aiagents4pharma 1.8.3__py3-none-any.whl → 1.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/__init__.py +9 -6
- aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml +3 -1
- aiagents4pharma/talk2biomodels/__init__.py +1 -1
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +1 -1
- aiagents4pharma/talk2biomodels/tests/test_langgraph.py +71 -20
- aiagents4pharma/talk2biomodels/tools/ask_question.py +16 -7
- aiagents4pharma/talk2biomodels/tools/custom_plotter.py +20 -14
- aiagents4pharma/talk2biomodels/tools/get_modelinfo.py +6 -6
- aiagents4pharma/talk2biomodels/tools/simulate_model.py +26 -12
- aiagents4pharma/talk2competitors/__init__.py +5 -0
- aiagents4pharma/talk2competitors/agents/__init__.py +6 -0
- aiagents4pharma/talk2competitors/agents/main_agent.py +130 -0
- aiagents4pharma/talk2competitors/agents/s2_agent.py +75 -0
- aiagents4pharma/talk2competitors/config/__init__.py +5 -0
- aiagents4pharma/talk2competitors/config/config.py +110 -0
- aiagents4pharma/talk2competitors/state/__init__.py +5 -0
- aiagents4pharma/talk2competitors/state/state_talk2competitors.py +32 -0
- aiagents4pharma/talk2competitors/tests/__init__.py +3 -0
- aiagents4pharma/talk2competitors/tests/test_langgraph.py +274 -0
- aiagents4pharma/talk2competitors/tools/__init__.py +7 -0
- aiagents4pharma/talk2competitors/tools/s2/__init__.py +8 -0
- aiagents4pharma/talk2competitors/tools/s2/display_results.py +25 -0
- aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py +132 -0
- aiagents4pharma/talk2competitors/tools/s2/search.py +119 -0
- aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py +141 -0
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/METADATA +37 -18
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/RECORD +30 -15
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.8.3.dist-info → aiagents4pharma-1.10.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,110 @@
|
|
1
|
+
"""Configuration module for AI agents handling paper searches and recommendations."""
|
2
|
+
|
3
|
+
|
4
|
+
# pylint: disable=R0903
|
5
|
+
class Config:
|
6
|
+
"""Configuration class containing prompts for AI agents.
|
7
|
+
|
8
|
+
This class stores prompt templates used by various AI agents in the system,
|
9
|
+
particularly for academic paper searches and recommendations.
|
10
|
+
"""
|
11
|
+
|
12
|
+
MAIN_AGENT_PROMPT = (
|
13
|
+
"You are a supervisory AI agent that routes user queries to specialized tools.\n"
|
14
|
+
"Your task is to select the most appropriate tool based on the user's request.\n\n"
|
15
|
+
"Available tools and their capabilities:\n\n"
|
16
|
+
"1. semantic_scholar_agent:\n"
|
17
|
+
" - Search for academic papers and research\n"
|
18
|
+
" - Get paper recommendations\n"
|
19
|
+
" - Find similar papers\n"
|
20
|
+
" USE FOR: Any queries about finding papers, academic research, "
|
21
|
+
"or getting paper recommendations\n\n"
|
22
|
+
"ROUTING GUIDELINES:\n\n"
|
23
|
+
"ALWAYS route to semantic_scholar_agent for:\n"
|
24
|
+
"- Finding academic papers\n"
|
25
|
+
"- Searching research topics\n"
|
26
|
+
"- Getting paper recommendations\n"
|
27
|
+
"- Finding similar papers\n"
|
28
|
+
"- Any query about academic literature\n\n"
|
29
|
+
"Approach:\n"
|
30
|
+
"1. Identify the core need in the user's query\n"
|
31
|
+
"2. Select the most appropriate tool based on the guidelines above\n"
|
32
|
+
"3. If unclear, ask for clarification\n"
|
33
|
+
"4. For multi-step tasks, focus on the immediate next step\n\n"
|
34
|
+
"Remember:\n"
|
35
|
+
"- Be decisive in your tool selection\n"
|
36
|
+
"- Focus on the immediate task\n"
|
37
|
+
"- Default to semantic_scholar_agent for any paper-finding tasks\n"
|
38
|
+
"- Ask for clarification if the request is ambiguous\n\n"
|
39
|
+
"When presenting paper search results, always use this exact format:\n\n"
|
40
|
+
"Remember to:\n"
|
41
|
+
"- Always remember to add the url\n"
|
42
|
+
"- Put URLs on the title line itself as markdown\n"
|
43
|
+
"- Maintain consistent spacing and formatting"
|
44
|
+
)
|
45
|
+
|
46
|
+
S2_AGENT_PROMPT = (
|
47
|
+
"You are a specialized academic research assistant with access to the following tools:\n\n"
|
48
|
+
"1. search_papers:\n"
|
49
|
+
" USE FOR: General paper searches\n"
|
50
|
+
" - Enhances search terms automatically\n"
|
51
|
+
" - Adds relevant academic keywords\n"
|
52
|
+
" - Focuses on recent research when appropriate\n\n"
|
53
|
+
"2. get_single_paper_recommendations:\n"
|
54
|
+
" USE FOR: Finding papers similar to a specific paper\n"
|
55
|
+
" - Takes a single paper ID\n"
|
56
|
+
" - Returns related papers\n\n"
|
57
|
+
"3. get_multi_paper_recommendations:\n"
|
58
|
+
" USE FOR: Finding papers similar to multiple papers\n"
|
59
|
+
" - Takes multiple paper IDs\n"
|
60
|
+
" - Finds papers related to all inputs\n\n"
|
61
|
+
"GUIDELINES:\n\n"
|
62
|
+
"For paper searches:\n"
|
63
|
+
"- Enhance search terms with academic language\n"
|
64
|
+
"- Include field-specific terminology\n"
|
65
|
+
'- Add "recent" or "latest" when appropriate\n'
|
66
|
+
"- Keep queries focused and relevant\n\n"
|
67
|
+
"For paper recommendations:\n"
|
68
|
+
"- Identify paper IDs (40-character hexadecimal strings)\n"
|
69
|
+
"- Use single_paper_recommendations for one ID\n"
|
70
|
+
"- Use multi_paper_recommendations for multiple IDs\n\n"
|
71
|
+
"Best practices:\n"
|
72
|
+
"1. Start with a broad search if no paper IDs are provided\n"
|
73
|
+
"2. Look for paper IDs in user input\n"
|
74
|
+
"3. Enhance search terms for better results\n"
|
75
|
+
"4. Consider the academic context\n"
|
76
|
+
"5. Be prepared to refine searches based on feedback\n\n"
|
77
|
+
"Remember:\n"
|
78
|
+
"- Always select the most appropriate tool\n"
|
79
|
+
"- Enhance search queries naturally\n"
|
80
|
+
"- Consider academic context\n"
|
81
|
+
"- Focus on delivering relevant results\n\n"
|
82
|
+
"IMPORTANT GUIDELINES FOR PAPER RECOMMENDATIONS:\n\n"
|
83
|
+
"For Multiple Papers:\n"
|
84
|
+
"- When getting recommendations for multiple papers, always use "
|
85
|
+
"get_multi_paper_recommendations tool\n"
|
86
|
+
"- DO NOT call get_single_paper_recommendations multiple times\n"
|
87
|
+
"- Always pass all paper IDs in a single call to get_multi_paper_recommendations\n"
|
88
|
+
'- Use for queries like "find papers related to both/all papers" or '
|
89
|
+
'"find similar papers to these papers"\n\n'
|
90
|
+
"For Single Paper:\n"
|
91
|
+
"- Use get_single_paper_recommendations when focusing on one specific paper\n"
|
92
|
+
"- Pass only one paper ID at a time\n"
|
93
|
+
'- Use for queries like "find papers similar to this paper" or '
|
94
|
+
'"get recommendations for paper X"\n'
|
95
|
+
"- Do not use for multiple papers\n\n"
|
96
|
+
"Examples:\n"
|
97
|
+
'- For "find related papers for both papers":\n'
|
98
|
+
" ✓ Use get_multi_paper_recommendations with both paper IDs\n"
|
99
|
+
" × Don't make multiple calls to get_single_paper_recommendations\n\n"
|
100
|
+
'- For "find papers related to the first paper":\n'
|
101
|
+
" ✓ Use get_single_paper_recommendations with just that paper's ID\n"
|
102
|
+
" × Don't use get_multi_paper_recommendations\n\n"
|
103
|
+
"Remember:\n"
|
104
|
+
"- Be precise in identifying which paper ID to use for single recommendations\n"
|
105
|
+
"- Don't reuse previous paper IDs unless specifically requested\n"
|
106
|
+
"- For fresh paper recommendations, always use the original paper ID"
|
107
|
+
)
|
108
|
+
|
109
|
+
|
110
|
+
config = Config()
|
@@ -0,0 +1,32 @@
|
|
1
|
+
"""
|
2
|
+
This is the state file for the talk2comp agent.
|
3
|
+
"""
|
4
|
+
|
5
|
+
import logging
|
6
|
+
from typing import Annotated, Any, Dict, Optional
|
7
|
+
|
8
|
+
from langgraph.prebuilt.chat_agent_executor import AgentState
|
9
|
+
from typing_extensions import NotRequired, Required
|
10
|
+
|
11
|
+
# Configure logging
|
12
|
+
logging.basicConfig(level=logging.INFO)
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
|
16
|
+
def replace_dict(existing: Dict[str, Any], new: Dict[str, Any]) -> Dict[str, Any]:
|
17
|
+
"""Replace the existing dict with the new one."""
|
18
|
+
logger.info("Updating existing state %s with the state dict: %s", existing, new)
|
19
|
+
return new
|
20
|
+
|
21
|
+
|
22
|
+
class Talk2Competitors(AgentState):
|
23
|
+
"""
|
24
|
+
The state for the talk2comp agent, inheriting from AgentState.
|
25
|
+
"""
|
26
|
+
|
27
|
+
papers: Annotated[Dict[str, Any], replace_dict] # Changed from List to Dict
|
28
|
+
search_table: NotRequired[str]
|
29
|
+
next: str # Required for routing in LangGraph
|
30
|
+
current_agent: NotRequired[Optional[str]]
|
31
|
+
is_last_step: Required[bool] # Required field for LangGraph
|
32
|
+
llm_model: str
|
@@ -0,0 +1,274 @@
|
|
1
|
+
"""
|
2
|
+
Unit and integration tests for Talk2Competitors system.
|
3
|
+
Each test focuses on a single, specific functionality.
|
4
|
+
Tests are deterministic and independent of each other.
|
5
|
+
"""
|
6
|
+
|
7
|
+
from unittest.mock import Mock, patch
|
8
|
+
|
9
|
+
import pytest
|
10
|
+
from langchain_core.messages import AIMessage, HumanMessage
|
11
|
+
|
12
|
+
from ..agents.main_agent import get_app, make_supervisor_node
|
13
|
+
from ..state.state_talk2competitors import replace_dict
|
14
|
+
from ..tools.s2.display_results import display_results
|
15
|
+
from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations
|
16
|
+
from ..tools.s2.search import search_tool
|
17
|
+
from ..tools.s2.single_paper_rec import get_single_paper_recommendations
|
18
|
+
|
19
|
+
# pylint: disable=redefined-outer-name
|
20
|
+
|
21
|
+
# Fixed test data for deterministic results
|
22
|
+
MOCK_SEARCH_RESPONSE = {
|
23
|
+
"data": [
|
24
|
+
{
|
25
|
+
"paperId": "123",
|
26
|
+
"title": "Machine Learning Basics",
|
27
|
+
"abstract": "An introduction to ML",
|
28
|
+
"year": 2023,
|
29
|
+
"citationCount": 100,
|
30
|
+
"url": "https://example.com/paper1",
|
31
|
+
"authors": [{"name": "Test Author"}],
|
32
|
+
}
|
33
|
+
]
|
34
|
+
}
|
35
|
+
|
36
|
+
MOCK_STATE_PAPER = {
|
37
|
+
"123": {
|
38
|
+
"Title": "Machine Learning Basics",
|
39
|
+
"Abstract": "An introduction to ML",
|
40
|
+
"Year": 2023,
|
41
|
+
"Citation Count": 100,
|
42
|
+
"URL": "https://example.com/paper1",
|
43
|
+
}
|
44
|
+
}
|
45
|
+
|
46
|
+
|
47
|
+
@pytest.fixture
|
48
|
+
def initial_state():
|
49
|
+
"""Create a base state for tests"""
|
50
|
+
return {
|
51
|
+
"messages": [],
|
52
|
+
"papers": {},
|
53
|
+
"is_last_step": False,
|
54
|
+
"current_agent": None,
|
55
|
+
"llm_model": "gpt-4o-mini",
|
56
|
+
}
|
57
|
+
|
58
|
+
|
59
|
+
class TestMainAgent:
|
60
|
+
"""Unit tests for main agent functionality"""
|
61
|
+
|
62
|
+
def test_supervisor_routes_search_to_s2(self, initial_state):
|
63
|
+
"""Verifies that search-related queries are routed to S2 agent"""
|
64
|
+
llm_mock = Mock()
|
65
|
+
llm_mock.invoke.return_value = AIMessage(content="Search initiated")
|
66
|
+
|
67
|
+
supervisor = make_supervisor_node(llm_mock)
|
68
|
+
state = initial_state.copy()
|
69
|
+
state["messages"] = [HumanMessage(content="search for papers")]
|
70
|
+
|
71
|
+
result = supervisor(state)
|
72
|
+
assert result.goto == "s2_agent"
|
73
|
+
assert not result.update["is_last_step"]
|
74
|
+
assert result.update["current_agent"] == "s2_agent"
|
75
|
+
|
76
|
+
def test_supervisor_routes_general_to_end(self, initial_state):
|
77
|
+
"""Verifies that non-search queries end the conversation"""
|
78
|
+
llm_mock = Mock()
|
79
|
+
llm_mock.invoke.return_value = AIMessage(content="General response")
|
80
|
+
|
81
|
+
supervisor = make_supervisor_node(llm_mock)
|
82
|
+
state = initial_state.copy()
|
83
|
+
state["messages"] = [HumanMessage(content="What is ML?")]
|
84
|
+
|
85
|
+
result = supervisor(state)
|
86
|
+
assert result.goto == "__end__"
|
87
|
+
assert result.update["is_last_step"]
|
88
|
+
|
89
|
+
|
90
|
+
class TestS2Tools:
|
91
|
+
"""Unit tests for individual S2 tools"""
|
92
|
+
|
93
|
+
def test_display_results_shows_papers(self, initial_state):
|
94
|
+
"""Verifies display_results tool correctly returns papers from state"""
|
95
|
+
state = initial_state.copy()
|
96
|
+
state["papers"] = MOCK_STATE_PAPER
|
97
|
+
result = display_results.invoke(input={"state": state})
|
98
|
+
assert result == MOCK_STATE_PAPER
|
99
|
+
assert isinstance(result, dict)
|
100
|
+
|
101
|
+
@patch("requests.get")
|
102
|
+
def test_search_finds_papers(self, mock_get):
|
103
|
+
"""Verifies search tool finds and formats papers correctly"""
|
104
|
+
mock_get.return_value.json.return_value = MOCK_SEARCH_RESPONSE
|
105
|
+
mock_get.return_value.status_code = 200
|
106
|
+
|
107
|
+
result = search_tool.invoke(
|
108
|
+
input={
|
109
|
+
"query": "machine learning",
|
110
|
+
"limit": 1,
|
111
|
+
"tool_call_id": "test123",
|
112
|
+
"id": "test123",
|
113
|
+
}
|
114
|
+
)
|
115
|
+
|
116
|
+
assert "papers" in result.update
|
117
|
+
assert "messages" in result.update
|
118
|
+
papers = result.update["papers"]
|
119
|
+
assert isinstance(papers, dict)
|
120
|
+
assert len(papers) > 0
|
121
|
+
paper = next(iter(papers.values()))
|
122
|
+
assert paper["Title"] == "Machine Learning Basics"
|
123
|
+
assert paper["Year"] == 2023
|
124
|
+
|
125
|
+
@patch("requests.get")
|
126
|
+
def test_single_paper_rec_basic(self, mock_get):
|
127
|
+
"""Tests basic single paper recommendation functionality"""
|
128
|
+
mock_get.return_value.json.return_value = {
|
129
|
+
"recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
|
130
|
+
}
|
131
|
+
mock_get.return_value.status_code = 200
|
132
|
+
|
133
|
+
result = get_single_paper_recommendations.invoke(
|
134
|
+
input={
|
135
|
+
"paper_id": "123",
|
136
|
+
"limit": 1,
|
137
|
+
"tool_call_id": "test123",
|
138
|
+
"id": "test123",
|
139
|
+
}
|
140
|
+
)
|
141
|
+
assert "papers" in result.update
|
142
|
+
assert len(result.update["messages"]) == 1
|
143
|
+
|
144
|
+
@patch("requests.get")
|
145
|
+
def test_single_paper_rec_with_optional_params(self, mock_get):
|
146
|
+
"""Tests single paper recommendations with year parameter"""
|
147
|
+
mock_get.return_value.json.return_value = {
|
148
|
+
"recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
|
149
|
+
}
|
150
|
+
mock_get.return_value.status_code = 200
|
151
|
+
|
152
|
+
result = get_single_paper_recommendations.invoke(
|
153
|
+
input={
|
154
|
+
"paper_id": "123",
|
155
|
+
"limit": 1,
|
156
|
+
"year": "2023-",
|
157
|
+
"tool_call_id": "test123",
|
158
|
+
"id": "test123",
|
159
|
+
}
|
160
|
+
)
|
161
|
+
assert "papers" in result.update
|
162
|
+
|
163
|
+
@patch("requests.post")
|
164
|
+
def test_multi_paper_rec_basic(self, mock_post):
|
165
|
+
"""Tests basic multi-paper recommendation functionality"""
|
166
|
+
mock_post.return_value.json.return_value = {
|
167
|
+
"recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
|
168
|
+
}
|
169
|
+
mock_post.return_value.status_code = 200
|
170
|
+
|
171
|
+
result = get_multi_paper_recommendations.invoke(
|
172
|
+
input={
|
173
|
+
"paper_ids": ["123", "456"],
|
174
|
+
"limit": 1,
|
175
|
+
"tool_call_id": "test123",
|
176
|
+
"id": "test123",
|
177
|
+
}
|
178
|
+
)
|
179
|
+
assert "papers" in result.update
|
180
|
+
assert len(result.update["messages"]) == 1
|
181
|
+
|
182
|
+
@patch("requests.post")
|
183
|
+
def test_multi_paper_rec_with_optional_params(self, mock_post):
|
184
|
+
"""Tests multi-paper recommendations with all optional parameters"""
|
185
|
+
mock_post.return_value.json.return_value = {
|
186
|
+
"recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
|
187
|
+
}
|
188
|
+
mock_post.return_value.status_code = 200
|
189
|
+
|
190
|
+
result = get_multi_paper_recommendations.invoke(
|
191
|
+
input={
|
192
|
+
"paper_ids": ["123", "456"],
|
193
|
+
"limit": 1,
|
194
|
+
"year": "2023-",
|
195
|
+
"tool_call_id": "test123",
|
196
|
+
"id": "test123",
|
197
|
+
}
|
198
|
+
)
|
199
|
+
assert "papers" in result.update
|
200
|
+
assert len(result.update["messages"]) == 1
|
201
|
+
|
202
|
+
@patch("requests.get")
|
203
|
+
def test_single_paper_rec_empty_response(self, mock_get):
|
204
|
+
"""Tests single paper recommendations with empty response"""
|
205
|
+
mock_get.return_value.json.return_value = {"recommendedPapers": []}
|
206
|
+
mock_get.return_value.status_code = 200
|
207
|
+
|
208
|
+
result = get_single_paper_recommendations.invoke(
|
209
|
+
input={
|
210
|
+
"paper_id": "123",
|
211
|
+
"limit": 1,
|
212
|
+
"tool_call_id": "test123",
|
213
|
+
"id": "test123",
|
214
|
+
}
|
215
|
+
)
|
216
|
+
assert "papers" in result.update
|
217
|
+
assert len(result.update["papers"]) == 0
|
218
|
+
|
219
|
+
@patch("requests.post")
|
220
|
+
def test_multi_paper_rec_empty_response(self, mock_post):
|
221
|
+
"""Tests multi-paper recommendations with empty response"""
|
222
|
+
mock_post.return_value.json.return_value = {"recommendedPapers": []}
|
223
|
+
mock_post.return_value.status_code = 200
|
224
|
+
|
225
|
+
result = get_multi_paper_recommendations.invoke(
|
226
|
+
input={
|
227
|
+
"paper_ids": ["123", "456"],
|
228
|
+
"limit": 1,
|
229
|
+
"tool_call_id": "test123",
|
230
|
+
"id": "test123",
|
231
|
+
}
|
232
|
+
)
|
233
|
+
assert "papers" in result.update
|
234
|
+
assert len(result.update["papers"]) == 0
|
235
|
+
|
236
|
+
|
237
|
+
def test_state_replace_dict():
|
238
|
+
"""Verifies state dictionary replacement works correctly"""
|
239
|
+
existing = {"key1": "value1", "key2": "value2"}
|
240
|
+
new = {"key3": "value3"}
|
241
|
+
result = replace_dict(existing, new)
|
242
|
+
assert result == new
|
243
|
+
assert isinstance(result, dict)
|
244
|
+
|
245
|
+
|
246
|
+
@pytest.mark.integration
|
247
|
+
def test_end_to_end_search_workflow(initial_state):
|
248
|
+
"""Integration test: Complete search workflow"""
|
249
|
+
with (
|
250
|
+
patch("requests.get") as mock_get,
|
251
|
+
patch("langchain_openai.ChatOpenAI") as mock_llm,
|
252
|
+
):
|
253
|
+
mock_get.return_value.json.return_value = MOCK_SEARCH_RESPONSE
|
254
|
+
mock_get.return_value.status_code = 200
|
255
|
+
|
256
|
+
llm_instance = Mock()
|
257
|
+
llm_instance.invoke.return_value = AIMessage(content="Search completed")
|
258
|
+
mock_llm.return_value = llm_instance
|
259
|
+
|
260
|
+
app = get_app("test_integration")
|
261
|
+
test_state = initial_state.copy()
|
262
|
+
test_state["messages"] = [HumanMessage(content="search for ML papers")]
|
263
|
+
|
264
|
+
config = {
|
265
|
+
"configurable": {
|
266
|
+
"thread_id": "test_integration",
|
267
|
+
"checkpoint_ns": "test",
|
268
|
+
"checkpoint_id": "test123",
|
269
|
+
}
|
270
|
+
}
|
271
|
+
|
272
|
+
response = app.invoke(test_state, config)
|
273
|
+
assert "papers" in response
|
274
|
+
assert len(response["messages"]) > 0
|
@@ -0,0 +1,25 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
'''
|
4
|
+
This tool is used to display the table of studies.
|
5
|
+
'''
|
6
|
+
|
7
|
+
import logging
|
8
|
+
from typing import Annotated
|
9
|
+
from langchain_core.tools import tool
|
10
|
+
from langgraph.prebuilt import InjectedState
|
11
|
+
|
12
|
+
# Configure logging
|
13
|
+
logging.basicConfig(level=logging.INFO)
|
14
|
+
logger = logging.getLogger(__name__)
|
15
|
+
|
16
|
+
@tool('display_results')
|
17
|
+
def display_results(state: Annotated[dict, InjectedState]):
|
18
|
+
"""
|
19
|
+
Display the papers in the state.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
state (dict): The state of the agent.
|
23
|
+
"""
|
24
|
+
logger.info("Displaying papers from the state")
|
25
|
+
return state["papers"]
|
@@ -0,0 +1,132 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
multi_paper_rec: Tool for getting recommendations
|
5
|
+
based on multiple papers
|
6
|
+
"""
|
7
|
+
|
8
|
+
import json
|
9
|
+
import logging
|
10
|
+
from typing import Annotated, Any, Dict, List, Optional
|
11
|
+
|
12
|
+
import pandas as pd
|
13
|
+
import requests
|
14
|
+
from langchain_core.messages import ToolMessage
|
15
|
+
from langchain_core.tools import tool
|
16
|
+
from langchain_core.tools.base import InjectedToolCallId
|
17
|
+
from langgraph.types import Command
|
18
|
+
from pydantic import BaseModel, Field
|
19
|
+
|
20
|
+
|
21
|
+
class MultiPaperRecInput(BaseModel):
|
22
|
+
"""Input schema for multiple paper recommendations tool."""
|
23
|
+
|
24
|
+
paper_ids: List[str] = Field(
|
25
|
+
description=("List of Semantic Scholar Paper IDs to get recommendations for")
|
26
|
+
)
|
27
|
+
limit: int = Field(
|
28
|
+
default=2,
|
29
|
+
description="Maximum total number of recommendations to return",
|
30
|
+
ge=1,
|
31
|
+
le=500,
|
32
|
+
)
|
33
|
+
year: Optional[str] = Field(
|
34
|
+
default=None,
|
35
|
+
description="Year range in format: YYYY for specific year, "
|
36
|
+
"YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
|
37
|
+
)
|
38
|
+
tool_call_id: Annotated[str, InjectedToolCallId]
|
39
|
+
|
40
|
+
model_config = {"arbitrary_types_allowed": True}
|
41
|
+
|
42
|
+
|
43
|
+
@tool(args_schema=MultiPaperRecInput)
|
44
|
+
def get_multi_paper_recommendations(
|
45
|
+
paper_ids: List[str],
|
46
|
+
tool_call_id: Annotated[str, InjectedToolCallId],
|
47
|
+
limit: int = 2,
|
48
|
+
year: Optional[str] = None,
|
49
|
+
) -> Dict[str, Any]:
|
50
|
+
"""
|
51
|
+
Get paper recommendations based on multiple papers.
|
52
|
+
|
53
|
+
Args:
|
54
|
+
paper_ids (List[str]): The list of paper IDs to base recommendations on.
|
55
|
+
tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
|
56
|
+
limit (int, optional): The maximum number of recommendations to return. Defaults to 2.
|
57
|
+
year (str, optional): Year range for papers.
|
58
|
+
Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
|
59
|
+
|
60
|
+
Returns:
|
61
|
+
Dict[str, Any]: The recommendations and related information.
|
62
|
+
"""
|
63
|
+
logging.info("Starting multi-paper recommendations search.")
|
64
|
+
|
65
|
+
endpoint = "https://api.semanticscholar.org/recommendations/v1/papers"
|
66
|
+
headers = {"Content-Type": "application/json"}
|
67
|
+
payload = {"positivePaperIds": paper_ids, "negativePaperIds": []}
|
68
|
+
params = {
|
69
|
+
"limit": min(limit, 500),
|
70
|
+
"fields": "paperId,title,abstract,year,authors,citationCount,url",
|
71
|
+
}
|
72
|
+
|
73
|
+
# Add year parameter if provided
|
74
|
+
if year:
|
75
|
+
params["year"] = year
|
76
|
+
|
77
|
+
# Getting recommendations
|
78
|
+
response = requests.post(
|
79
|
+
endpoint,
|
80
|
+
headers=headers,
|
81
|
+
params=params,
|
82
|
+
data=json.dumps(payload),
|
83
|
+
timeout=10,
|
84
|
+
)
|
85
|
+
logging.info(
|
86
|
+
"API Response Status for multi-paper recommendations: %s", response.status_code
|
87
|
+
)
|
88
|
+
|
89
|
+
data = response.json()
|
90
|
+
recommendations = data.get("recommendedPapers", [])
|
91
|
+
|
92
|
+
# Create a dictionary to store the papers
|
93
|
+
filtered_papers = {
|
94
|
+
paper["paperId"]: {
|
95
|
+
"Title": paper.get("title", "N/A"),
|
96
|
+
"Abstract": paper.get("abstract", "N/A"),
|
97
|
+
"Year": paper.get("year", "N/A"),
|
98
|
+
"Citation Count": paper.get("citationCount", "N/A"),
|
99
|
+
"URL": paper.get("url", "N/A"),
|
100
|
+
}
|
101
|
+
for paper in recommendations
|
102
|
+
if paper.get("title") and paper.get("paperId")
|
103
|
+
}
|
104
|
+
|
105
|
+
# Create a DataFrame from the dictionary
|
106
|
+
df = pd.DataFrame.from_dict(filtered_papers, orient="index")
|
107
|
+
# print("Created DataFrame with results:")
|
108
|
+
logging.info("Created DataFrame with results: %s", df)
|
109
|
+
|
110
|
+
# Format papers for state update
|
111
|
+
papers = [
|
112
|
+
f"Paper ID: {paper_id}\n"
|
113
|
+
f"Title: {paper_data['Title']}\n"
|
114
|
+
f"Abstract: {paper_data['Abstract']}\n"
|
115
|
+
f"Year: {paper_data['Year']}\n"
|
116
|
+
f"Citations: {paper_data['Citation Count']}\n"
|
117
|
+
f"URL: {paper_data['URL']}\n"
|
118
|
+
for paper_id, paper_data in filtered_papers.items()
|
119
|
+
]
|
120
|
+
|
121
|
+
# Convert DataFrame to markdown table
|
122
|
+
markdown_table = df.to_markdown(tablefmt="grid")
|
123
|
+
logging.info("Search results: %s", papers)
|
124
|
+
|
125
|
+
return Command(
|
126
|
+
update={
|
127
|
+
"papers": filtered_papers, # Now sending the dictionary directly
|
128
|
+
"messages": [
|
129
|
+
ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
|
130
|
+
],
|
131
|
+
}
|
132
|
+
)
|