
aiagents4pharma/__init__.py,sha256=
|
1
|
+
aiagents4pharma/__init__.py,sha256=5muWWIg89VHPybfxonO_5xOMJPasKNsGdQRhozDaEmk,177
|
2
2
|
aiagents4pharma/configs/__init__.py,sha256=hNkSrXw1Ix1HhkGn_aaidr2coBYySfM0Hm_pMeRcX7k,76
|
3
3
|
aiagents4pharma/configs/config.yaml,sha256=8y8uG6Dzx4-9jyb6hZ8r4lOJz5gA_sQhCiSCgXL5l7k,65
|
4
4
|
aiagents4pharma/configs/talk2biomodels/__init__.py,sha256=5ah__-8XyRblwT0U1ByRigNjt_GyCheu7zce4aM-eZE,68
|
5
5
|
aiagents4pharma/configs/talk2biomodels/agents/__init__.py,sha256=_ZoG8snICK2bidWtc2KOGs738LWg9_r66V9mOMnEb-E,71
|
6
6
|
aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
7
|
-
aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml,sha256
|
8
|
-
aiagents4pharma/talk2biomodels/__init__.py,sha256=
|
7
|
+
aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml,sha256=yD7qZCneaM-JE5PdZjDmDoTRUdsFrzeCKZsBx1b-f20,293
|
8
|
+
aiagents4pharma/talk2biomodels/__init__.py,sha256=qUw3qXrENqSCLIKSLy_qtNPwPDTb1wdZ8fZispcHb3g,141
|
9
9
|
aiagents4pharma/talk2biomodels/agents/__init__.py,sha256=sn5-fREjMdEvb-OUan3iOqrgYGjplNx3J8hYOaW0Po8,128
|
10
10
|
aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=nVWxHR-QMZDqDwxvDga_CvLo7LHP5cWCDl6lXCMcRO0,3264
|
11
11
|
aiagents4pharma/talk2biomodels/models/__init__.py,sha256=5fTHHm3PVloYPNKXbgNlcPgv3-u28ZquxGydFYDfhJA,122
|
12
12
|
aiagents4pharma/talk2biomodels/models/basico_model.py,sha256=js7ORLwbJPaIsko5oRToMMCh4l8LsN292OIvFzTfvRg,4946
|
13
13
|
aiagents4pharma/talk2biomodels/models/sys_bio_model.py,sha256=ylpPba2SA8kl68q3k1kJbiUdRYplPHykyslTQLDZ19I,1995
|
14
14
|
aiagents4pharma/talk2biomodels/states/__init__.py,sha256=YLg1-N0D9qyRRLRqwqfLCLAqZYDtMVZTfI8Y0b_4tbA,139
|
15
|
-
aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=
|
15
|
+
aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=iob7q5Kpy6aWDLCiFsp4NNVYYXNdDU3vU50PmxyvBsU,792
|
16
16
|
aiagents4pharma/talk2biomodels/tests/__init__.py,sha256=Jbw5tJxSrjGoaK5IX3pJWDCNzhrVQ10lkYq2oQ_KQD8,45
|
17
17
|
aiagents4pharma/talk2biomodels/tests/test_basico_model.py,sha256=uqhbojcA4RRTDRUAF9B9DzKCo3OOIOWMDK8IViG0gsM,2038
|
18
|
-
aiagents4pharma/talk2biomodels/tests/test_langgraph.py,sha256=
|
18
|
+
aiagents4pharma/talk2biomodels/tests/test_langgraph.py,sha256=GyqsUpcWgjuRb15DpGvLg-FZ8g3_cf0TwVcaCPp_vO0,9456
|
19
19
|
aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py,sha256=nA6bRT16627mw8qzrv7cHM9AByHb9F0kxAuwOpE-avA,1961
|
20
20
|
aiagents4pharma/talk2biomodels/tools/__init__.py,sha256=8hAT6z1OO8N9HRylh6fwoqyjYlGdpkngkElBNqH40Zo,237
|
21
|
-
aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=
|
22
|
-
aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=
|
23
|
-
aiagents4pharma/talk2biomodels/tools/get_modelinfo.py,sha256=
|
21
|
+
aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=uxCQ4ON8--D0ACPvT14t6x_aqm9LP6woBA4GM7bPXc4,3061
|
22
|
+
aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=HWwKTX3o4dk0GcRVTO2hPrFSu98mtJ4TKC_hbHXOe1c,4018
|
23
|
+
aiagents4pharma/talk2biomodels/tools/get_modelinfo.py,sha256=68KmeEpgvgaDQM9airOWVy4fGT33rG10RlXhps5W6C0,5279
|
24
24
|
aiagents4pharma/talk2biomodels/tools/load_biomodel.py,sha256=pyVzLQoMnuJYEwsjeOlqcUrbU1F1Z-pNlgkhFaoKpy0,689
|
25
25
|
aiagents4pharma/talk2biomodels/tools/search_models.py,sha256=Iq2ddofOOfZYtAurCISq3bAq5rbwB3l_rL1lgEFyFCI,2653
|
26
|
-
aiagents4pharma/talk2biomodels/tools/simulate_model.py,sha256=
|
26
|
+
aiagents4pharma/talk2biomodels/tools/simulate_model.py,sha256=1HVoI5SkktvpOmTnAG8hxrhpoxpg_he-bb5ZJ_UllI4,6833
|
27
27
|
aiagents4pharma/talk2cells/__init__.py,sha256=zmOP5RAhabgKIQP-W4P4qKME2tG3fhAXM3MeO5_H8kE,120
|
28
28
|
aiagents4pharma/talk2cells/agents/__init__.py,sha256=38nK2a_lEFRjO3qD6Fo9a3983ZCYat6hmJKWY61y2Mo,128
|
29
29
|
aiagents4pharma/talk2cells/agents/scp_agent.py,sha256=gDMfhUNWHa_XWOqm1Ql6yLAdI_7bnIk5sRYn43H2sYk,3090
|
@@ -34,7 +34,22 @@ aiagents4pharma/talk2cells/tools/__init__.py,sha256=38nK2a_lEFRjO3qD6Fo9a3983ZCY
|
|
34
34
|
aiagents4pharma/talk2cells/tools/scp_agent/__init__.py,sha256=s7g0lyH1lMD9pcWHLPtwRJRvzmTh2II7DrxyLulpjmQ,163
|
35
35
|
aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py,sha256=6q59gh_NQaiOU2rn55A3sIIFKlXi4SK3iKgySvUDrtQ,600
|
36
36
|
aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py,sha256=MLe-twtFnOu-P8P9diYq7jvHBHbWFRRCZLcfpUzqPMg,2806
|
37
|
-
aiagents4pharma/talk2competitors/__init__.py,sha256=
|
37
|
+
aiagents4pharma/talk2competitors/__init__.py,sha256=haaikzND3c0Euqq86ndA4fl9q42aOop5rYG_8Zh1D-o,119
|
38
|
+
aiagents4pharma/talk2competitors/agents/__init__.py,sha256=ykszlVGxz3egLHZAttlNoTPxIrnQJZYva_ssR8fwIFk,117
|
39
|
+
aiagents4pharma/talk2competitors/agents/main_agent.py,sha256=UoHCpZd-HoeG0B6_gAF1cEP2OqMvrTuGe7MZDwL_u1U,3878
|
40
|
+
aiagents4pharma/talk2competitors/agents/s2_agent.py,sha256=eTrhc4ZPvWOUWMHNYxK0WltsZedZUnAWNu-TeUa-ruk,2501
|
41
|
+
aiagents4pharma/talk2competitors/config/__init__.py,sha256=HyM6paOpKZ5_tZnyVheSAFmxjT6Mb3PxvWKfP0rz-dE,113
|
42
|
+
aiagents4pharma/talk2competitors/config/config.py,sha256=jd4ltMBJyTztm9wT7j3ujOyYxL2SXRgxQJ4OZUBmCG4,5387
|
43
|
+
aiagents4pharma/talk2competitors/state/__init__.py,sha256=DzFjV3hZNes_pL4bDW2_8RsyK9BJcj6ejfBzU0KWn1k,106
|
44
|
+
aiagents4pharma/talk2competitors/state/state_talk2competitors.py,sha256=GUl1ZfM77XsjIEu-3xy4dtvaiMTA1pXf6i1ozVcX5Gg,993
|
45
|
+
aiagents4pharma/talk2competitors/tests/__init__.py,sha256=U3PsTiUZaUBD1IZanFGkDIOdFieDVJtGKQ5-woYUo8c,45
|
46
|
+
aiagents4pharma/talk2competitors/tests/test_langgraph.py,sha256=sEROK1aU3wFqJhZohONVI6Pr7t1d3PSqs-4erVIyiJw,9283
|
47
|
+
aiagents4pharma/talk2competitors/tools/__init__.py,sha256=YudBDRwaEzDnAcpxGZvEOfyh5-6xd51CTvTKTkywgXw,68
|
48
|
+
aiagents4pharma/talk2competitors/tools/s2/__init__.py,sha256=9RQH3efTj6qkXk0ICKSc7Mzpkitt4gRGsQ1pGPrrREU,181
|
49
|
+
aiagents4pharma/talk2competitors/tools/s2/display_results.py,sha256=B8JJGohi1Eyx8C3MhO_SiyQP3R6hPyUKJOAzcHmq3FU,584
|
50
|
+
aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py,sha256=FYLt47DAk6WOKfEk1Gj9zVvJGNyxA283PCp8IKW9U5M,4262
|
51
|
+
aiagents4pharma/talk2competitors/tools/s2/search.py,sha256=pppjrQv5-8ep4fnqgTSBNgnbSnQsVIcNrRrH0p2TP1o,4025
|
52
|
+
aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py,sha256=dAfUQxI7T5eu0eDxK8VAl7-JH0Wnw24CVkOQqwj-hXc,4810
|
38
53
|
aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=SW7Ys2A4eXyFtizNPdSw91SHOPVUBGBsrCQ7TqwSUL0,91
|
39
54
|
aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py,sha256=L3gPuHskSegmtXskVrLIYr7FXe_ibKgJ2GGr1_Wok6k,173
|
40
55
|
aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=QlzDXmXREoa9MA6-GwzqRjdzndQeGBAF11Td6NFk_9Y,23426
|
@@ -55,8 +70,8 @@ aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py,sha256=xRb0x7S
|
|
55
70
|
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/embeddings.py,sha256=1nGznrAj-xT0xuSMBGz2dOujJ7M_IwSR84njxtxsy9A,2523
|
56
71
|
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py,sha256=2vi_elf6EgzfagFAO5QnL3a_aXZyN7B1EBziu44MTfM,3806
|
57
72
|
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/sentence_transformer.py,sha256=36iKlisOpMtGR5xfTAlSHXWvPqVC_Jbezod8kbBBMVg,2136
|
58
|
-
aiagents4pharma-1.
|
59
|
-
aiagents4pharma-1.
|
60
|
-
aiagents4pharma-1.
|
61
|
-
aiagents4pharma-1.
|
62
|
-
aiagents4pharma-1.
|
73
|
+
aiagents4pharma-1.10.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
|
74
|
+
aiagents4pharma-1.10.0.dist-info/METADATA,sha256=a5XUji4VHk7HcE5GC7txe7v2sNUbgH4ijSHpxoNh74E,8340
|
75
|
+
aiagents4pharma-1.10.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
76
|
+
aiagents4pharma-1.10.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
|
77
|
+
aiagents4pharma-1.10.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|