aiagents4pharma 1.8.3__py3-none-any.whl → 1.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. aiagents4pharma/__init__.py +9 -6
  2. aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml +3 -1
  3. aiagents4pharma/talk2biomodels/__init__.py +1 -1
  4. aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +1 -1
  5. aiagents4pharma/talk2biomodels/tests/test_langgraph.py +71 -20
  6. aiagents4pharma/talk2biomodels/tools/ask_question.py +16 -7
  7. aiagents4pharma/talk2biomodels/tools/custom_plotter.py +20 -14
  8. aiagents4pharma/talk2biomodels/tools/get_modelinfo.py +6 -6
  9. aiagents4pharma/talk2biomodels/tools/simulate_model.py +26 -12
  10. aiagents4pharma/talk2competitors/__init__.py +5 -0
  11. aiagents4pharma/talk2competitors/agents/__init__.py +6 -0
  12. aiagents4pharma/talk2competitors/agents/main_agent.py +130 -0
  13. aiagents4pharma/talk2competitors/agents/s2_agent.py +75 -0
  14. aiagents4pharma/talk2competitors/config/__init__.py +5 -0
  15. aiagents4pharma/talk2competitors/config/config.py +110 -0
  16. aiagents4pharma/talk2competitors/state/__init__.py +5 -0
  17. aiagents4pharma/talk2competitors/state/state_talk2competitors.py +32 -0
  18. aiagents4pharma/talk2competitors/tests/__init__.py +3 -0
  19. aiagents4pharma/talk2competitors/tests/test_langgraph.py +274 -0
  20. aiagents4pharma/talk2competitors/tools/__init__.py +7 -0
  21. aiagents4pharma/talk2competitors/tools/s2/__init__.py +8 -0
  22. aiagents4pharma/talk2competitors/tools/s2/display_results.py +25 -0
  23. aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py +132 -0
  24. aiagents4pharma/talk2competitors/tools/s2/search.py +119 -0
  25. aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py +141 -0
  26. {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/METADATA +37 -18
  27. {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/RECORD +30 -15
  28. {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/LICENSE +0 -0
  29. {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/WHEEL +0 -0
  30. {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,119 @@
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ This tool is used to search for academic papers on Semantic Scholar.
5
+ """
6
+
7
+ import logging
8
+ from typing import Annotated, Any, Dict, Optional
9
+
10
+ import pandas as pd
11
+ import requests
12
+ from langchain_core.messages import ToolMessage
13
+ from langchain_core.tools import tool
14
+ from langchain_core.tools.base import InjectedToolCallId
15
+ from langgraph.types import Command
16
+ from pydantic import BaseModel, Field
17
+
18
+
19
+ class SearchInput(BaseModel):
20
+ """Input schema for the search papers tool."""
21
+
22
+ query: str = Field(
23
+ description="Search query string to find academic papers."
24
+ "Be specific and include relevant academic terms."
25
+ )
26
+ limit: int = Field(
27
+ default=2, description="Maximum number of results to return", ge=1, le=100
28
+ )
29
+ year: Optional[str] = Field(
30
+ default=None,
31
+ description="Year range in format: YYYY for specific year, "
32
+ "YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
33
+ )
34
+ tool_call_id: Annotated[str, InjectedToolCallId]
35
+
36
+
37
+ @tool(args_schema=SearchInput)
38
+ def search_tool(
39
+ query: str,
40
+ tool_call_id: Annotated[str, InjectedToolCallId],
41
+ limit: int = 2,
42
+ year: Optional[str] = None,
43
+ ) -> Dict[str, Any]:
44
+ """
45
+ Search for academic papers on Semantic Scholar.
46
+
47
+ Args:
48
+ query (str): The search query string to find academic papers.
49
+ tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
50
+ limit (int, optional): The maximum number of results to return. Defaults to 2.
51
+ year (str, optional): Year range for papers.
52
+ Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
53
+
54
+ Returns:
55
+ Dict[str, Any]: The search results and related information.
56
+ """
57
+ print("Starting paper search...")
58
+ endpoint = "https://api.semanticscholar.org/graph/v1/paper/search"
59
+ params = {
60
+ "query": query,
61
+ "limit": min(limit, 100),
62
+ # "fields": "paperId,title,abstract,year,authors,
63
+ # citationCount,url,publicationTypes,openAccessPdf",
64
+ "fields": "paperId,title,abstract,year,authors,citationCount,url",
65
+ }
66
+
67
+ # Add year parameter if provided
68
+ if year:
69
+ params["year"] = year
70
+
71
+ response = requests.get(endpoint, params=params, timeout=10)
72
+ data = response.json()
73
+ papers = data.get("data", [])
74
+
75
+ # Create a dictionary to store the papers
76
+ filtered_papers = {
77
+ paper["paperId"]: {
78
+ "Title": paper.get("title", "N/A"),
79
+ "Abstract": paper.get("abstract", "N/A"),
80
+ "Year": paper.get("year", "N/A"),
81
+ "Citation Count": paper.get("citationCount", "N/A"),
82
+ "URL": paper.get("url", "N/A"),
83
+ # "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
84
+ # if paper.get("publicationTypes")
85
+ # else "N/A",
86
+ # "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
87
+ # if paper.get("openAccessPdf") is not None
88
+ # else "N/A",
89
+ }
90
+ for paper in papers
91
+ if paper.get("title") and paper.get("authors")
92
+ }
93
+
94
+ df = pd.DataFrame(filtered_papers)
95
+
96
+ # Format papers for state update
97
+ papers = [
98
+ f"Paper ID: {paper_id}\n"
99
+ f"Title: {paper_data['Title']}\n"
100
+ f"Abstract: {paper_data['Abstract']}\n"
101
+ f"Year: {paper_data['Year']}\n"
102
+ f"Citations: {paper_data['Citation Count']}\n"
103
+ f"URL: {paper_data['URL']}\n"
104
+ # f"Publication Type: {paper_data['Publication Type']}\n"
105
+ # f"Open Access PDF: {paper_data['Open Access PDF']}"
106
+ for paper_id, paper_data in filtered_papers.items()
107
+ ]
108
+
109
+ markdown_table = df.to_markdown(tablefmt="grid")
110
+ logging.info("Search results: %s", papers)
111
+
112
+ return Command(
113
+ update={
114
+ "papers": filtered_papers, # Now sending the dictionary directly
115
+ "messages": [
116
+ ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
117
+ ],
118
+ }
119
+ )
@@ -0,0 +1,141 @@
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ This tool is used to return recommendations for a single paper.
5
+ """
6
+
7
+ import logging
8
+ from typing import Annotated, Any, Dict, Optional
9
+
10
+ import pandas as pd
11
+ import requests
12
+ from langchain_core.messages import ToolMessage
13
+ from langchain_core.tools import tool
14
+ from langchain_core.tools.base import InjectedToolCallId
15
+ from langgraph.types import Command
16
+ from pydantic import BaseModel, Field
17
+
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO)
20
+ logger = logging.getLogger(__name__)
21
+
22
+
23
+ class SinglePaperRecInput(BaseModel):
24
+ """Input schema for single paper recommendation tool."""
25
+
26
+ paper_id: str = Field(
27
+ description="Semantic Scholar Paper ID to get recommendations for (40-character string)"
28
+ )
29
+ limit: int = Field(
30
+ default=2,
31
+ description="Maximum number of recommendations to return",
32
+ ge=1,
33
+ le=500,
34
+ )
35
+ year: Optional[str] = Field(
36
+ default=None,
37
+ description="Year range in format: YYYY for specific year, "
38
+ "YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
39
+ )
40
+ tool_call_id: Annotated[str, InjectedToolCallId]
41
+ model_config = {"arbitrary_types_allowed": True}
42
+
43
+
44
+ @tool(args_schema=SinglePaperRecInput)
45
+ def get_single_paper_recommendations(
46
+ paper_id: str,
47
+ tool_call_id: Annotated[str, InjectedToolCallId],
48
+ limit: int = 2,
49
+ year: Optional[str] = None,
50
+ ) -> Dict[str, Any]:
51
+ """
52
+ Get paper recommendations based on a single paper.
53
+
54
+ Args:
55
+ paper_id (str): The Semantic Scholar Paper ID to get recommendations for.
56
+ tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
57
+ limit (int, optional): The maximum number of recommendations to return. Defaults to 2.
58
+ year (str, optional): Year range for papers.
59
+ Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
60
+
61
+ Returns:
62
+ Dict[str, Any]: The recommendations and related information.
63
+ """
64
+ logger.info("Starting single paper recommendations search.")
65
+
66
+ endpoint = (
67
+ f"https://api.semanticscholar.org/recommendations/v1/papers/forpaper/{paper_id}"
68
+ )
69
+ params = {
70
+ "limit": min(limit, 500), # Max 500 per API docs
71
+ "fields": "paperId,title,abstract,year,authors,citationCount,url",
72
+ "from": "all-cs", # Using all-cs pool as specified in docs
73
+ }
74
+
75
+ # Add year parameter if provided
76
+ if year:
77
+ params["year"] = year
78
+
79
+ response = requests.get(endpoint, params=params, timeout=10)
80
+ data = response.json()
81
+ papers = data.get("data", [])
82
+ response = requests.get(endpoint, params=params, timeout=10)
83
+ # print(f"API Response Status: {response.status_code}")
84
+ logging.info(
85
+ "API Response Status for recommendations of paper %s: %s",
86
+ paper_id,
87
+ response.status_code,
88
+ )
89
+ # print(f"Request params: {params}")
90
+ logging.info("Request params: %s", params)
91
+
92
+ data = response.json()
93
+ recommendations = data.get("recommendedPapers", [])
94
+
95
+ # Extract paper ID and title from recommendations
96
+ filtered_papers = {
97
+ paper["paperId"]: {
98
+ "Title": paper.get("title", "N/A"),
99
+ "Abstract": paper.get("abstract", "N/A"),
100
+ "Year": paper.get("year", "N/A"),
101
+ "Citation Count": paper.get("citationCount", "N/A"),
102
+ "URL": paper.get("url", "N/A"),
103
+ # "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
104
+ # if paper.get("publicationTypes")
105
+ # else "N/A",
106
+ # "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
107
+ # if paper.get("openAccessPdf") is not None
108
+ # else "N/A",
109
+ }
110
+ for paper in recommendations
111
+ if paper.get("title") and paper.get("authors")
112
+ }
113
+
114
+ # Create a DataFrame for pretty printing
115
+ df = pd.DataFrame(filtered_papers)
116
+
117
+ # Format papers for state update
118
+ papers = [
119
+ f"Paper ID: {paper_id}\n"
120
+ f"Title: {paper_data['Title']}\n"
121
+ f"Abstract: {paper_data['Abstract']}\n"
122
+ f"Year: {paper_data['Year']}\n"
123
+ f"Citations: {paper_data['Citation Count']}\n"
124
+ f"URL: {paper_data['URL']}\n"
125
+ # f"Publication Type: {paper_data['Publication Type']}\n"
126
+ # f"Open Access PDF: {paper_data['Open Access PDF']}"
127
+ for paper_id, paper_data in filtered_papers.items()
128
+ ]
129
+
130
+ # Convert DataFrame to markdown table
131
+ markdown_table = df.to_markdown(tablefmt="grid")
132
+ logging.info("Search results: %s", papers)
133
+
134
+ return Command(
135
+ update={
136
+ "papers": filtered_papers, # Now sending the dictionary directly
137
+ "messages": [
138
+ ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
139
+ ],
140
+ }
141
+ )
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: aiagents4pharma
3
- Version: 1.8.3
3
+ Version: 1.10.0
4
4
  Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: MIT License
7
7
  Classifier: Operating System :: OS Independent
8
- Requires-Python: >=3.10
8
+ Requires-Python: >=3.12
9
9
  Description-Content-Type: text/markdown
10
10
  License-File: LICENSE
11
11
  Requires-Dist: copasi_basico==0.78
@@ -48,6 +48,9 @@ Requires-Dist: streamlit-feedback
48
48
  [![Talk2Cells](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml/badge.svg)](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml)
49
49
  [![Talk2KnowledgeGraphs](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2knowledgegraphs.yml/badge.svg)](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2knowledgegraphs.yml)
50
50
  [![Talk2Competitors](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2competitors.yml/badge.svg)](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2competitors.yml)
51
+ ![GitHub Release](https://img.shields.io/github/v/release/VirtualPatientEngine/AIAgents4Pharma)
52
+ ![Python Version from PEP 621 TOML](https://img.shields.io/python/required-version-toml?tomlFilePath=https%3A%2F%2Fraw.githubusercontent.com%2FVirtualPatientEngine%2FAIAgents4Pharma%2Frefs%2Fheads%2Fmain%2Fpyproject.toml)
53
+
51
54
 
52
55
  <h1 align="center" style="border-bottom: none;">🤖 AIAgents4Pharma</h1>
53
56
 
@@ -56,9 +59,9 @@ Welcome to **AIAgents4Pharma** – an open-source project by [Team VPE](https://
56
59
  Our toolkit currently consists of three intelligent agents, each designed to simplify and enhance access to specialized data in biology:
57
60
 
58
61
  - **Talk2BioModels**: Engage directly with mathematical models in systems biology.
59
- - **Talk2Cells** *(Work in progress)*: Query and analyze sequencing data with ease.
60
- - **Talk2KnowledgeGraphs** *(Work in progress)*: Access and explore complex biological knowledge graphs for insightful data connections.
61
- - **Talk2Competitors** *(Coming soon)*: Get recommendations for articles related to your choice. Download, query, and write/retrieve them to your reference manager (currently supporting Zotero).
62
+ - **Talk2Cells** _(Work in progress)_: Query and analyze sequencing data with ease.
63
+ - **Talk2KnowledgeGraphs** _(Work in progress)_: Access and explore complex biological knowledge graphs for insightful data connections.
64
+ - **Talk2Competitors** _(Coming soon)_: Get recommendations for articles related to your choice. Download, query, and write/retrieve them to your reference manager (currently supporting Zotero).
62
65
 
63
66
  ---
64
67
 
@@ -72,15 +75,15 @@ Our toolkit currently consists of three intelligent agents, each designed to sim
72
75
  - Adjust parameters within the model to simulate different conditions.
73
76
  - Query simulation results.
74
77
 
75
- ### 2. Talk2Cells *(Work in Progress)*
78
+ ### 2. Talk2Cells _(Work in Progress)_
76
79
 
77
80
  **Talk2Cells** is being developed to provide direct access to and analysis of sequencing data, such as RNA-Seq or DNA-Seq, using natural language.
78
81
 
79
- ### 3. Talk2KnowledgeGraphs *(Work in Progress)*
82
+ ### 3. Talk2KnowledgeGraphs _(Work in Progress)_
80
83
 
81
84
  **Talk2KnowledgeGraphs** is an agent designed to enable interaction with biological knowledge graphs (KGs). KGs integrate vast amounts of structured biological data into a format that highlights relationships between entities, such as proteins, genes, and diseases.
82
85
 
83
- ### 4. Talk2KnowledgeGraphs *(Coming soon)*
86
+ ### 4. Talk2Competitors _(Coming soon)_
84
87
 
85
88
  ## Getting Started
86
89
 
@@ -91,48 +94,60 @@ Our toolkit currently consists of three intelligent agents, each designed to sim
91
94
  - Required libraries specified in `requirements.txt`
92
95
 
93
96
  ### Installation
97
+
94
98
  #### Option 1: PyPI
95
- ```bash
96
- pip install aiagents4pharma
97
- ```
99
+
100
+ ```bash
101
+ pip install aiagents4pharma
102
+ ```
98
103
 
99
104
  Check out the tutorials on each agent for detailed instrcutions.
100
105
 
101
106
  #### Option 2: git
107
+
102
108
  1. **Clone the repository:**
109
+
103
110
  ```bash
104
111
  git clone https://github.com/VirtualPatientEngine/AIAgents4Pharma
105
112
  cd AIAgents4Pharma
106
113
  ```
107
114
 
108
115
  2. **Install dependencies:**
116
+
109
117
  ```bash
110
118
  pip install .
111
119
  ```
112
120
 
113
121
  3. **Initialize OPENAI_API_KEY**
122
+
114
123
  ```bash
115
- export OPENAI_API_KEY = ....
124
+ export OPENAI_API_KEY=....
116
125
  ```
117
126
 
118
127
  4. **[Optional] Set up login credentials**
128
+
119
129
  ```bash
120
130
  vi .streamlit/secrets.toml
121
131
  ```
132
+
122
133
  and enter
134
+
123
135
  ```
124
136
  password='XXX'
125
137
  ```
126
- Please note that the passowrd will be same for all the users.
138
+
139
+ Please note that the passoword will be same for all the users.
127
140
 
128
141
  5. **[Optional] Initialize LANGSMITH_API_KEY**
142
+
129
143
  ```bash
130
144
  export LANGCHAIN_TRACING_V2=true
131
145
  export LANGCHAIN_API_KEY=<your-api-key>
132
146
  ```
133
- Please note that this will create a new tracing project in your Langsmith
134
- account with the name `<user_name>@<uuid>`, where `user_name` is the name
135
- you provided in the previous step. If you skip the previous step, it will
147
+
148
+ Please note that this will create a new tracing project in your Langsmith
149
+ account with the name `<user_name>@<uuid>`, where `user_name` is the name
150
+ you provided in the previous step. If you skip the previous step, it will
136
151
  default to `default`. <uuid> will be the 128 bit unique ID created for the
137
152
  session.
138
153
 
@@ -164,6 +179,7 @@ We welcome contributions to AIAgents4Pharma! Here’s how you can help:
164
179
  5. **Open a pull request**
165
180
 
166
181
  ### Current Needs
182
+
167
183
  - **Beta testers** for Talk2BioModels.
168
184
  - **Developers** with experience in natural language processing, bioinformatics, or knowledge graphs for contributions to AIAgents4Pharma.
169
185
 
@@ -174,19 +190,22 @@ Check out our [CONTRIBUTING.md](CONTRIBUTING.md) for more information.
174
190
  ## Roadmap
175
191
 
176
192
  ### Completed
193
+
177
194
  - **Talk2BioModels**: Initial release with core capabilities for interacting with systems biology models.
178
195
 
179
196
  ### Planned
197
+
180
198
  - **User Interface**: Interactive web UI for all agents.
181
199
  - **Talk2Cells**: Integration of sequencing data analysis tools.
182
200
  - **Talk2KnowledgeGraphs**: Interface for biological knowledge graph interaction.
183
- - **Talk2Competitors**
201
+ - **Talk2Competitors**: Interface for exploring articles
184
202
 
185
- We’re excited to bring AIAgents4Pharma to the bioinformatics and pharmaceutical research community. Together, let’s make data-driven biological research more accessible and insightful.
203
+ We’re excited to bring AIAgents4Pharma to the bioinformatics and pharmaceutical research community. Together, let’s make data-driven biological research more accessible and insightful.
186
204
 
187
205
  **Get Started** with AIAgents4Pharma today and transform the way you interact with biological data.
188
206
 
189
207
  ---
190
208
 
191
209
  ## Feedback
210
+
192
211
  Questions/Bug reports/Feature requests/Comments/Suggestions? We welcome all. Please use the `Isssues` tab 😀
@@ -1,29 +1,29 @@
1
- aiagents4pharma/__init__.py,sha256=X-Mpbf4sfjMvoxiTTl4qFgCxrWZgtVgRjnjX6gbUtCg,173
1
+ aiagents4pharma/__init__.py,sha256=5muWWIg89VHPybfxonO_5xOMJPasKNsGdQRhozDaEmk,177
2
2
  aiagents4pharma/configs/__init__.py,sha256=hNkSrXw1Ix1HhkGn_aaidr2coBYySfM0Hm_pMeRcX7k,76
3
3
  aiagents4pharma/configs/config.yaml,sha256=8y8uG6Dzx4-9jyb6hZ8r4lOJz5gA_sQhCiSCgXL5l7k,65
4
4
  aiagents4pharma/configs/talk2biomodels/__init__.py,sha256=5ah__-8XyRblwT0U1ByRigNjt_GyCheu7zce4aM-eZE,68
5
5
  aiagents4pharma/configs/talk2biomodels/agents/__init__.py,sha256=_ZoG8snICK2bidWtc2KOGs738LWg9_r66V9mOMnEb-E,71
6
6
  aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
7
- aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml,sha256=-IwTmcZFlgUzxxHgcaR9jmbVKCP3IFEHtqzAD4pek6s,200
8
- aiagents4pharma/talk2biomodels/__init__.py,sha256=9MuyHb5KTf5ufeyq7fu5xoLEwVT688DFOWuKuzdWG9o,140
7
+ aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml,sha256=yD7qZCneaM-JE5PdZjDmDoTRUdsFrzeCKZsBx1b-f20,293
8
+ aiagents4pharma/talk2biomodels/__init__.py,sha256=qUw3qXrENqSCLIKSLy_qtNPwPDTb1wdZ8fZispcHb3g,141
9
9
  aiagents4pharma/talk2biomodels/agents/__init__.py,sha256=sn5-fREjMdEvb-OUan3iOqrgYGjplNx3J8hYOaW0Po8,128
10
10
  aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=nVWxHR-QMZDqDwxvDga_CvLo7LHP5cWCDl6lXCMcRO0,3264
11
11
  aiagents4pharma/talk2biomodels/models/__init__.py,sha256=5fTHHm3PVloYPNKXbgNlcPgv3-u28ZquxGydFYDfhJA,122
12
12
  aiagents4pharma/talk2biomodels/models/basico_model.py,sha256=js7ORLwbJPaIsko5oRToMMCh4l8LsN292OIvFzTfvRg,4946
13
13
  aiagents4pharma/talk2biomodels/models/sys_bio_model.py,sha256=ylpPba2SA8kl68q3k1kJbiUdRYplPHykyslTQLDZ19I,1995
14
14
  aiagents4pharma/talk2biomodels/states/__init__.py,sha256=YLg1-N0D9qyRRLRqwqfLCLAqZYDtMVZTfI8Y0b_4tbA,139
15
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=cneAsNgtzDoL3_gkC4gf7h69BfBOY7rASpYWz4I8jjI,761
15
+ aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=iob7q5Kpy6aWDLCiFsp4NNVYYXNdDU3vU50PmxyvBsU,792
16
16
  aiagents4pharma/talk2biomodels/tests/__init__.py,sha256=Jbw5tJxSrjGoaK5IX3pJWDCNzhrVQ10lkYq2oQ_KQD8,45
17
17
  aiagents4pharma/talk2biomodels/tests/test_basico_model.py,sha256=uqhbojcA4RRTDRUAF9B9DzKCo3OOIOWMDK8IViG0gsM,2038
18
- aiagents4pharma/talk2biomodels/tests/test_langgraph.py,sha256=z3bS_LE2s9kba2fFM5SWQy1uIalQBbCnGJuakQjnKTQ,7365
18
+ aiagents4pharma/talk2biomodels/tests/test_langgraph.py,sha256=GyqsUpcWgjuRb15DpGvLg-FZ8g3_cf0TwVcaCPp_vO0,9456
19
19
  aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py,sha256=nA6bRT16627mw8qzrv7cHM9AByHb9F0kxAuwOpE-avA,1961
20
20
  aiagents4pharma/talk2biomodels/tools/__init__.py,sha256=8hAT6z1OO8N9HRylh6fwoqyjYlGdpkngkElBNqH40Zo,237
21
- aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=UEdT46DIFZHlAOF4cNX4_s7VjHvbbiGpNmEY2-XW2iA,2655
22
- aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=BfLSivWqtRVZDeqD7RP5sgZP6B9rET47IWdNrA3gmIE,3825
23
- aiagents4pharma/talk2biomodels/tools/get_modelinfo.py,sha256=czxjRa9jvjTow-POGU5wSV8_lwfknAezBnzCFA0gQ8E,5189
21
+ aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=uxCQ4ON8--D0ACPvT14t6x_aqm9LP6woBA4GM7bPXc4,3061
22
+ aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=HWwKTX3o4dk0GcRVTO2hPrFSu98mtJ4TKC_hbHXOe1c,4018
23
+ aiagents4pharma/talk2biomodels/tools/get_modelinfo.py,sha256=68KmeEpgvgaDQM9airOWVy4fGT33rG10RlXhps5W6C0,5279
24
24
  aiagents4pharma/talk2biomodels/tools/load_biomodel.py,sha256=pyVzLQoMnuJYEwsjeOlqcUrbU1F1Z-pNlgkhFaoKpy0,689
25
25
  aiagents4pharma/talk2biomodels/tools/search_models.py,sha256=Iq2ddofOOfZYtAurCISq3bAq5rbwB3l_rL1lgEFyFCI,2653
26
- aiagents4pharma/talk2biomodels/tools/simulate_model.py,sha256=hBRrSLVGcaT157FCe8ajVKJZ2fi9CJhGeniGLaZJ-KE,6251
26
+ aiagents4pharma/talk2biomodels/tools/simulate_model.py,sha256=1HVoI5SkktvpOmTnAG8hxrhpoxpg_he-bb5ZJ_UllI4,6833
27
27
  aiagents4pharma/talk2cells/__init__.py,sha256=zmOP5RAhabgKIQP-W4P4qKME2tG3fhAXM3MeO5_H8kE,120
28
28
  aiagents4pharma/talk2cells/agents/__init__.py,sha256=38nK2a_lEFRjO3qD6Fo9a3983ZCYat6hmJKWY61y2Mo,128
29
29
  aiagents4pharma/talk2cells/agents/scp_agent.py,sha256=gDMfhUNWHa_XWOqm1Ql6yLAdI_7bnIk5sRYn43H2sYk,3090
@@ -34,7 +34,22 @@ aiagents4pharma/talk2cells/tools/__init__.py,sha256=38nK2a_lEFRjO3qD6Fo9a3983ZCY
34
34
  aiagents4pharma/talk2cells/tools/scp_agent/__init__.py,sha256=s7g0lyH1lMD9pcWHLPtwRJRvzmTh2II7DrxyLulpjmQ,163
35
35
  aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py,sha256=6q59gh_NQaiOU2rn55A3sIIFKlXi4SK3iKgySvUDrtQ,600
36
36
  aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py,sha256=MLe-twtFnOu-P8P9diYq7jvHBHbWFRRCZLcfpUzqPMg,2806
37
- aiagents4pharma/talk2competitors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
+ aiagents4pharma/talk2competitors/__init__.py,sha256=haaikzND3c0Euqq86ndA4fl9q42aOop5rYG_8Zh1D-o,119
38
+ aiagents4pharma/talk2competitors/agents/__init__.py,sha256=ykszlVGxz3egLHZAttlNoTPxIrnQJZYva_ssR8fwIFk,117
39
+ aiagents4pharma/talk2competitors/agents/main_agent.py,sha256=UoHCpZd-HoeG0B6_gAF1cEP2OqMvrTuGe7MZDwL_u1U,3878
40
+ aiagents4pharma/talk2competitors/agents/s2_agent.py,sha256=eTrhc4ZPvWOUWMHNYxK0WltsZedZUnAWNu-TeUa-ruk,2501
41
+ aiagents4pharma/talk2competitors/config/__init__.py,sha256=HyM6paOpKZ5_tZnyVheSAFmxjT6Mb3PxvWKfP0rz-dE,113
42
+ aiagents4pharma/talk2competitors/config/config.py,sha256=jd4ltMBJyTztm9wT7j3ujOyYxL2SXRgxQJ4OZUBmCG4,5387
43
+ aiagents4pharma/talk2competitors/state/__init__.py,sha256=DzFjV3hZNes_pL4bDW2_8RsyK9BJcj6ejfBzU0KWn1k,106
44
+ aiagents4pharma/talk2competitors/state/state_talk2competitors.py,sha256=GUl1ZfM77XsjIEu-3xy4dtvaiMTA1pXf6i1ozVcX5Gg,993
45
+ aiagents4pharma/talk2competitors/tests/__init__.py,sha256=U3PsTiUZaUBD1IZanFGkDIOdFieDVJtGKQ5-woYUo8c,45
46
+ aiagents4pharma/talk2competitors/tests/test_langgraph.py,sha256=sEROK1aU3wFqJhZohONVI6Pr7t1d3PSqs-4erVIyiJw,9283
47
+ aiagents4pharma/talk2competitors/tools/__init__.py,sha256=YudBDRwaEzDnAcpxGZvEOfyh5-6xd51CTvTKTkywgXw,68
48
+ aiagents4pharma/talk2competitors/tools/s2/__init__.py,sha256=9RQH3efTj6qkXk0ICKSc7Mzpkitt4gRGsQ1pGPrrREU,181
49
+ aiagents4pharma/talk2competitors/tools/s2/display_results.py,sha256=B8JJGohi1Eyx8C3MhO_SiyQP3R6hPyUKJOAzcHmq3FU,584
50
+ aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py,sha256=FYLt47DAk6WOKfEk1Gj9zVvJGNyxA283PCp8IKW9U5M,4262
51
+ aiagents4pharma/talk2competitors/tools/s2/search.py,sha256=pppjrQv5-8ep4fnqgTSBNgnbSnQsVIcNrRrH0p2TP1o,4025
52
+ aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py,sha256=dAfUQxI7T5eu0eDxK8VAl7-JH0Wnw24CVkOQqwj-hXc,4810
38
53
  aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=SW7Ys2A4eXyFtizNPdSw91SHOPVUBGBsrCQ7TqwSUL0,91
39
54
  aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py,sha256=L3gPuHskSegmtXskVrLIYr7FXe_ibKgJ2GGr1_Wok6k,173
40
55
  aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=QlzDXmXREoa9MA6-GwzqRjdzndQeGBAF11Td6NFk_9Y,23426
@@ -55,8 +70,8 @@ aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py,sha256=xRb0x7S
55
70
  aiagents4pharma/talk2knowledgegraphs/utils/embeddings/embeddings.py,sha256=1nGznrAj-xT0xuSMBGz2dOujJ7M_IwSR84njxtxsy9A,2523
56
71
  aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py,sha256=2vi_elf6EgzfagFAO5QnL3a_aXZyN7B1EBziu44MTfM,3806
57
72
  aiagents4pharma/talk2knowledgegraphs/utils/embeddings/sentence_transformer.py,sha256=36iKlisOpMtGR5xfTAlSHXWvPqVC_Jbezod8kbBBMVg,2136
58
- aiagents4pharma-1.8.3.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
59
- aiagents4pharma-1.8.3.dist-info/METADATA,sha256=qIsojNDT5C2dKHbTLBc7NfcCUyin52GWeP3G0GfU-mE,7988
60
- aiagents4pharma-1.8.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
61
- aiagents4pharma-1.8.3.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
62
- aiagents4pharma-1.8.3.dist-info/RECORD,,
73
+ aiagents4pharma-1.10.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
74
+ aiagents4pharma-1.10.0.dist-info/METADATA,sha256=a5XUji4VHk7HcE5GC7txe7v2sNUbgH4ijSHpxoNh74E,8340
75
+ aiagents4pharma-1.10.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
76
+ aiagents4pharma-1.10.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
77
+ aiagents4pharma-1.10.0.dist-info/RECORD,,