ai-edge-torch-nightly 0.3.0.dev20240924__py3-none-any.whl → 0.3.0.dev20240928__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/generative/examples/gemma/gemma1.py +2 -6
- ai_edge_torch/generative/examples/gemma/gemma2.py +2 -10
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +3 -2
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +3 -2
- ai_edge_torch/generative/examples/gemma/verify_util.py +15 -25
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_3b_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/llama/llama.py +204 -0
- ai_edge_torch/generative/examples/llama/verify.py +73 -0
- ai_edge_torch/generative/examples/llama/verify_3b.py +73 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +2 -6
- ai_edge_torch/generative/examples/openelm/verify.py +19 -11
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/phi2.py +2 -6
- ai_edge_torch/generative/examples/phi/phi3.py +279 -0
- ai_edge_torch/generative/examples/phi/verify.py +13 -13
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +1 -0
- ai_edge_torch/generative/examples/smollm/verify.py +19 -9
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +54 -1
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +58 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +71 -1
- ai_edge_torch/generative/examples/t5/t5.py +0 -2
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +7 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +5 -61
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +2 -6
- ai_edge_torch/generative/examples/tiny_llama/verify.py +20 -10
- ai_edge_torch/generative/layers/model_config.py +2 -0
- ai_edge_torch/generative/layers/normalization.py +2 -2
- ai_edge_torch/generative/layers/unet/blocks_2d.py +2 -2
- ai_edge_torch/generative/test/test_model_conversion_large.py +129 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +130 -114
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/RECORD +41 -30
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,73 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Llama 3.2-3B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.llama import llama
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
|
29
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
30
|
+
"prompts",
|
31
|
+
"What is the meaning of life?",
|
32
|
+
"The input prompts to generate answers.",
|
33
|
+
)
|
34
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
35
|
+
"max_new_tokens",
|
36
|
+
30,
|
37
|
+
"The maximum size of the generated tokens.",
|
38
|
+
)
|
39
|
+
|
40
|
+
|
41
|
+
def main(_):
|
42
|
+
checkpoint = "meta-llama/Llama-3.2-3B-Instruct"
|
43
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
44
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
45
|
+
|
46
|
+
# Locate the cached dir.
|
47
|
+
cached_config_file = transformers.utils.cached_file(
|
48
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
49
|
+
)
|
50
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
51
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
52
|
+
reauthored_model = llama.build_3b_model(reauthored_checkpoint)
|
53
|
+
|
54
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
55
|
+
# Llama tokenizer_config.json sets a fast tokenizer class explicitly,
|
56
|
+
# "PreTrainedTokenizerFast". It works only when the fast tokenizer is
|
57
|
+
# available.
|
58
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
59
|
+
|
60
|
+
verifier.verify_reauthored_model(
|
61
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
62
|
+
original_model
|
63
|
+
),
|
64
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
65
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
66
|
+
generate_prompts=_PROMPTS.value,
|
67
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
68
|
+
atol=1e-04,
|
69
|
+
)
|
70
|
+
|
71
|
+
|
72
|
+
if __name__ == "__main__":
|
73
|
+
app.run(main)
|
@@ -68,15 +68,10 @@ class OpenELM(nn.Module):
|
|
68
68
|
self.rope_cache = attn_utils.build_rope_cache(
|
69
69
|
size=config.kv_cache_max,
|
70
70
|
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
71
|
-
base=
|
72
|
-
condense_ratio=1,
|
73
|
-
dtype=torch.float32,
|
74
|
-
device=torch.device("cpu"),
|
71
|
+
base=attn_config.rotary_base,
|
75
72
|
)
|
76
73
|
self.mask_cache = attn_utils.build_causal_mask_cache(
|
77
74
|
size=config.kv_cache_max,
|
78
|
-
dtype=torch.float32,
|
79
|
-
device=torch.device("cpu"),
|
80
75
|
)
|
81
76
|
self.config = config
|
82
77
|
|
@@ -154,6 +149,7 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
154
149
|
num_heads=num_heads[idx],
|
155
150
|
head_dim=128,
|
156
151
|
num_query_groups=num_query_groups[idx],
|
152
|
+
rotary_base=10000,
|
157
153
|
rotary_percentage=1.0,
|
158
154
|
qkv_transpose_before_split=True,
|
159
155
|
query_norm_config=norm_config,
|
@@ -15,28 +15,33 @@
|
|
15
15
|
|
16
16
|
"""Verifies the reauthored OpenELM-3B model."""
|
17
17
|
|
18
|
+
import logging
|
18
19
|
import pathlib
|
19
|
-
|
20
20
|
from absl import app
|
21
21
|
from absl import flags
|
22
22
|
from ai_edge_torch.generative.examples.openelm import openelm
|
23
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
23
24
|
from ai_edge_torch.generative.utilities import verifier
|
24
25
|
import transformers
|
25
26
|
|
27
|
+
|
26
28
|
_PROMPTS = flags.DEFINE_multi_string(
|
27
29
|
"prompts",
|
28
30
|
"What is the meaning of life?",
|
29
31
|
"The input prompts to generate answers.",
|
30
32
|
)
|
33
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
34
|
+
"max_new_tokens",
|
35
|
+
30,
|
36
|
+
"The maximum size of the generated tokens.",
|
37
|
+
)
|
31
38
|
|
32
39
|
|
33
40
|
def main(_):
|
34
41
|
checkpoint = "apple/OpenELM-3B"
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
checkpoint, trust_remote_code=True
|
39
|
-
),
|
42
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
43
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(
|
44
|
+
checkpoint, trust_remote_code=True
|
40
45
|
)
|
41
46
|
|
42
47
|
# Locate the cached dir.
|
@@ -44,18 +49,21 @@ def main(_):
|
|
44
49
|
checkpoint, transformers.utils.CONFIG_NAME
|
45
50
|
)
|
46
51
|
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
47
|
-
|
52
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
48
53
|
reauthored_model = openelm.build_model(reauthored_checkpoint)
|
49
54
|
|
50
55
|
tokenizer_checkpoint = "meta-llama/Llama-2-7b-hf"
|
51
|
-
|
56
|
+
logging.info("Loading the tokenizer from: %s", tokenizer_checkpoint)
|
52
57
|
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
53
58
|
|
54
59
|
verifier.verify_reauthored_model(
|
55
|
-
original_model=
|
56
|
-
|
57
|
-
|
60
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
61
|
+
original_model
|
62
|
+
),
|
63
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
64
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
58
65
|
generate_prompts=_PROMPTS.value,
|
66
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
59
67
|
)
|
60
68
|
|
61
69
|
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting a Phi-3.5 model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.phi import phi3
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
+
'checkpoint_path',
|
28
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/phi3'),
|
29
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
+
)
|
31
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
+
'tflite_path',
|
33
|
+
'/tmp/',
|
34
|
+
'The tflite file path to export.',
|
35
|
+
)
|
36
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
+
'prefill_seq_len',
|
38
|
+
1024,
|
39
|
+
'The maximum size of prefill input tensor.',
|
40
|
+
)
|
41
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
+
'kv_cache_max_len',
|
43
|
+
1280,
|
44
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
+
)
|
46
|
+
_QUANTIZE = flags.DEFINE_bool(
|
47
|
+
'quantize',
|
48
|
+
True,
|
49
|
+
'Whether the model should be quantized.',
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def main(_):
|
54
|
+
pytorch_model = phi3.build_model(
|
55
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
+
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'phi3_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
+
converter.convert_to_tflite(
|
60
|
+
pytorch_model,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
+
quantize=_QUANTIZE.value,
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
app.run(main)
|
@@ -65,15 +65,10 @@ class Phi2(nn.Module):
|
|
65
65
|
self.rope_cache = attn_utils.build_rope_cache(
|
66
66
|
size=config.kv_cache_max,
|
67
67
|
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
68
|
-
base=
|
69
|
-
condense_ratio=1,
|
70
|
-
dtype=torch.float32,
|
71
|
-
device=torch.device("cpu"),
|
68
|
+
base=attn_config.rotary_base,
|
72
69
|
)
|
73
70
|
self.mask_cache = attn_utils.build_causal_mask_cache(
|
74
71
|
size=config.kv_cache_max,
|
75
|
-
dtype=torch.float32,
|
76
|
-
device=torch.device("cpu"),
|
77
72
|
)
|
78
73
|
self.config = config
|
79
74
|
|
@@ -129,6 +124,7 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
129
124
|
num_heads=32,
|
130
125
|
head_dim=80,
|
131
126
|
num_query_groups=32,
|
127
|
+
rotary_base=10000,
|
132
128
|
rotary_percentage=0.4,
|
133
129
|
qkv_use_bias=True,
|
134
130
|
output_proj_use_bias=True,
|
@@ -0,0 +1,279 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a Phi-3.5 model up to 4K tokens, not to 128K tokens."""
|
17
|
+
|
18
|
+
import math
|
19
|
+
from typing import Tuple
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.layers import attention
|
22
|
+
from ai_edge_torch.generative.layers import builder
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
25
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
26
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
|
+
import torch
|
28
|
+
from torch import nn
|
29
|
+
|
30
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
31
|
+
ff_up_proj="model.layers.{}.mlp.gate_up_proj",
|
32
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
33
|
+
attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
|
34
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
35
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
36
|
+
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
37
|
+
embedding="model.embed_tokens",
|
38
|
+
final_norm="model.norm",
|
39
|
+
lm_head="lm_head",
|
40
|
+
)
|
41
|
+
|
42
|
+
# max_position_embeddings / original_max_position_embeddings in Phi-3.5 config.
|
43
|
+
ROPE_SCALE_FACTOR = 32
|
44
|
+
|
45
|
+
# ROPE short factor in Phi-3.5 config. According to LOPE paper and its code in
|
46
|
+
# https://github.com/microsoft/LongRoPE, these values had been searched with
|
47
|
+
# min=1.0, step-0.01 to optimize the errors of sample dataset.
|
48
|
+
ROPE_SHORT_FACTOR = [
|
49
|
+
1.0,
|
50
|
+
1.0199999809265137,
|
51
|
+
1.0299999713897705,
|
52
|
+
1.0299999713897705,
|
53
|
+
1.0499999523162842,
|
54
|
+
1.0499999523162842,
|
55
|
+
1.0499999523162842,
|
56
|
+
1.0499999523162842,
|
57
|
+
1.0499999523162842,
|
58
|
+
1.0699999332427979,
|
59
|
+
1.0999999046325684,
|
60
|
+
1.1099998950958252,
|
61
|
+
1.1599998474121094,
|
62
|
+
1.1599998474121094,
|
63
|
+
1.1699998378753662,
|
64
|
+
1.2899998426437378,
|
65
|
+
1.339999794960022,
|
66
|
+
1.679999828338623,
|
67
|
+
1.7899998426437378,
|
68
|
+
1.8199998140335083,
|
69
|
+
1.8499997854232788,
|
70
|
+
1.8799997568130493,
|
71
|
+
1.9099997282028198,
|
72
|
+
1.9399996995925903,
|
73
|
+
1.9899996519088745,
|
74
|
+
2.0199997425079346,
|
75
|
+
2.0199997425079346,
|
76
|
+
2.0199997425079346,
|
77
|
+
2.0199997425079346,
|
78
|
+
2.0199997425079346,
|
79
|
+
2.0199997425079346,
|
80
|
+
2.0299997329711914,
|
81
|
+
2.0299997329711914,
|
82
|
+
2.0299997329711914,
|
83
|
+
2.0299997329711914,
|
84
|
+
2.0299997329711914,
|
85
|
+
2.0299997329711914,
|
86
|
+
2.0299997329711914,
|
87
|
+
2.0299997329711914,
|
88
|
+
2.0299997329711914,
|
89
|
+
2.0799996852874756,
|
90
|
+
2.0899996757507324,
|
91
|
+
2.189999580383301,
|
92
|
+
2.2199995517730713,
|
93
|
+
2.5899994373321533,
|
94
|
+
2.729999542236328,
|
95
|
+
2.749999523162842,
|
96
|
+
2.8399994373321533,
|
97
|
+
]
|
98
|
+
|
99
|
+
|
100
|
+
def _build_rope_cache(
|
101
|
+
size: int,
|
102
|
+
dim: int,
|
103
|
+
base: int,
|
104
|
+
condense_ratio: int,
|
105
|
+
dtype: torch.dtype,
|
106
|
+
device: torch.device,
|
107
|
+
theta_factors: torch.Tensor,
|
108
|
+
scale: float,
|
109
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
110
|
+
"""Precomputes Rotary Positional Embeddings for Phi-3.5 model.
|
111
|
+
|
112
|
+
It's a modified version of attn_utils.build_rope_cache with additional
|
113
|
+
arguments for Phi-3.5 model. It precompute Rotary Positional Embedding Sin and
|
114
|
+
Cos values with scaling factors for quick lookup during the inference.
|
115
|
+
|
116
|
+
Args:
|
117
|
+
size (int): The size of the built cache.
|
118
|
+
dim (int): Each sequence's dimmension.
|
119
|
+
base (int, optional): Rope base value.
|
120
|
+
condense_ratio (int, optional): The ratio by which sequence indicies are
|
121
|
+
condensed.
|
122
|
+
dtype (torch.dtype, optional): Output tensor's data type.
|
123
|
+
device (torch.device, optional): Output tensor's data type.
|
124
|
+
theta_factors (torch.Tensor, optional): A tensor of shape (dim,) used to
|
125
|
+
scale the theta values.
|
126
|
+
scale (float, optional): A float used to scale the rope values.
|
127
|
+
|
128
|
+
Returns:
|
129
|
+
Tuple[torch.Tensor, torch.Tensor]: Rope's Cosine and Sine waves.
|
130
|
+
"""
|
131
|
+
theta = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
132
|
+
theta = theta / theta_factors
|
133
|
+
seq_idx = torch.arange(size) / condense_ratio
|
134
|
+
idx_theta = torch.outer(seq_idx, theta)
|
135
|
+
cos = torch.cos(idx_theta).to(dtype=dtype, device=device) * scale
|
136
|
+
sin = torch.sin(idx_theta).to(dtype=dtype, device=device) * scale
|
137
|
+
return cos, sin
|
138
|
+
|
139
|
+
|
140
|
+
class Phi3_5Mini(nn.Module):
|
141
|
+
"""A Phi-3.5 model built from the Edge Generative API layers."""
|
142
|
+
|
143
|
+
def __init__(self, config: cfg.ModelConfig):
|
144
|
+
super().__init__()
|
145
|
+
|
146
|
+
# Construct model layers.
|
147
|
+
self.lm_head = nn.Linear(
|
148
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
149
|
+
)
|
150
|
+
self.tok_embedding = nn.Embedding(
|
151
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
152
|
+
)
|
153
|
+
# Phi-3.5 has only one block config.
|
154
|
+
block_config = config.block_config(0)
|
155
|
+
self.transformer_blocks = nn.ModuleList(
|
156
|
+
attention.TransformerBlock(block_config, config)
|
157
|
+
for _ in range(config.num_layers)
|
158
|
+
)
|
159
|
+
self.final_norm = builder.build_norm(
|
160
|
+
config.embedding_dim,
|
161
|
+
config.final_norm_config,
|
162
|
+
)
|
163
|
+
attn_config = block_config.attn_config
|
164
|
+
self.rope_cache = _build_rope_cache(
|
165
|
+
size=config.kv_cache_max,
|
166
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
167
|
+
base=attn_config.rotary_base,
|
168
|
+
condense_ratio=1,
|
169
|
+
dtype=torch.float32,
|
170
|
+
device=torch.device("cpu"),
|
171
|
+
theta_factors=torch.tensor(ROPE_SHORT_FACTOR),
|
172
|
+
scale=math.sqrt(
|
173
|
+
1 + math.log(ROPE_SCALE_FACTOR) / math.log(config.max_seq_len)
|
174
|
+
),
|
175
|
+
)
|
176
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
177
|
+
size=config.kv_cache_max,
|
178
|
+
)
|
179
|
+
self.config = config
|
180
|
+
|
181
|
+
@torch.inference_mode
|
182
|
+
def forward(
|
183
|
+
self,
|
184
|
+
tokens: torch.Tensor,
|
185
|
+
input_pos: torch.Tensor,
|
186
|
+
kv_cache: kv_utils.KVCache,
|
187
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
188
|
+
_, seq_len = tokens.size()
|
189
|
+
assert self.config.max_seq_len >= seq_len, (
|
190
|
+
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
191
|
+
f" {self.config.max_seq_len}"
|
192
|
+
)
|
193
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
194
|
+
"The number of transformer blocks and the number of KV cache entries"
|
195
|
+
" must be the same."
|
196
|
+
)
|
197
|
+
|
198
|
+
cos, sin = self.rope_cache
|
199
|
+
cos = cos.index_select(0, input_pos)
|
200
|
+
sin = sin.index_select(0, input_pos)
|
201
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
202
|
+
mask = mask[:, :, :, : self.config.kv_cache_max]
|
203
|
+
|
204
|
+
x = self.tok_embedding(tokens)
|
205
|
+
|
206
|
+
updated_kv_entires = []
|
207
|
+
for i, block in enumerate(self.transformer_blocks):
|
208
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
209
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
210
|
+
if kv_entry:
|
211
|
+
updated_kv_entires.append(kv_entry)
|
212
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
213
|
+
|
214
|
+
x = self.final_norm(x)
|
215
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
216
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
217
|
+
|
218
|
+
|
219
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
220
|
+
"""Returns the model config for a Phi-3.5 model.
|
221
|
+
|
222
|
+
Args:
|
223
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
224
|
+
is 1024.
|
225
|
+
|
226
|
+
Returns:
|
227
|
+
The model config for a Phi-2 model.
|
228
|
+
"""
|
229
|
+
attn_config = cfg.AttentionConfig(
|
230
|
+
num_heads=32,
|
231
|
+
head_dim=96,
|
232
|
+
num_query_groups=32,
|
233
|
+
rotary_base=10000,
|
234
|
+
rotary_percentage=1.0,
|
235
|
+
qkv_transpose_before_split=True,
|
236
|
+
)
|
237
|
+
ff_config = cfg.FeedForwardConfig(
|
238
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
239
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU_GLU),
|
240
|
+
intermediate_size=8192,
|
241
|
+
)
|
242
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
243
|
+
block_config = cfg.TransformerBlockConfig(
|
244
|
+
attn_config=attn_config,
|
245
|
+
ff_config=ff_config,
|
246
|
+
pre_attention_norm_config=norm_config,
|
247
|
+
post_attention_norm_config=norm_config,
|
248
|
+
)
|
249
|
+
config = cfg.ModelConfig(
|
250
|
+
vocab_size=32064,
|
251
|
+
num_layers=32,
|
252
|
+
max_seq_len=4096,
|
253
|
+
kv_cache_max_len=kv_cache_max_len,
|
254
|
+
embedding_dim=3072,
|
255
|
+
block_configs=block_config,
|
256
|
+
final_norm_config=norm_config,
|
257
|
+
enable_hlfb=True,
|
258
|
+
)
|
259
|
+
return config
|
260
|
+
|
261
|
+
|
262
|
+
def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
263
|
+
config = get_model_config(kv_cache_max_len)
|
264
|
+
config.vocab_size = 128
|
265
|
+
config.num_layers = 2
|
266
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
267
|
+
# Phi-3.5 has only one block config.
|
268
|
+
config.block_config(0).ff_config.intermediate_size = 128
|
269
|
+
return config
|
270
|
+
|
271
|
+
|
272
|
+
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
273
|
+
"""Instantiates the model instance and load checkpoint if provided."""
|
274
|
+
config = get_model_config(**kwargs)
|
275
|
+
model = Phi3_5Mini(config)
|
276
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
277
|
+
loader.load(model)
|
278
|
+
model.eval()
|
279
|
+
return model
|
@@ -14,20 +14,22 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
16
|
"""Verifies the reauthored Phi-2 model."""
|
17
|
+
import logging
|
17
18
|
|
18
19
|
from absl import app
|
19
20
|
from absl import flags
|
20
21
|
from ai_edge_torch.generative.examples.phi import phi2
|
22
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
21
23
|
from ai_edge_torch.generative.utilities import verifier
|
22
24
|
import kagglehub
|
23
25
|
import transformers
|
24
26
|
|
27
|
+
|
25
28
|
_PROMPTS = flags.DEFINE_multi_string(
|
26
29
|
"prompts",
|
27
30
|
"Instruct: Write an email about the weather Output:",
|
28
31
|
"The input prompts to generate answers.",
|
29
32
|
)
|
30
|
-
|
31
33
|
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
32
34
|
"max_new_tokens",
|
33
35
|
30,
|
@@ -37,25 +39,23 @@ _MAX_NEW_TOKENS = flags.DEFINE_integer(
|
|
37
39
|
|
38
40
|
def main(_):
|
39
41
|
checkpoint = kagglehub.model_download("Microsoft/phi/transformers/2")
|
40
|
-
|
41
|
-
|
42
|
-
generation_config.max_new_tokens = _MAX_NEW_TOKENS.value
|
43
|
-
wrapper_model = verifier.ModelWrapper(
|
44
|
-
model=transformers.AutoModelForCausalLM.from_pretrained(checkpoint),
|
45
|
-
hf_generation_config=generation_config,
|
46
|
-
)
|
42
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
43
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
47
44
|
|
48
|
-
|
45
|
+
logging.info("Building the reauthored model from: %s", checkpoint)
|
49
46
|
reauthored_model = phi2.build_model(checkpoint)
|
50
47
|
|
51
|
-
|
48
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
52
49
|
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
53
50
|
|
54
51
|
verifier.verify_reauthored_model(
|
55
|
-
original_model=
|
56
|
-
|
57
|
-
|
52
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
53
|
+
original_model
|
54
|
+
),
|
55
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
56
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
58
57
|
generate_prompts=_PROMPTS.value,
|
58
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
59
59
|
atol=1e-03,
|
60
60
|
)
|
61
61
|
|
@@ -0,0 +1,69 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Phi-3.5 model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.phi import phi3
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
|
29
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
30
|
+
"prompts",
|
31
|
+
"Instruct: Write an email about the weather Output:",
|
32
|
+
"The input prompts to generate answers.",
|
33
|
+
)
|
34
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
35
|
+
"max_new_tokens",
|
36
|
+
30,
|
37
|
+
"The maximum size of the generated tokens.",
|
38
|
+
)
|
39
|
+
|
40
|
+
|
41
|
+
def main(_):
|
42
|
+
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
43
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
44
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
45
|
+
|
46
|
+
# Locate the cached dir.
|
47
|
+
cached_config_file = transformers.utils.cached_file(
|
48
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
49
|
+
)
|
50
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
51
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
52
|
+
reauthored_model = phi3.build_model(reauthored_checkpoint)
|
53
|
+
|
54
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
55
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
56
|
+
|
57
|
+
verifier.verify_reauthored_model(
|
58
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
59
|
+
original_model
|
60
|
+
),
|
61
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
62
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
63
|
+
generate_prompts=_PROMPTS.value,
|
64
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
65
|
+
)
|
66
|
+
|
67
|
+
|
68
|
+
if __name__ == "__main__":
|
69
|
+
app.run(main)
|