ai-edge-torch-nightly 0.3.0.dev20240910__py3-none-any.whl → 0.3.0.dev20240913__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +31 -12
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/gemma/gemma.py +50 -30
- ai_edge_torch/generative/examples/gemma/gemma2.py +85 -58
- ai_edge_torch/generative/examples/{experimental/phi → phi}/convert_to_tflite.py +11 -12
- ai_edge_torch/generative/examples/{experimental/phi → phi}/phi2.py +46 -43
- ai_edge_torch/generative/examples/{experimental/gemma → smallm}/convert_to_tflite.py +12 -14
- ai_edge_torch/generative/examples/smallm/smallm.py +122 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +11 -5
- ai_edge_torch/generative/examples/t5/t5.py +35 -22
- ai_edge_torch/generative/examples/t5/t5_attention.py +18 -13
- ai_edge_torch/generative/examples/test_models/toy_model.py +15 -13
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +74 -33
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +55 -34
- ai_edge_torch/generative/layers/attention.py +77 -73
- ai_edge_torch/generative/layers/builder.py +5 -3
- ai_edge_torch/generative/layers/kv_cache.py +163 -51
- ai_edge_torch/generative/layers/model_config.py +38 -19
- ai_edge_torch/generative/layers/normalization.py +158 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +0 -2
- ai_edge_torch/generative/test/{test_experimental_ekv.py → test_kv_cache.py} +12 -24
- ai_edge_torch/generative/test/test_loader.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion.py +72 -34
- ai_edge_torch/generative/test/test_model_conversion_large.py +51 -23
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/loader.py +15 -15
- ai_edge_torch/generative/utilities/t5_loader.py +21 -20
- ai_edge_torch/odml_torch/lowerings/__init__.py +1 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -1
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/RECORD +39 -45
- ai_edge_torch/generative/examples/experimental/gemma/gemma.py +0 -219
- ai_edge_torch/generative/examples/experimental/phi/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/convert_to_tflite.py +0 -87
- ai_edge_torch/generative/examples/experimental/tiny_llama/tiny_llama.py +0 -205
- ai_edge_torch/generative/examples/phi2/__init__.py +0 -14
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -67
- ai_edge_torch/generative/examples/phi2/phi2.py +0 -189
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -176
- /ai_edge_torch/generative/examples/{experimental → phi}/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{experimental/gemma → smallm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/top_level.txt +0 -0
@@ -12,16 +12,16 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# Common building blocks for Attention layer.
|
16
15
|
|
17
|
-
|
16
|
+
"""Common building blocks for Attention layer."""
|
18
17
|
|
19
|
-
import
|
20
|
-
|
18
|
+
from typing import Optional, Tuple, Union
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import builder
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa
|
21
23
|
import ai_edge_torch.generative.layers.model_config as cfg
|
22
24
|
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
23
|
-
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention # NOQA
|
24
|
-
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention_with_hlfb # NOQA
|
25
25
|
import torch
|
26
26
|
from torch import nn
|
27
27
|
|
@@ -55,29 +55,35 @@ def _embed_rope(
|
|
55
55
|
|
56
56
|
class TransformerBlock(nn.Module):
|
57
57
|
|
58
|
-
def __init__(
|
58
|
+
def __init__(
|
59
|
+
self,
|
60
|
+
config: cfg.TransformerBlockConfig,
|
61
|
+
model_config: cfg.ModelConfig,
|
62
|
+
) -> None:
|
59
63
|
"""Initialize an instance of the TransformerBlock.
|
60
64
|
|
61
65
|
Args:
|
62
|
-
config (cfg.
|
63
|
-
block.
|
66
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
67
|
+
transformer block.
|
68
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
69
|
+
this transformer block belongs to.
|
64
70
|
"""
|
65
|
-
|
66
71
|
super().__init__()
|
67
72
|
self.pre_atten_norm = builder.build_norm(
|
68
|
-
|
73
|
+
model_config.embedding_dim,
|
74
|
+
config.pre_attention_norm_config,
|
69
75
|
)
|
70
76
|
self.atten_func = CausalSelfAttention(
|
71
|
-
|
72
|
-
|
77
|
+
model_config.batch_size,
|
78
|
+
model_config.embedding_dim,
|
73
79
|
config.attn_config,
|
74
|
-
|
75
|
-
config.enable_hlfb,
|
80
|
+
model_config.enable_hlfb,
|
76
81
|
)
|
77
82
|
self.post_atten_norm = builder.build_norm(
|
78
|
-
|
83
|
+
model_config.embedding_dim,
|
84
|
+
config.post_attention_norm_config,
|
79
85
|
)
|
80
|
-
self.ff = builder.build_ff(
|
86
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
81
87
|
self.config = config
|
82
88
|
|
83
89
|
def forward(
|
@@ -86,7 +92,8 @@ class TransformerBlock(nn.Module):
|
|
86
92
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
87
93
|
mask: Optional[torch.Tensor] = None,
|
88
94
|
input_pos: Optional[torch.Tensor] = None,
|
89
|
-
|
95
|
+
kv_cache: kv_utils.KVCacheEntry = None,
|
96
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
90
97
|
"""Forward function of the TransformerBlock.
|
91
98
|
|
92
99
|
Args:
|
@@ -94,24 +101,34 @@ class TransformerBlock(nn.Module):
|
|
94
101
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
95
102
|
mask (torch.Tensor): the optional mask tensor.
|
96
103
|
input_pos (torch.Tensor): the optional input position tensor.
|
104
|
+
kv_cache (KVCacheEntry): the optional kv cache entry.
|
97
105
|
|
98
106
|
Returns:
|
99
|
-
output activation from this transformer block
|
107
|
+
output activation from this transformer block, and updated kv cache (if
|
108
|
+
passed in).
|
100
109
|
"""
|
101
|
-
|
110
|
+
kv = None
|
102
111
|
if self.config.parallel_residual:
|
103
112
|
x_norm = self.pre_atten_norm(x)
|
104
|
-
|
113
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
114
|
+
if kv_cache is None:
|
115
|
+
attn_out = atten_func_out
|
116
|
+
else:
|
117
|
+
attn_out, kv = atten_func_out
|
105
118
|
ff_out = self.ff(x_norm)
|
106
119
|
output = x + attn_out + ff_out
|
107
120
|
else:
|
108
121
|
x_norm = self.pre_atten_norm(x)
|
109
|
-
|
122
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
123
|
+
if kv_cache is None:
|
124
|
+
attn_out = atten_func_out
|
125
|
+
else:
|
126
|
+
attn_out, kv = atten_func_out
|
110
127
|
x = x + attn_out
|
111
128
|
x_norm = self.post_atten_norm(x)
|
112
129
|
output = x + self.ff(x_norm)
|
113
130
|
|
114
|
-
return output
|
131
|
+
return output if kv is None else (output, kv)
|
115
132
|
|
116
133
|
|
117
134
|
class CausalSelfAttention(nn.Module):
|
@@ -121,7 +138,6 @@ class CausalSelfAttention(nn.Module):
|
|
121
138
|
batch_size: int,
|
122
139
|
dim: int,
|
123
140
|
config: cfg.AttentionConfig,
|
124
|
-
kv_cache_max: int,
|
125
141
|
enable_hlfb: bool,
|
126
142
|
) -> None:
|
127
143
|
"""Initialize an instance of CausalSelfAttention.
|
@@ -130,12 +146,9 @@ class CausalSelfAttention(nn.Module):
|
|
130
146
|
batch_size (int): batch size of the input tensor.
|
131
147
|
dim (int): causal attention's input/output dimmension.
|
132
148
|
config (cfg.AttentionConfig): attention specific configurations.
|
133
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
134
|
-
enabled.
|
135
149
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
136
150
|
"""
|
137
151
|
super().__init__()
|
138
|
-
self.config = config
|
139
152
|
self.kv_cache = None
|
140
153
|
self.batch_size = batch_size
|
141
154
|
qkv_shape = (
|
@@ -147,21 +160,13 @@ class CausalSelfAttention(nn.Module):
|
|
147
160
|
self.output_projection = nn.Linear(
|
148
161
|
output_shape, dim, bias=config.output_proj_use_bias
|
149
162
|
)
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
config.head_dim,
|
158
|
-
enable_hlfb,
|
159
|
-
)
|
160
|
-
|
161
|
-
if enable_hlfb:
|
162
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
163
|
-
else:
|
164
|
-
self.sdpa_func = scaled_dot_product_attention
|
163
|
+
self.config = config
|
164
|
+
self.enable_hlfb = enable_hlfb
|
165
|
+
self.sdpa_func = (
|
166
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
167
|
+
if enable_hlfb
|
168
|
+
else sdpa.scaled_dot_product_attention
|
169
|
+
)
|
165
170
|
|
166
171
|
def forward(
|
167
172
|
self,
|
@@ -169,7 +174,8 @@ class CausalSelfAttention(nn.Module):
|
|
169
174
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
170
175
|
mask: Optional[torch.Tensor] = None,
|
171
176
|
input_pos: Optional[torch.Tensor] = None,
|
172
|
-
|
177
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
178
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
173
179
|
"""Forward function of the CausalSelfAttention layer, which can support
|
174
180
|
|
175
181
|
MQA, GQA and MHA.
|
@@ -179,9 +185,11 @@ class CausalSelfAttention(nn.Module):
|
|
179
185
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
180
186
|
mask (torch.Tensor): the optional mask tensor.
|
181
187
|
input_pos (torch.Tensor): the optional input position tensor.
|
188
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
182
189
|
|
183
190
|
Returns:
|
184
|
-
output activation from this self attention layer
|
191
|
+
output activation from this self attention layer, and the updated
|
192
|
+
KV Cach Entry (if passed in).
|
185
193
|
"""
|
186
194
|
# Batch size, sequence length, embedding dimensionality.
|
187
195
|
B, T, E = x.size()
|
@@ -224,9 +232,11 @@ class CausalSelfAttention(nn.Module):
|
|
224
232
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
225
233
|
q, k = _embed_rope(q, k, n_elem, rope)
|
226
234
|
|
227
|
-
if
|
228
|
-
|
229
|
-
|
235
|
+
if kv_cache is not None:
|
236
|
+
kv_cache = kv_utils.update(
|
237
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
238
|
+
)
|
239
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
230
240
|
|
231
241
|
y = self.sdpa_func(
|
232
242
|
q,
|
@@ -240,7 +250,7 @@ class CausalSelfAttention(nn.Module):
|
|
240
250
|
|
241
251
|
# Compute the output projection.
|
242
252
|
y = self.output_projection(y)
|
243
|
-
return y
|
253
|
+
return y if kv_cache is None else (y, kv_cache)
|
244
254
|
|
245
255
|
|
246
256
|
class SelfAttention(CausalSelfAttention):
|
@@ -251,16 +261,19 @@ class SelfAttention(CausalSelfAttention):
|
|
251
261
|
x: torch.Tensor,
|
252
262
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
253
263
|
input_pos: Optional[torch.Tensor] = None,
|
254
|
-
|
264
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
265
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
255
266
|
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
256
267
|
|
257
268
|
Args:
|
258
269
|
x (torch.Tensor): the input tensor.
|
259
270
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
260
271
|
input_pos (torch.Tensor): the optional input position tensor.
|
272
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
261
273
|
|
262
274
|
Returns:
|
263
|
-
output activation from this self attention layer
|
275
|
+
output activation from this self attention layer, and the updated
|
276
|
+
KV Cach Entry (if passed in).
|
264
277
|
"""
|
265
278
|
B, T, _ = x.size()
|
266
279
|
return super().forward(
|
@@ -279,9 +292,8 @@ class CrossAttention(nn.Module):
|
|
279
292
|
query_dim: int,
|
280
293
|
cross_dim: int,
|
281
294
|
config: cfg.AttentionConfig,
|
282
|
-
kv_cache_max: int,
|
283
295
|
enable_hlfb: bool,
|
284
|
-
)
|
296
|
+
):
|
285
297
|
"""Initialize an instance of CrossAttention.
|
286
298
|
|
287
299
|
Args:
|
@@ -289,8 +301,6 @@ class CrossAttention(nn.Module):
|
|
289
301
|
query_dim (int): query tensor's dimension.
|
290
302
|
cross_dim (int): cross attention's dimensions, for key and value tensors.
|
291
303
|
config (cfg.AttentionConfig): attention specific configurations.
|
292
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
293
|
-
enabled.
|
294
304
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
295
305
|
"""
|
296
306
|
super().__init__()
|
@@ -309,21 +319,11 @@ class CrossAttention(nn.Module):
|
|
309
319
|
query_dim, query_dim, bias=config.output_proj_use_bias
|
310
320
|
)
|
311
321
|
|
312
|
-
self.
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
kv_cache_max,
|
318
|
-
config.num_query_groups,
|
319
|
-
self.config.head_dim,
|
320
|
-
enable_hlfb,
|
321
|
-
)
|
322
|
-
|
323
|
-
if enable_hlfb:
|
324
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
325
|
-
else:
|
326
|
-
self.sdpa_func = scaled_dot_product_attention
|
322
|
+
self.sdpa_func = (
|
323
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
324
|
+
if enable_hlfb
|
325
|
+
else sdpa.scaled_dot_product_attention
|
326
|
+
)
|
327
327
|
|
328
328
|
def forward(
|
329
329
|
self,
|
@@ -332,6 +332,7 @@ class CrossAttention(nn.Module):
|
|
332
332
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
333
333
|
mask: Optional[torch.Tensor] = None,
|
334
334
|
input_pos: Optional[torch.Tensor] = None,
|
335
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
335
336
|
):
|
336
337
|
"""Forward function of the CrossAttention layer.
|
337
338
|
|
@@ -342,6 +343,7 @@ class CrossAttention(nn.Module):
|
|
342
343
|
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
343
344
|
[B, n_heads, target_seq_len, source_seq_len].
|
344
345
|
input_pos (torch.Tensor): the optional input position tensor.
|
346
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
345
347
|
|
346
348
|
Returns:
|
347
349
|
output activation from this cross attention layer.
|
@@ -363,9 +365,11 @@ class CrossAttention(nn.Module):
|
|
363
365
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
364
366
|
q, k = _embed_rope(q, k, n_elem, rope)
|
365
367
|
|
366
|
-
if
|
367
|
-
|
368
|
-
|
368
|
+
if kv_cache is not None:
|
369
|
+
kv_cache = kv_utils.update(
|
370
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
371
|
+
)
|
372
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
369
373
|
if mask is None:
|
370
374
|
mask = torch.zeros(
|
371
375
|
(batch_size, 1, target_seq_len, source_seq_len), dtype=torch.float32
|
@@ -375,4 +379,4 @@ class CrossAttention(nn.Module):
|
|
375
379
|
|
376
380
|
# Compute the output projection.
|
377
381
|
y = self.output_projection(y)
|
378
|
-
return y
|
382
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -59,9 +59,11 @@ def build_norm(dim: int, config: cfg.NormalizationConfig):
|
|
59
59
|
zero_centered_gamma=config.zero_centered,
|
60
60
|
)
|
61
61
|
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
62
|
-
return
|
62
|
+
return normalization.LayerNorm(dim, config.epsilon, config.enable_hlfb)
|
63
63
|
elif config.type == cfg.NormalizationType.GROUP_NORM:
|
64
|
-
return
|
64
|
+
return normalization.GroupNorm(
|
65
|
+
config.group_num, dim, config.epsilon, config.enable_hlfb
|
66
|
+
)
|
65
67
|
else:
|
66
68
|
raise ValueError("Unsupported norm type.")
|
67
69
|
|
@@ -71,7 +73,7 @@ def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
71
73
|
|
72
74
|
Args:
|
73
75
|
dim (int): dimension of the input tensor.
|
74
|
-
config (`
|
76
|
+
config (`FeedForwardConfig` object): the model configuration.
|
75
77
|
|
76
78
|
Returns:
|
77
79
|
The constructed `nn.Module` feedforward layer.
|
@@ -12,72 +12,184 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# `nn.Module` which implements a KV cache.
|
16
15
|
|
17
|
-
|
16
|
+
"""Utility functions for externalized KV Cache."""
|
17
|
+
|
18
|
+
import dataclasses
|
19
|
+
from typing import List, Tuple
|
20
|
+
|
21
|
+
from ai_edge_torch import hlfb
|
22
|
+
from ai_edge_torch.generative.layers import model_config
|
18
23
|
import torch
|
19
|
-
|
24
|
+
import torch.utils._pytree as pytree
|
20
25
|
|
26
|
+
BATCH_SIZE = 1
|
21
27
|
|
22
|
-
class KVCache(nn.Module):
|
23
28
|
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
"""Initializes the KVCache layer.
|
29
|
+
@dataclasses.dataclass
|
30
|
+
class KVCacheEntry:
|
31
|
+
"""A single cache entry that includes K and V caches.
|
28
32
|
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
n_heads (int): number of kv heads.
|
33
|
-
head_dim (int): the head dimension size.
|
34
|
-
enable_hlfb (bool): whether hlfb is enabled or not.
|
35
|
-
"""
|
36
|
-
super().__init__()
|
37
|
-
cache_shape = (batch_size, kv_cache_max, n_heads, head_dim)
|
38
|
-
self.register_buffer("k_cache", torch.zeros(cache_shape), persistent=False)
|
39
|
-
self.register_buffer("v_cache", torch.zeros(cache_shape), persistent=False)
|
40
|
-
self.enable_hlfb = enable_hlfb
|
41
|
-
self.kv_cache_max = kv_cache_max
|
33
|
+
The chaches are built based on the provided config with the shape of
|
34
|
+
(batch_size=1, kv_cache_max, num_query_groups, head_dim).
|
35
|
+
"""
|
42
36
|
|
43
|
-
|
44
|
-
|
37
|
+
k_cache: torch.Tensor
|
38
|
+
v_cache: torch.Tensor
|
45
39
|
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
40
|
+
@classmethod
|
41
|
+
def from_model_config(
|
42
|
+
cls,
|
43
|
+
kv_cache_max: int,
|
44
|
+
config: model_config.AttentionConfig,
|
45
|
+
dtype: torch.dtype = torch.float32,
|
46
|
+
device: torch.device = None,
|
47
|
+
) -> "KVCacheEntry":
|
48
|
+
"""Build an instance of the class based on model config."""
|
49
|
+
shape = (BATCH_SIZE, kv_cache_max, config.num_query_groups, config.head_dim)
|
50
|
+
k = torch.zeros(shape, dtype=dtype, device=device)
|
51
|
+
v = torch.zeros(shape, dtype=dtype, device=device)
|
52
|
+
obj = cls(k_cache=k, v_cache=v)
|
53
|
+
return obj
|
50
54
|
|
51
|
-
Returns:
|
52
|
-
The updated key and value tensor.
|
53
|
-
"""
|
54
|
-
if self.enable_hlfb:
|
55
|
-
return self.update_cache_with_hlfb(input_pos, k_val, v_val)
|
56
55
|
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
return torch.clone(updated_k), torch.clone(updated_v)
|
56
|
+
@dataclasses.dataclass
|
57
|
+
class KVCache:
|
58
|
+
"""A utility class for holding KV cache entries per layer."""
|
61
59
|
|
62
|
-
|
63
|
-
|
60
|
+
caches: Tuple[KVCacheEntry, ...]
|
61
|
+
|
62
|
+
@classmethod
|
63
|
+
def from_model_config(
|
64
|
+
cls,
|
65
|
+
config: model_config.ModelConfig,
|
66
|
+
dtype: torch.dtype = torch.float32,
|
67
|
+
device: torch.device = None,
|
68
|
+
) -> "KVCache":
|
69
|
+
"""Build an instance of the class based on model config.
|
64
70
|
|
65
71
|
Args:
|
66
|
-
|
67
|
-
|
68
|
-
|
72
|
+
config (ModelConfig): Model config used for building the cache.
|
73
|
+
dtype (torch.dtype, optional): The data type of the cache tensor.
|
74
|
+
Defaults to torch.float32.
|
75
|
+
device (torch.device, optional): The device placement of the cache
|
76
|
+
tensors. Defaults to None.
|
69
77
|
|
70
78
|
Returns:
|
71
|
-
|
79
|
+
KVCache: The created cache object.
|
72
80
|
"""
|
81
|
+
caches = [
|
82
|
+
KVCacheEntry.from_model_config(
|
83
|
+
config.kv_cache_max,
|
84
|
+
config.block_config(idx).attn_config,
|
85
|
+
dtype,
|
86
|
+
device,
|
87
|
+
)
|
88
|
+
for idx in range(config.num_layers)
|
89
|
+
]
|
90
|
+
obj = cls(caches=tuple(caches))
|
91
|
+
return obj
|
73
92
|
|
74
|
-
|
75
|
-
|
76
|
-
)
|
77
|
-
|
78
|
-
|
93
|
+
def flatten(self) -> List[torch.Tensor]:
|
94
|
+
"""Flatten the cache entries into a list of tensors with order k_i, v_i."""
|
95
|
+
flattened, _ = _flatten_kvc(self)
|
96
|
+
return flattened
|
97
|
+
|
98
|
+
|
99
|
+
def _flatten_kvc(kvc: KVCache) -> Tuple[List[str], List[str]]:
|
100
|
+
flattened = []
|
101
|
+
flat_names = []
|
102
|
+
none_names = []
|
103
|
+
for i, kv_entry in enumerate(kvc.caches):
|
104
|
+
flattened.append(kv_entry.k_cache)
|
105
|
+
flat_names.append(f"k_{i}")
|
106
|
+
flattened.append(kv_entry.v_cache)
|
107
|
+
flat_names.append(f"v_{i}")
|
108
|
+
return flattened, [flat_names, none_names]
|
109
|
+
|
110
|
+
|
111
|
+
def _flatten_kvc_with_keys(kvc: KVCache) -> Tuple[List, List]:
|
112
|
+
flattened, (flat_names, none_names) = _flatten_kvc(kvc)
|
113
|
+
return [
|
114
|
+
(pytree.MappingKey(k), v) for k, v in zip(flat_names, flattened)
|
115
|
+
], flat_names
|
116
|
+
|
117
|
+
|
118
|
+
def _unflatten_kvc(
|
119
|
+
values: List[torch.Tensor], context: Tuple[List, List]
|
120
|
+
) -> KVCache:
|
121
|
+
assert len(values) % 2 == 0, "Found odd number of K and V entries."
|
122
|
+
num_layers = len(values) // 2
|
123
|
+
flat_names = context[0]
|
124
|
+
kv_entries = []
|
125
|
+
for i in range(num_layers):
|
126
|
+
k_cache_idx = flat_names.index(f"k_{i}")
|
127
|
+
v_cache_idx = flat_names.index(f"v_{i}")
|
128
|
+
kv_entries.append(
|
129
|
+
KVCacheEntry(k_cache=values[k_cache_idx], v_cache=values[v_cache_idx])
|
79
130
|
)
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
131
|
+
obj = KVCache(tuple(kv_entries))
|
132
|
+
return obj
|
133
|
+
|
134
|
+
|
135
|
+
pytree.register_pytree_node(
|
136
|
+
KVCache,
|
137
|
+
_flatten_kvc,
|
138
|
+
_unflatten_kvc,
|
139
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
140
|
+
serialized_type_name="",
|
141
|
+
)
|
142
|
+
|
143
|
+
|
144
|
+
def update(
|
145
|
+
cache: KVCacheEntry,
|
146
|
+
input_pos: torch.Tensor,
|
147
|
+
k_slice: torch.Tensor,
|
148
|
+
v_slice: torch.Tensor,
|
149
|
+
enable_hlfb: bool = True,
|
150
|
+
) -> KVCacheEntry:
|
151
|
+
"""Out of place update of Cache buffer.
|
152
|
+
|
153
|
+
Args:
|
154
|
+
cache (KVCacheEntry): The original cache buffer.
|
155
|
+
input_pos (torch.Tensor): The update slice positions.
|
156
|
+
k_slice (torch.Tensor): The K slice to be updated in the new cache.
|
157
|
+
v_slice (torch.Tensor): The V slice to be updated in the new cache.
|
158
|
+
enable_hlfb (bool, optional): Whether the op is annotated for export with
|
159
|
+
High Level Function Boundary. Defaults to True.
|
160
|
+
|
161
|
+
Returns:
|
162
|
+
KVCacheEntry: The updated KVCache entry based on the passed inputs.
|
163
|
+
"""
|
164
|
+
update_func = _update_kv_hlfb_impl if enable_hlfb else _update_kv_base_impl
|
165
|
+
return update_func(cache, input_pos, k_slice, v_slice)
|
166
|
+
|
167
|
+
|
168
|
+
def _update_kv_base_impl(
|
169
|
+
cache: KVCacheEntry,
|
170
|
+
input_pos: torch.Tensor,
|
171
|
+
k_slice: torch.Tensor,
|
172
|
+
v_slice: torch.Tensor,
|
173
|
+
) -> KVCacheEntry:
|
174
|
+
"""Update the cache buffer without High Level Function Boundary annotation."""
|
175
|
+
k = cache.k_cache.index_copy(1, input_pos, k_slice)
|
176
|
+
v = cache.v_cache.index_copy(1, input_pos, v_slice)
|
177
|
+
updated_cache = KVCacheEntry(k, v)
|
178
|
+
return updated_cache
|
179
|
+
|
180
|
+
|
181
|
+
def _update_kv_hlfb_impl(
|
182
|
+
cache: KVCacheEntry,
|
183
|
+
input_pos: torch.Tensor,
|
184
|
+
k_slice: torch.Tensor,
|
185
|
+
v_slice: torch.Tensor,
|
186
|
+
) -> KVCacheEntry:
|
187
|
+
"""Update the cache buffer with High Level Function Boundary annotation."""
|
188
|
+
builder = hlfb.StableHLOCompositeBuilder(name="odml.update_external_kv_cache")
|
189
|
+
k_cache, v_cache, input_pos, k_slice, v_slice = builder.mark_inputs(
|
190
|
+
cache.k_cache, cache.v_cache, input_pos, k_slice, v_slice
|
191
|
+
)
|
192
|
+
k = k_cache.index_copy(1, input_pos, k_slice)
|
193
|
+
v = v_cache.index_copy(1, input_pos, v_slice)
|
194
|
+
k, v = builder.mark_outputs(k, v)
|
195
|
+
return KVCacheEntry(k, v)
|
@@ -16,7 +16,7 @@
|
|
16
16
|
from dataclasses import dataclass
|
17
17
|
from dataclasses import field
|
18
18
|
import enum
|
19
|
-
from typing import Optional, Sequence
|
19
|
+
from typing import Optional, Sequence, Union
|
20
20
|
|
21
21
|
|
22
22
|
@enum.unique
|
@@ -85,8 +85,8 @@ class AttentionConfig:
|
|
85
85
|
relative_attention_max_distance: int = 0
|
86
86
|
# Softcap on the output logits.
|
87
87
|
logit_softcap: Optional[float] = None
|
88
|
-
# The
|
89
|
-
|
88
|
+
# The type of attention.
|
89
|
+
attn_type: Optional[AttentionType] = None
|
90
90
|
# The size of the sliding window used for local attention.
|
91
91
|
sliding_window_size: Optional[int] = None
|
92
92
|
|
@@ -104,6 +104,7 @@ class NormalizationConfig:
|
|
104
104
|
"""Normalizater parameters."""
|
105
105
|
|
106
106
|
type: NormalizationType = NormalizationType.NONE
|
107
|
+
enable_hlfb: bool = False
|
107
108
|
epsilon: float = 1e-5
|
108
109
|
zero_centered: bool = False
|
109
110
|
# Number of groups used in group normalization.
|
@@ -129,13 +130,8 @@ class FeedForwardConfig:
|
|
129
130
|
|
130
131
|
|
131
132
|
@dataclass
|
132
|
-
class
|
133
|
-
"""
|
134
|
-
|
135
|
-
vocab_size: int
|
136
|
-
num_layers: int
|
137
|
-
max_seq_len: int
|
138
|
-
embedding_dim: int
|
133
|
+
class TransformerBlockConfig:
|
134
|
+
"""TransformerBlock module's parameters."""
|
139
135
|
|
140
136
|
attn_config: AttentionConfig
|
141
137
|
ff_config: FeedForwardConfig
|
@@ -147,15 +143,33 @@ class ModelConfig:
|
|
147
143
|
post_attention_norm_config: NormalizationConfig = field(
|
148
144
|
default_factory=NormalizationConfig
|
149
145
|
)
|
146
|
+
# If set to True, only attn_config.pre_attention_norm is applied to the input
|
147
|
+
# and the decode's output is computed as `output = input + attn_out + ff_out`
|
148
|
+
# where attention and feed forward are called with pre_attention_norm's
|
149
|
+
# output.
|
150
|
+
parallel_residual: bool = False
|
151
|
+
# The Attention computation will include relative positional bias.
|
152
|
+
relative_attention: bool = False
|
153
|
+
|
154
|
+
|
155
|
+
@dataclass
|
156
|
+
class ModelConfig:
|
157
|
+
"""Base configurations for building a transformer architecture."""
|
158
|
+
|
159
|
+
vocab_size: int
|
160
|
+
num_layers: int
|
161
|
+
max_seq_len: int
|
162
|
+
embedding_dim: int
|
163
|
+
|
164
|
+
# TransformerBlockConfig for each layer block. If a single
|
165
|
+
# TransformerBlockConfig is provided, it will be used for all layers.
|
166
|
+
block_configs: Union[TransformerBlockConfig, Sequence[TransformerBlockConfig]]
|
167
|
+
|
150
168
|
# The normalization applied before LM head.
|
151
169
|
final_norm_config: NormalizationConfig = field(
|
152
170
|
default_factory=NormalizationConfig
|
153
171
|
)
|
154
172
|
|
155
|
-
# If set to True, only pre_attention_norm is applied to the input and the
|
156
|
-
# decode's output is computed as `output = input + attn_out + ff_out` where
|
157
|
-
# attention and feed forward are called with pre_attention_norm's output.
|
158
|
-
parallel_residual: bool = False
|
159
173
|
# Use bias term within LLM's HEAD.
|
160
174
|
lm_head_use_bias: bool = False
|
161
175
|
# Whether to turn on high-level function boundary.
|
@@ -164,9 +178,6 @@ class ModelConfig:
|
|
164
178
|
# The maximum sequence length of the KV cache. Should not exceed max_seq_len.
|
165
179
|
kv_cache_max_len: int = 0
|
166
180
|
|
167
|
-
# The Attention computation will include relative positional bias.
|
168
|
-
relative_attention: bool = False
|
169
|
-
|
170
181
|
# Default batch size of the exported model. Default value is 1.
|
171
182
|
batch_size: int = 1
|
172
183
|
|
@@ -177,5 +188,13 @@ class ModelConfig:
|
|
177
188
|
def kv_cache_max(self) -> int:
|
178
189
|
if self.kv_cache_max_len > 0:
|
179
190
|
return self.kv_cache_max_len
|
180
|
-
|
181
|
-
|
191
|
+
return self.max_seq_len
|
192
|
+
|
193
|
+
def block_config(self, idx: int) -> TransformerBlockConfig:
|
194
|
+
if isinstance(self.block_configs, TransformerBlockConfig):
|
195
|
+
return self.block_configs
|
196
|
+
if idx < 0 or idx >= len(self.block_configs):
|
197
|
+
raise ValueError(
|
198
|
+
f"Index {idx} is out of range for layer configs: {self.block_configs}"
|
199
|
+
)
|
200
|
+
return self.block_configs[idx]
|