ai-edge-torch-nightly 0.3.0.dev20240924__py3-none-any.whl → 0.3.0.dev20240928__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/gemma/gemma1.py +2 -6
- ai_edge_torch/generative/examples/gemma/gemma2.py +2 -10
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +3 -2
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +3 -2
- ai_edge_torch/generative/examples/gemma/verify_util.py +15 -25
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_3b_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/llama/llama.py +204 -0
- ai_edge_torch/generative/examples/llama/verify.py +73 -0
- ai_edge_torch/generative/examples/llama/verify_3b.py +73 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +2 -6
- ai_edge_torch/generative/examples/openelm/verify.py +19 -11
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/phi2.py +2 -6
- ai_edge_torch/generative/examples/phi/phi3.py +279 -0
- ai_edge_torch/generative/examples/phi/verify.py +13 -13
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +1 -0
- ai_edge_torch/generative/examples/smollm/verify.py +19 -9
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +54 -1
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +58 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +71 -1
- ai_edge_torch/generative/examples/t5/t5.py +0 -2
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +7 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +5 -61
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +2 -6
- ai_edge_torch/generative/examples/tiny_llama/verify.py +20 -10
- ai_edge_torch/generative/layers/model_config.py +2 -0
- ai_edge_torch/generative/layers/normalization.py +2 -2
- ai_edge_torch/generative/layers/unet/blocks_2d.py +2 -2
- ai_edge_torch/generative/test/test_model_conversion_large.py +129 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +130 -114
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/RECORD +41 -30
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240924.dist-info → ai_edge_torch_nightly-0.3.0.dev20240928.dist-info}/top_level.txt +0 -0
@@ -69,15 +69,10 @@ class Gemma(nn.Module):
|
|
69
69
|
self.rope_cache = attn_utils.build_rope_cache(
|
70
70
|
size=config.kv_cache_max,
|
71
71
|
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
72
|
-
base=
|
73
|
-
condense_ratio=1,
|
74
|
-
dtype=torch.float32,
|
75
|
-
device=torch.device("cpu"),
|
72
|
+
base=attn_config.rotary_base,
|
76
73
|
)
|
77
74
|
self.mask_cache = attn_utils.build_causal_mask_cache(
|
78
75
|
size=config.kv_cache_max,
|
79
|
-
dtype=torch.float32,
|
80
|
-
device=torch.device("cpu"),
|
81
76
|
)
|
82
77
|
self.config = config
|
83
78
|
|
@@ -135,6 +130,7 @@ def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
135
130
|
num_heads=8,
|
136
131
|
head_dim=256,
|
137
132
|
num_query_groups=1,
|
133
|
+
rotary_base=10000,
|
138
134
|
rotary_percentage=1.0,
|
139
135
|
)
|
140
136
|
ff_config = cfg.FeedForwardConfig(
|
@@ -16,7 +16,6 @@
|
|
16
16
|
"""Example of building a Gemma2 model."""
|
17
17
|
|
18
18
|
import os
|
19
|
-
import pathlib
|
20
19
|
from typing import Optional, Tuple
|
21
20
|
|
22
21
|
from ai_edge_torch.generative.layers import attention
|
@@ -25,7 +24,6 @@ from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
|
25
24
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
26
25
|
import ai_edge_torch.generative.layers.model_config as cfg
|
27
26
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
28
|
-
import numpy as np
|
29
27
|
import torch
|
30
28
|
from torch import nn
|
31
29
|
|
@@ -111,21 +109,14 @@ class Gemma2(nn.Module):
|
|
111
109
|
self.rope_cache = attn_utils.build_rope_cache(
|
112
110
|
size=config.kv_cache_max,
|
113
111
|
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
114
|
-
base=
|
115
|
-
condense_ratio=1,
|
116
|
-
dtype=torch.float32,
|
117
|
-
device=torch.device("cpu"),
|
112
|
+
base=attn_config.rotary_base,
|
118
113
|
)
|
119
114
|
self.mask_cache = attn_utils.build_causal_mask_cache(
|
120
115
|
size=config.kv_cache_max,
|
121
|
-
dtype=torch.float32,
|
122
|
-
device=torch.device("cpu"),
|
123
116
|
)
|
124
117
|
self.sliding_window_mask_cache = attn_utils.build_sliding_window_mask_cache(
|
125
118
|
size=config.kv_cache_max,
|
126
119
|
window_size=attn_config.sliding_window_size,
|
127
|
-
dtype=torch.float32,
|
128
|
-
device=torch.device("cpu"),
|
129
120
|
)
|
130
121
|
self.config = config
|
131
122
|
|
@@ -210,6 +201,7 @@ def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
210
201
|
num_heads=8,
|
211
202
|
head_dim=256,
|
212
203
|
num_query_groups=4,
|
204
|
+
rotary_base=10000,
|
213
205
|
rotary_percentage=1.0,
|
214
206
|
qkv_transpose_before_split=True,
|
215
207
|
logit_softcap=50.0,
|
@@ -15,13 +15,14 @@
|
|
15
15
|
|
16
16
|
"""Verifies the reauthored Gemma1 model."""
|
17
17
|
|
18
|
+
import logging
|
18
19
|
from absl import app
|
19
20
|
from absl import flags
|
20
21
|
from ai_edge_torch.generative.examples.gemma import gemma1
|
21
22
|
from ai_edge_torch.generative.examples.gemma import verify_util
|
22
|
-
from ai_edge_torch.generative.utilities import verifier
|
23
23
|
import kagglehub
|
24
24
|
|
25
|
+
|
25
26
|
_PROMPTS = flags.DEFINE_multi_string(
|
26
27
|
"prompts",
|
27
28
|
"What is the meaning of life?",
|
@@ -37,7 +38,7 @@ _MAX_NEW_TOKENS = flags.DEFINE_integer(
|
|
37
38
|
def main(_):
|
38
39
|
checkpoint = kagglehub.model_download("google/gemma/pyTorch/2b-it")
|
39
40
|
|
40
|
-
|
41
|
+
logging.info("Building the reauthored model from: %s", checkpoint)
|
41
42
|
reauthored_model = gemma1.build_2b_model(checkpoint)
|
42
43
|
|
43
44
|
verify_util.verify_reauthored_gemma_model(
|
@@ -15,13 +15,14 @@
|
|
15
15
|
|
16
16
|
"""Verifies the reauthored Gemma2 model."""
|
17
17
|
|
18
|
+
import logging
|
18
19
|
from absl import app
|
19
20
|
from absl import flags
|
20
21
|
from ai_edge_torch.generative.examples.gemma import gemma2
|
21
22
|
from ai_edge_torch.generative.examples.gemma import verify_util
|
22
|
-
from ai_edge_torch.generative.utilities import verifier
|
23
23
|
import kagglehub
|
24
24
|
|
25
|
+
|
25
26
|
_PROMPTS = flags.DEFINE_multi_string(
|
26
27
|
"prompts",
|
27
28
|
"What is the meaning of life?",
|
@@ -37,7 +38,7 @@ _MAX_NEW_TOKENS = flags.DEFINE_integer(
|
|
37
38
|
def main(_):
|
38
39
|
checkpoint = kagglehub.model_download("google/gemma-2/pyTorch/gemma-2-2b-it")
|
39
40
|
|
40
|
-
|
41
|
+
logging.info("Building the reauthored model from: %s", checkpoint)
|
41
42
|
reauthored_model = gemma2.build_2b_model(checkpoint)
|
42
43
|
|
43
44
|
verify_util.verify_reauthored_gemma_model(
|
@@ -15,7 +15,7 @@
|
|
15
15
|
|
16
16
|
"""Utility functions to verify the reauthored Gemma model."""
|
17
17
|
|
18
|
-
import
|
18
|
+
import logging
|
19
19
|
import os
|
20
20
|
from typing import List, Tuple
|
21
21
|
|
@@ -26,26 +26,17 @@ from gemma import model as gemma_model
|
|
26
26
|
import torch
|
27
27
|
|
28
28
|
|
29
|
-
@dataclasses.dataclass
|
30
|
-
class _Output:
|
31
|
-
logits: torch.Tensor
|
32
|
-
|
33
|
-
|
34
29
|
class GemmaWrapper(verifier.ModelWrapper):
|
35
30
|
"""Gemma model wrapper for verification.
|
36
31
|
|
37
32
|
Verifier calls model.forward() with maxium sequence length (1024) expecting
|
38
|
-
the output
|
39
|
-
|
33
|
+
the output is logits while Gemma gets the input tokens with the actual length
|
34
|
+
and returns logits in a tuple.
|
40
35
|
|
41
36
|
Verifier runs tokenizer before model.generate() while Gemma runs the tokenizer
|
42
37
|
inside model.generate().
|
43
38
|
"""
|
44
39
|
|
45
|
-
def __init__(self, model: torch.nn.Module, max_new_tokens: int):
|
46
|
-
super().__init__(model)
|
47
|
-
self.max_new_tokens = max_new_tokens
|
48
|
-
|
49
40
|
def _get_actual_input_len(self, tokens: torch.Tensor) -> int:
|
50
41
|
for i in range(tokens.shape[1]):
|
51
42
|
if tokens[0, i] == 0:
|
@@ -62,7 +53,7 @@ class GemmaWrapper(verifier.ModelWrapper):
|
|
62
53
|
(cache.clone(), cache.clone()) for _ in range(config.num_hidden_layers)
|
63
54
|
]
|
64
55
|
|
65
|
-
def forward(self, tokens: torch.Tensor) ->
|
56
|
+
def forward(self, tokens: torch.Tensor) -> torch.Tensor:
|
66
57
|
"""Forwards the model after reducing input tokens to the actual length."""
|
67
58
|
actual_input_len = self._get_actual_input_len(tokens)
|
68
59
|
input_pos = torch.arange(0, actual_input_len, dtype=torch.long)
|
@@ -78,28 +69,26 @@ class GemmaWrapper(verifier.ModelWrapper):
|
|
78
69
|
top_ps=torch.tensor([1.0], dtype=torch.float),
|
79
70
|
top_ks=torch.tensor([1], dtype=torch.long),
|
80
71
|
)
|
81
|
-
return
|
72
|
+
return logits
|
82
73
|
|
83
|
-
def generate(
|
74
|
+
def generate(
|
75
|
+
self, tokens: torch.Tensor, max_new_tokens: int
|
76
|
+
) -> torch.IntTensor:
|
84
77
|
"""Generates the response after decoding the tokens into a string."""
|
85
78
|
prompts = self.model.tokenizer.decode(tokens[0].tolist())
|
86
79
|
response = self.model.generate(
|
87
|
-
prompts, device="cpu", output_len=
|
80
|
+
prompts, device="cpu", output_len=max_new_tokens, top_k=1
|
88
81
|
)
|
89
82
|
return torch.tensor([self.model.tokenizer.encode(prompts + response)])
|
90
83
|
|
91
84
|
|
92
|
-
class
|
85
|
+
class GemmaTokenizerWrapper(verifier.TokenizerWrapper):
|
93
86
|
"""Tokenizer wrapper for verification.
|
94
87
|
|
95
88
|
Verifier expects the tokenizer to handle tokens in torch.Tensor while Gemma
|
96
89
|
tokenizer expects tokens in a list.
|
97
90
|
"""
|
98
91
|
|
99
|
-
def __init__(self, tokenizer: torch.nn.Module):
|
100
|
-
super().__init__()
|
101
|
-
self.tokenizer = tokenizer
|
102
|
-
|
103
92
|
def encode(self, text: str, **_) -> torch.Tensor:
|
104
93
|
"""Adds one more dimension to the output of the tokenizer."""
|
105
94
|
return torch.tensor([self.tokenizer.encode(text)])
|
@@ -127,15 +116,16 @@ def verify_reauthored_gemma_model(
|
|
127
116
|
# Use float32 to be compatible with the reauthored model.
|
128
117
|
config.dtype = torch.float32
|
129
118
|
|
130
|
-
|
119
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
131
120
|
original_model = gemma_model.GemmaForCausalLM(config).eval()
|
132
121
|
original_model.load_weights(os.path.join(checkpoint, weight_filename))
|
133
122
|
|
134
123
|
verifier.verify_reauthored_model(
|
135
|
-
original_model=GemmaWrapper(original_model
|
136
|
-
reauthored_model=reauthored_model,
|
137
|
-
tokenizer=
|
124
|
+
original_model=GemmaWrapper(original_model),
|
125
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
126
|
+
tokenizer=GemmaTokenizerWrapper(original_model.tokenizer),
|
138
127
|
generate_prompts=generate_prompts,
|
128
|
+
max_new_tokens=max_new_tokens,
|
139
129
|
forward_input_ids=forward_input_ids,
|
140
130
|
rtol=rtol,
|
141
131
|
atol=atol,
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting Llama 3.2 3B model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.llama import llama
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
+
'checkpoint_path',
|
28
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/llama'),
|
29
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
+
)
|
31
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
+
'tflite_path',
|
33
|
+
'/tmp/',
|
34
|
+
'The tflite file path to export.',
|
35
|
+
)
|
36
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
+
'prefill_seq_len',
|
38
|
+
1024,
|
39
|
+
'The maximum size of prefill input tensor.',
|
40
|
+
)
|
41
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
+
'kv_cache_max_len',
|
43
|
+
1280,
|
44
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
+
)
|
46
|
+
_QUANTIZE = flags.DEFINE_bool(
|
47
|
+
'quantize',
|
48
|
+
True,
|
49
|
+
'Whether the model should be quantized.',
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def main(_):
|
54
|
+
pytorch_model = llama.build_3b_model(
|
55
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
+
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'llama_3b_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
+
converter.convert_to_tflite(
|
60
|
+
pytorch_model,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
+
quantize=_QUANTIZE.value,
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
app.run(main)
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting Llama 3.2 1B model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.llama import llama
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
+
'checkpoint_path',
|
28
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/llama'),
|
29
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
+
)
|
31
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
+
'tflite_path',
|
33
|
+
'/tmp/',
|
34
|
+
'The tflite file path to export.',
|
35
|
+
)
|
36
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
+
'prefill_seq_len',
|
38
|
+
1024,
|
39
|
+
'The maximum size of prefill input tensor.',
|
40
|
+
)
|
41
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
+
'kv_cache_max_len',
|
43
|
+
1280,
|
44
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
+
)
|
46
|
+
_QUANTIZE = flags.DEFINE_bool(
|
47
|
+
'quantize',
|
48
|
+
True,
|
49
|
+
'Whether the model should be quantized.',
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def main(_):
|
54
|
+
pytorch_model = llama.build_model(
|
55
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
+
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'llama_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
+
converter.convert_to_tflite(
|
60
|
+
pytorch_model,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
+
quantize=_QUANTIZE.value,
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
app.run(main)
|
@@ -0,0 +1,204 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building Llama 3.2 models."""
|
17
|
+
|
18
|
+
import copy
|
19
|
+
import math
|
20
|
+
from typing import Tuple
|
21
|
+
|
22
|
+
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
23
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
24
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
25
|
+
import torch
|
26
|
+
from torch import nn
|
27
|
+
|
28
|
+
TENSOR_NAMES = copy.copy(tiny_llama.TENSOR_NAMES)
|
29
|
+
# SmolLM re-uses the embedding as the head projection layer.
|
30
|
+
TENSOR_NAMES.lm_head = None
|
31
|
+
|
32
|
+
|
33
|
+
def _build_llama3_rope_cache(
|
34
|
+
size: int,
|
35
|
+
dim: int,
|
36
|
+
base: int,
|
37
|
+
condense_ratio: int,
|
38
|
+
dtype: torch.dtype,
|
39
|
+
device: torch.device,
|
40
|
+
factor: float,
|
41
|
+
low_freq_factor: float,
|
42
|
+
high_freq_factor: float,
|
43
|
+
max_seq_len: int,
|
44
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
45
|
+
"""Precomputes Rotary Positional Embeddings for Llama 3.2 model.
|
46
|
+
|
47
|
+
It's a modified version of attn_utils.build_rope_cache with additional
|
48
|
+
arguments for Llama 3.2 model. It precomputes Rotary Positional Embedding Sin
|
49
|
+
and Cos values with scaling factors for quick lookup during the inference.
|
50
|
+
|
51
|
+
Reference:
|
52
|
+
https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_rope_utils.py#L307
|
53
|
+
|
54
|
+
Args:
|
55
|
+
size (int): The size of the built cache.
|
56
|
+
dim (int): Each sequence's dimmension.
|
57
|
+
base (int, optional): Rope base value.
|
58
|
+
condense_ratio (int, optional): The ratio by which sequence indicies are
|
59
|
+
condensed.
|
60
|
+
dtype (torch.dtype, optional): Output tensor's data type.
|
61
|
+
device (torch.device, optional): Output tensor's data type.
|
62
|
+
factor (float): Factor to scale theta down for tokens in long range in the
|
63
|
+
sequence.
|
64
|
+
low_freq_factor (float): Factor to determine if tokens are in long range
|
65
|
+
in the sequence.
|
66
|
+
high_freq_factor (float): Factor to determine if tokens are in short range
|
67
|
+
in the sequence.
|
68
|
+
max_seq_len (int): The original token sequence length before extending
|
69
|
+
ROPE to support longer sequence.
|
70
|
+
|
71
|
+
Returns:
|
72
|
+
Tuple[torch.Tensor, torch.Tensor]: Rope's Cosine and Sine waves.
|
73
|
+
"""
|
74
|
+
theta = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
75
|
+
low_freq_wavelen = max_seq_len / low_freq_factor
|
76
|
+
high_freq_wavelen = max_seq_len / high_freq_factor
|
77
|
+
wavelen = 2 * math.pi / theta
|
78
|
+
# wavelen < high_freq_wavelen: do nothing
|
79
|
+
# wavelen > low_freq_wavelen: divide by factor
|
80
|
+
theta = torch.where(wavelen > low_freq_wavelen, theta / factor, theta)
|
81
|
+
# otherwise: interpolate between the two, using a smooth factor
|
82
|
+
smooth_factor = (max_seq_len / wavelen - low_freq_factor) / (
|
83
|
+
high_freq_factor - low_freq_factor
|
84
|
+
)
|
85
|
+
smoothed_theta = (1 - smooth_factor) * theta / factor + smooth_factor * theta
|
86
|
+
is_medium = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
|
87
|
+
theta = torch.where(is_medium, smoothed_theta, theta)
|
88
|
+
|
89
|
+
seq_idx = torch.arange(size) / condense_ratio
|
90
|
+
idx_theta = torch.outer(seq_idx, theta)
|
91
|
+
cos = torch.cos(idx_theta).to(dtype=dtype, device=device)
|
92
|
+
sin = torch.sin(idx_theta).to(dtype=dtype, device=device)
|
93
|
+
return cos, sin
|
94
|
+
|
95
|
+
|
96
|
+
class Llama(tiny_llama.TinyLlama):
|
97
|
+
"""A Llama model built from the Edge Generative API layers.
|
98
|
+
|
99
|
+
Llama 3.2 shares the same architecture as TinyLlama except ROPE calculation.
|
100
|
+
"""
|
101
|
+
|
102
|
+
def __init__(self, config: cfg.ModelConfig):
|
103
|
+
super().__init__(config)
|
104
|
+
# Llama 3.2 re-uses the embedding as the head projection layer.
|
105
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
106
|
+
# Llama has only one block config.
|
107
|
+
attn_config = self.config.block_config(0).attn_config
|
108
|
+
self.rope_cache = _build_llama3_rope_cache(
|
109
|
+
size=self.config.kv_cache_max,
|
110
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
111
|
+
base=attn_config.rotary_base,
|
112
|
+
condense_ratio=1,
|
113
|
+
dtype=torch.float32,
|
114
|
+
device=torch.device("cpu"),
|
115
|
+
factor=32.0,
|
116
|
+
low_freq_factor=1.0,
|
117
|
+
high_freq_factor=4.0,
|
118
|
+
max_seq_len=self.config.max_seq_len,
|
119
|
+
)
|
120
|
+
|
121
|
+
|
122
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
123
|
+
"""Returns the model config for a Llama 3.2-1B model.
|
124
|
+
|
125
|
+
Args:
|
126
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
127
|
+
is 1024.
|
128
|
+
|
129
|
+
Returns:
|
130
|
+
The model config for a SmolLM model.
|
131
|
+
"""
|
132
|
+
attn_config = cfg.AttentionConfig(
|
133
|
+
num_heads=32,
|
134
|
+
head_dim=64,
|
135
|
+
num_query_groups=8,
|
136
|
+
rotary_base=500000,
|
137
|
+
rotary_percentage=1.0,
|
138
|
+
)
|
139
|
+
ff_config = cfg.FeedForwardConfig(
|
140
|
+
type=cfg.FeedForwardType.GATED,
|
141
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
142
|
+
intermediate_size=8192,
|
143
|
+
)
|
144
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
145
|
+
block_config = cfg.TransformerBlockConfig(
|
146
|
+
attn_config=attn_config,
|
147
|
+
ff_config=ff_config,
|
148
|
+
pre_attention_norm_config=norm_config,
|
149
|
+
post_attention_norm_config=norm_config,
|
150
|
+
)
|
151
|
+
config = cfg.ModelConfig(
|
152
|
+
vocab_size=128256,
|
153
|
+
num_layers=16,
|
154
|
+
max_seq_len=8192,
|
155
|
+
embedding_dim=2048,
|
156
|
+
kv_cache_max_len=kv_cache_max_len,
|
157
|
+
block_configs=block_config,
|
158
|
+
final_norm_config=norm_config,
|
159
|
+
enable_hlfb=True,
|
160
|
+
)
|
161
|
+
return config
|
162
|
+
|
163
|
+
|
164
|
+
def get_3b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
165
|
+
"""Returns the model config for a Llama 3.2-3B model."""
|
166
|
+
config = get_model_config(kv_cache_max_len)
|
167
|
+
# Llama 3.2 has only one block config.
|
168
|
+
attn_config = config.block_config(0).attn_config
|
169
|
+
attn_config.num_heads = 24
|
170
|
+
attn_config.head_dim = 128
|
171
|
+
config.num_layers = 28
|
172
|
+
config.embedding_dim = 3072
|
173
|
+
return config
|
174
|
+
|
175
|
+
|
176
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
177
|
+
config = get_model_config(**kwargs)
|
178
|
+
config.vocab_size = 128
|
179
|
+
config.num_layers = 2
|
180
|
+
# SmolLM has only one block config.
|
181
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
182
|
+
return config
|
183
|
+
|
184
|
+
|
185
|
+
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
186
|
+
config = get_model_config(**kwargs)
|
187
|
+
model = Llama(config)
|
188
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
189
|
+
# Since embedding and lm-head use the same weight, we need to set strict
|
190
|
+
# to False.
|
191
|
+
loader.load(model, strict=False)
|
192
|
+
model.eval()
|
193
|
+
return model
|
194
|
+
|
195
|
+
|
196
|
+
def build_3b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
197
|
+
config = get_3b_model_config(**kwargs)
|
198
|
+
model = Llama(config)
|
199
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
200
|
+
# Since embedding and lm-head use the same weight, we need to set strict
|
201
|
+
# to False.
|
202
|
+
loader.load(model, strict=False)
|
203
|
+
model.eval()
|
204
|
+
return model
|
@@ -0,0 +1,73 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Llama 3.2-1B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.llama import llama
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
|
29
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
30
|
+
"prompts",
|
31
|
+
"What is the meaning of life?",
|
32
|
+
"The input prompts to generate answers.",
|
33
|
+
)
|
34
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
35
|
+
"max_new_tokens",
|
36
|
+
30,
|
37
|
+
"The maximum size of the generated tokens.",
|
38
|
+
)
|
39
|
+
|
40
|
+
|
41
|
+
def main(_):
|
42
|
+
checkpoint = "meta-llama/Llama-3.2-1B-Instruct"
|
43
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
44
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
45
|
+
|
46
|
+
# Locate the cached dir.
|
47
|
+
cached_config_file = transformers.utils.cached_file(
|
48
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
49
|
+
)
|
50
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
51
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
52
|
+
reauthored_model = llama.build_model(reauthored_checkpoint)
|
53
|
+
|
54
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
55
|
+
# Llama tokenizer_config.json sets a fast tokenizer class explicitly,
|
56
|
+
# "PreTrainedTokenizerFast". It works only when the fast tokenizer is
|
57
|
+
# available.
|
58
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
59
|
+
|
60
|
+
verifier.verify_reauthored_model(
|
61
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
62
|
+
original_model
|
63
|
+
),
|
64
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
65
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
66
|
+
generate_prompts=_PROMPTS.value,
|
67
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
68
|
+
atol=1e-04,
|
69
|
+
)
|
70
|
+
|
71
|
+
|
72
|
+
if __name__ == "__main__":
|
73
|
+
app.run(main)
|