ai-edge-torch-nightly 0.3.0.dev20240910__py3-none-any.whl → 0.3.0.dev20240913__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +31 -12
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/gemma/gemma.py +50 -30
- ai_edge_torch/generative/examples/gemma/gemma2.py +85 -58
- ai_edge_torch/generative/examples/{experimental/phi → phi}/convert_to_tflite.py +11 -12
- ai_edge_torch/generative/examples/{experimental/phi → phi}/phi2.py +46 -43
- ai_edge_torch/generative/examples/{experimental/gemma → smallm}/convert_to_tflite.py +12 -14
- ai_edge_torch/generative/examples/smallm/smallm.py +122 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +11 -5
- ai_edge_torch/generative/examples/t5/t5.py +35 -22
- ai_edge_torch/generative/examples/t5/t5_attention.py +18 -13
- ai_edge_torch/generative/examples/test_models/toy_model.py +15 -13
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +74 -33
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +55 -34
- ai_edge_torch/generative/layers/attention.py +77 -73
- ai_edge_torch/generative/layers/builder.py +5 -3
- ai_edge_torch/generative/layers/kv_cache.py +163 -51
- ai_edge_torch/generative/layers/model_config.py +38 -19
- ai_edge_torch/generative/layers/normalization.py +158 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +0 -2
- ai_edge_torch/generative/test/{test_experimental_ekv.py → test_kv_cache.py} +12 -24
- ai_edge_torch/generative/test/test_loader.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion.py +72 -34
- ai_edge_torch/generative/test/test_model_conversion_large.py +51 -23
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/loader.py +15 -15
- ai_edge_torch/generative/utilities/t5_loader.py +21 -20
- ai_edge_torch/odml_torch/lowerings/__init__.py +1 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -1
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/RECORD +39 -45
- ai_edge_torch/generative/examples/experimental/gemma/gemma.py +0 -219
- ai_edge_torch/generative/examples/experimental/phi/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/convert_to_tflite.py +0 -87
- ai_edge_torch/generative/examples/experimental/tiny_llama/tiny_llama.py +0 -205
- ai_edge_torch/generative/examples/phi2/__init__.py +0 -14
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -67
- ai_edge_torch/generative/examples/phi2/phi2.py +0 -189
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -176
- /ai_edge_torch/generative/examples/{experimental → phi}/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{experimental/gemma → smallm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/top_level.txt +0 -0
@@ -20,7 +20,6 @@ from ai_edge_torch.generative.layers.attention import TransformerBlock
|
|
20
20
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
21
21
|
import ai_edge_torch.generative.layers.builder as builder
|
22
22
|
import ai_edge_torch.generative.layers.model_config as cfg
|
23
|
-
import numpy as np
|
24
23
|
import torch
|
25
24
|
import torch.nn as nn
|
26
25
|
|
@@ -36,16 +35,16 @@ class ToySingleLayerModel(torch.nn.Module):
|
|
36
35
|
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
37
36
|
)
|
38
37
|
self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
|
39
|
-
self.transformer_block = TransformerBlock(config)
|
38
|
+
self.transformer_block = TransformerBlock(config.block_config(0), config)
|
40
39
|
self.final_norm = builder.build_norm(
|
41
40
|
config.embedding_dim,
|
42
41
|
config.final_norm_config,
|
43
42
|
)
|
43
|
+
# Toy model has only one block config.
|
44
|
+
attn_config = config.block_config(0).attn_config
|
44
45
|
self.rope_cache = attn_utils.build_rope_cache(
|
45
46
|
size=config.max_seq_len,
|
46
|
-
dim=int(
|
47
|
-
config.attn_config.rotary_percentage * config.attn_config.head_dim
|
48
|
-
),
|
47
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
49
48
|
base=10_000,
|
50
49
|
condense_ratio=1,
|
51
50
|
dtype=torch.float32,
|
@@ -85,16 +84,16 @@ class ToySingleLayerModelWeightSharing(torch.nn.Module):
|
|
85
84
|
bias=config.lm_head_use_bias,
|
86
85
|
)
|
87
86
|
self.lm_head.weight.data = self.tok_embedding.weight.data
|
88
|
-
self.transformer_block = TransformerBlock(config)
|
87
|
+
self.transformer_block = TransformerBlock(config.block_config(0), config)
|
89
88
|
self.final_norm = builder.build_norm(
|
90
89
|
config.embedding_dim,
|
91
90
|
config.final_norm_config,
|
92
91
|
)
|
92
|
+
# Toy model has only one block config.
|
93
|
+
attn_config = config.block_config(0).attn_config
|
93
94
|
self.rope_cache = attn_utils.build_rope_cache(
|
94
95
|
size=config.max_seq_len,
|
95
|
-
dim=int(
|
96
|
-
config.attn_config.rotary_percentage * config.attn_config.head_dim
|
97
|
-
),
|
96
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
98
97
|
base=10_000,
|
99
98
|
condense_ratio=1,
|
100
99
|
dtype=torch.float32,
|
@@ -135,15 +134,18 @@ def get_model_config() -> cfg.ModelConfig:
|
|
135
134
|
intermediate_size=256,
|
136
135
|
)
|
137
136
|
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
137
|
+
block_config = cfg.TransformerBlockConfig(
|
138
|
+
attn_config=attn_config,
|
139
|
+
ff_config=ff_config,
|
140
|
+
pre_attention_norm_config=norm_config,
|
141
|
+
post_attention_norm_config=norm_config,
|
142
|
+
)
|
138
143
|
config = cfg.ModelConfig(
|
139
144
|
vocab_size=400,
|
140
145
|
num_layers=1,
|
141
146
|
max_seq_len=KV_CACHE_MAX_LEN,
|
142
147
|
embedding_dim=128,
|
143
|
-
|
144
|
-
ff_config=ff_config,
|
145
|
-
pre_attention_norm_config=norm_config,
|
146
|
-
post_attention_norm_config=norm_config,
|
148
|
+
block_configs=block_config,
|
147
149
|
final_norm_config=norm_config,
|
148
150
|
)
|
149
151
|
return config
|
@@ -12,14 +12,17 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
|
16
|
+
"""A toy example which has basic transformer block (w/ externalized KV-Cache)."""
|
17
|
+
|
16
18
|
from typing import Tuple
|
17
19
|
|
18
20
|
import ai_edge_torch
|
19
21
|
from ai_edge_torch import lowertools
|
20
|
-
from ai_edge_torch.generative.layers
|
22
|
+
from ai_edge_torch.generative.layers import attention
|
23
|
+
from ai_edge_torch.generative.layers import builder
|
24
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
21
25
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
22
|
-
import ai_edge_torch.generative.layers.builder as builder
|
23
26
|
import ai_edge_torch.generative.layers.model_config as cfg
|
24
27
|
import torch
|
25
28
|
import torch.nn as nn
|
@@ -27,7 +30,7 @@ import torch.nn as nn
|
|
27
30
|
RoPECache = Tuple[torch.Tensor, torch.Tensor]
|
28
31
|
|
29
32
|
|
30
|
-
class
|
33
|
+
class ToyModelWithKVCache(torch.nn.Module):
|
31
34
|
|
32
35
|
def __init__(self, config: cfg.ModelConfig) -> None:
|
33
36
|
super().__init__()
|
@@ -35,18 +38,20 @@ class ToyModelWithKV(torch.nn.Module):
|
|
35
38
|
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
36
39
|
)
|
37
40
|
self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
|
41
|
+
# Toy model has only one block config.
|
42
|
+
block_config = config.block_config(0)
|
38
43
|
self.transformer_blocks = nn.ModuleList(
|
39
|
-
TransformerBlock(
|
44
|
+
attention.TransformerBlock(block_config, config)
|
45
|
+
for _ in range(config.num_layers)
|
40
46
|
)
|
41
47
|
self.final_norm = builder.build_norm(
|
42
48
|
config.embedding_dim,
|
43
49
|
config.final_norm_config,
|
44
50
|
)
|
51
|
+
attn_config = block_config.attn_config
|
45
52
|
self.rope_cache = attn_utils.build_rope_cache(
|
46
53
|
size=config.max_seq_len,
|
47
|
-
dim=int(
|
48
|
-
config.attn_config.rotary_percentage * config.attn_config.head_dim
|
49
|
-
),
|
54
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
50
55
|
base=10_000,
|
51
56
|
condense_ratio=1,
|
52
57
|
dtype=torch.float32,
|
@@ -57,18 +62,29 @@ class ToyModelWithKV(torch.nn.Module):
|
|
57
62
|
)
|
58
63
|
self.config = config
|
59
64
|
|
60
|
-
|
61
|
-
|
62
|
-
|
65
|
+
def forward(
|
66
|
+
self,
|
67
|
+
tokens: torch.Tensor,
|
68
|
+
input_pos: torch.Tensor,
|
69
|
+
kv_cache: kv_utils.KVCache,
|
70
|
+
) -> Tuple[torch.Tensor, kv_utils.KVCache]:
|
71
|
+
x = self.tok_embedding(tokens)
|
63
72
|
cos, sin = self.rope_cache
|
64
73
|
cos = cos.index_select(0, input_pos)
|
65
74
|
sin = sin.index_select(0, input_pos)
|
66
75
|
mask = self.mask_cache.index_select(2, input_pos)
|
67
76
|
mask = mask[:, :, :, : self.config.max_seq_len]
|
77
|
+
|
78
|
+
updated_kv_entires = []
|
68
79
|
for i, block in enumerate(self.transformer_blocks):
|
69
|
-
|
80
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
81
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
82
|
+
if kv_entry:
|
83
|
+
updated_kv_entires.append(kv_entry)
|
84
|
+
|
70
85
|
x = self.final_norm(x)
|
71
|
-
|
86
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
87
|
+
return {'logits': self.lm_head(x), 'kv_cache': updated_kv_cache}
|
72
88
|
|
73
89
|
|
74
90
|
def _export_stablehlo_mlir(model, args):
|
@@ -78,7 +94,10 @@ def _export_stablehlo_mlir(model, args):
|
|
78
94
|
|
79
95
|
def get_model_config() -> cfg.ModelConfig:
|
80
96
|
attn_config = cfg.AttentionConfig(
|
81
|
-
num_heads=32,
|
97
|
+
num_heads=32,
|
98
|
+
head_dim=4,
|
99
|
+
num_query_groups=4,
|
100
|
+
rotary_percentage=1.0,
|
82
101
|
)
|
83
102
|
ff_config = cfg.FeedForwardConfig(
|
84
103
|
type=cfg.FeedForwardType.GATED,
|
@@ -86,15 +105,18 @@ def get_model_config() -> cfg.ModelConfig:
|
|
86
105
|
intermediate_size=256,
|
87
106
|
)
|
88
107
|
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
89
|
-
|
90
|
-
vocab_size=150,
|
91
|
-
num_layers=2,
|
92
|
-
max_seq_len=500,
|
93
|
-
embedding_dim=128,
|
108
|
+
block_config = cfg.TransformerBlockConfig(
|
94
109
|
attn_config=attn_config,
|
95
110
|
ff_config=ff_config,
|
96
111
|
pre_attention_norm_config=norm_config,
|
97
112
|
post_attention_norm_config=norm_config,
|
113
|
+
)
|
114
|
+
config = cfg.ModelConfig(
|
115
|
+
vocab_size=150,
|
116
|
+
num_layers=2,
|
117
|
+
max_seq_len=100,
|
118
|
+
embedding_dim=128,
|
119
|
+
block_configs=block_config,
|
98
120
|
final_norm_config=norm_config,
|
99
121
|
enable_hlfb=True,
|
100
122
|
)
|
@@ -102,40 +124,59 @@ def get_model_config() -> cfg.ModelConfig:
|
|
102
124
|
|
103
125
|
|
104
126
|
def get_sample_prefill_inputs() -> Tuple[torch.Tensor, torch.Tensor]:
|
105
|
-
|
127
|
+
tokens = torch.unsqueeze(torch.arange(0, 100), 0)
|
106
128
|
input_pos = torch.arange(0, 100)
|
107
|
-
return
|
129
|
+
return tokens, input_pos
|
108
130
|
|
109
131
|
|
110
132
|
def get_sample_decode_inputs() -> Tuple[torch.Tensor, torch.Tensor]:
|
111
|
-
|
112
|
-
input_pos = torch.tensor([10]
|
113
|
-
return
|
133
|
+
tokens = torch.tensor([[1]], dtype=torch.long)
|
134
|
+
input_pos = torch.tensor([10])
|
135
|
+
return tokens, input_pos
|
114
136
|
|
115
137
|
|
116
138
|
def define_and_run() -> None:
|
117
139
|
dump_mlir = False
|
118
140
|
|
119
141
|
config = get_model_config()
|
120
|
-
model =
|
142
|
+
model = ToyModelWithExternalKV(config)
|
143
|
+
model.eval()
|
121
144
|
print('running an inference')
|
122
|
-
|
123
|
-
|
124
|
-
|
145
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
146
|
+
|
147
|
+
tokens, input_pos = get_sample_prefill_inputs()
|
148
|
+
decode_token, decode_input_pos = get_sample_decode_inputs()
|
149
|
+
print(model.forward(tokens, input_pos, kv))
|
125
150
|
|
126
151
|
if dump_mlir:
|
127
|
-
mlir_text = _export_stablehlo_mlir(model, (
|
128
|
-
with open('/tmp/
|
152
|
+
mlir_text = _export_stablehlo_mlir(model, (tokens, input_pos, kv))
|
153
|
+
with open('/tmp/toy_model_with_external_kv.stablehlo.mlir', 'w') as f:
|
129
154
|
f.write(mlir_text)
|
130
155
|
|
131
156
|
# Convert model to tflite with 2 signatures (prefill + decode).
|
132
157
|
print('converting toy model to tflite with 2 signatures (prefill + decode)')
|
133
158
|
edge_model = (
|
134
|
-
ai_edge_torch.signature(
|
135
|
-
|
159
|
+
ai_edge_torch.signature(
|
160
|
+
'prefill',
|
161
|
+
model,
|
162
|
+
sample_kwargs={
|
163
|
+
'tokens': tokens,
|
164
|
+
'input_pos': input_pos,
|
165
|
+
'kv_cache': kv,
|
166
|
+
},
|
167
|
+
)
|
168
|
+
.signature(
|
169
|
+
'decode',
|
170
|
+
model,
|
171
|
+
sample_kwargs={
|
172
|
+
'tokens': decode_token,
|
173
|
+
'input_pos': decode_input_pos,
|
174
|
+
'kv_cache': kv,
|
175
|
+
},
|
176
|
+
)
|
136
177
|
.convert()
|
137
178
|
)
|
138
|
-
edge_model.export('/tmp/
|
179
|
+
edge_model.export('/tmp/toy_external_kv_cache.tflite')
|
139
180
|
|
140
181
|
|
141
182
|
if __name__ == '__main__':
|
@@ -13,11 +13,14 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
+
"""Example of converting TinyLlama model to multi-signature tflite model."""
|
17
|
+
|
16
18
|
import os
|
17
|
-
|
19
|
+
import pathlib
|
18
20
|
|
19
21
|
import ai_edge_torch
|
20
22
|
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
21
24
|
from ai_edge_torch.generative.quantize import quant_recipes
|
22
25
|
import torch
|
23
26
|
|
@@ -48,20 +51,36 @@ def convert_tiny_llama_to_tflite(
|
|
48
51
|
prefill_input_pos = torch.arange(0, prefill_seq_len)
|
49
52
|
decode_token = torch.tensor([[0]], dtype=torch.long)
|
50
53
|
decode_input_pos = torch.tensor([0], dtype=torch.int64)
|
54
|
+
kv = kv_utils.KVCache.from_model_config(pytorch_model.config)
|
51
55
|
|
52
56
|
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
53
57
|
edge_model = (
|
54
58
|
ai_edge_torch.signature(
|
55
|
-
'prefill',
|
59
|
+
'prefill',
|
60
|
+
pytorch_model,
|
61
|
+
sample_kwargs={
|
62
|
+
'tokens': prefill_tokens,
|
63
|
+
'input_pos': prefill_input_pos,
|
64
|
+
'kv_cache': kv,
|
65
|
+
},
|
66
|
+
)
|
67
|
+
.signature(
|
68
|
+
'decode',
|
69
|
+
pytorch_model,
|
70
|
+
sample_kwargs={
|
71
|
+
'tokens': decode_token,
|
72
|
+
'input_pos': decode_input_pos,
|
73
|
+
'kv_cache': kv,
|
74
|
+
},
|
56
75
|
)
|
57
|
-
.signature('decode', pytorch_model, (decode_token, decode_input_pos))
|
58
76
|
.convert(quant_config=quant_config)
|
59
77
|
)
|
78
|
+
quant_suffix = 'q8' if quantize else 'f32'
|
60
79
|
edge_model.export(
|
61
|
-
f'/tmp/
|
80
|
+
f'/tmp/tiny_llama_{quant_suffix}_seq{prefill_seq_len}_ekv{kv_cache_max_len}.tflite'
|
62
81
|
)
|
63
82
|
|
64
83
|
|
65
84
|
if __name__ == '__main__':
|
66
|
-
|
67
|
-
convert_tiny_llama_to_tflite(
|
85
|
+
path = os.path.join(pathlib.Path.home(), 'Downloads/llm_data/tiny_llama')
|
86
|
+
convert_tiny_llama_to_tflite(path)
|
@@ -12,13 +12,15 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
|
16
|
+
"""Example of building a TinyLlama model."""
|
16
17
|
|
17
18
|
import os
|
18
|
-
|
19
|
+
import pathlib
|
19
20
|
|
20
21
|
from ai_edge_torch.generative.layers import attention
|
21
22
|
from ai_edge_torch.generative.layers import builder
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
24
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
23
25
|
import ai_edge_torch.generative.layers.model_config as cfg
|
24
26
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
@@ -42,13 +44,12 @@ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
|
42
44
|
)
|
43
45
|
|
44
46
|
|
45
|
-
class
|
47
|
+
class TinyLlama(nn.Module):
|
46
48
|
"""A TinyLlama model built from the Edge Generative API layers."""
|
47
49
|
|
48
50
|
def __init__(self, config: cfg.ModelConfig):
|
49
51
|
super().__init__()
|
50
52
|
|
51
|
-
self.config = config
|
52
53
|
# Construct model layers.
|
53
54
|
self.lm_head = nn.Linear(
|
54
55
|
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
@@ -56,18 +57,20 @@ class TinyLLamma(nn.Module):
|
|
56
57
|
self.tok_embedding = nn.Embedding(
|
57
58
|
config.vocab_size, config.embedding_dim, padding_idx=0
|
58
59
|
)
|
60
|
+
# TinyLlama has only one block config.
|
61
|
+
block_config = config.block_config(0)
|
59
62
|
self.transformer_blocks = nn.ModuleList(
|
60
|
-
attention.TransformerBlock(
|
63
|
+
attention.TransformerBlock(block_config, config)
|
64
|
+
for _ in range(config.num_layers)
|
61
65
|
)
|
62
66
|
self.final_norm = builder.build_norm(
|
63
67
|
config.embedding_dim,
|
64
68
|
config.final_norm_config,
|
65
69
|
)
|
70
|
+
attn_config = block_config.attn_config
|
66
71
|
self.rope_cache = attn_utils.build_rope_cache(
|
67
72
|
size=config.kv_cache_max,
|
68
|
-
dim=int(
|
69
|
-
config.attn_config.rotary_percentage * config.attn_config.head_dim
|
70
|
-
),
|
73
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
71
74
|
base=10_000,
|
72
75
|
condense_ratio=1,
|
73
76
|
dtype=torch.float32,
|
@@ -80,16 +83,22 @@ class TinyLLamma(nn.Module):
|
|
80
83
|
)
|
81
84
|
self.config = config
|
82
85
|
|
83
|
-
# The model's forward function takes in additional k/v cache tensors
|
84
|
-
# and returns the updated k/v cache tensors to the caller.
|
85
|
-
# This can be eliminated if we handle k/v cache updates inside the model itself.
|
86
86
|
@torch.inference_mode
|
87
|
-
def forward(
|
88
|
-
|
87
|
+
def forward(
|
88
|
+
self,
|
89
|
+
tokens: torch.Tensor,
|
90
|
+
input_pos: torch.Tensor,
|
91
|
+
kv_cache: kv_utils.KVCache,
|
92
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
93
|
+
_, seq_len = tokens.size()
|
89
94
|
assert self.config.max_seq_len >= seq_len, (
|
90
95
|
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
91
96
|
f" {self.config.max_seq_len}"
|
92
97
|
)
|
98
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
99
|
+
"The number of transformer blocks and the number of KV cache entries"
|
100
|
+
" must be the same."
|
101
|
+
)
|
93
102
|
|
94
103
|
cos, sin = self.rope_cache
|
95
104
|
cos = cos.index_select(0, input_pos)
|
@@ -97,16 +106,20 @@ class TinyLLamma(nn.Module):
|
|
97
106
|
mask = self.mask_cache.index_select(2, input_pos)
|
98
107
|
mask = mask[:, :, :, : self.config.kv_cache_max]
|
99
108
|
|
100
|
-
#
|
101
|
-
x = self.tok_embedding(
|
109
|
+
# token embeddings of shape (b, t, n_embd)
|
110
|
+
x = self.tok_embedding(tokens)
|
102
111
|
|
103
|
-
|
104
|
-
|
112
|
+
updated_kv_entires = []
|
113
|
+
for i, block in enumerate(self.transformer_blocks):
|
114
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
115
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
116
|
+
if kv_entry:
|
117
|
+
updated_kv_entires.append(kv_entry)
|
118
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
105
119
|
|
106
120
|
x = self.final_norm(x)
|
107
|
-
|
108
|
-
|
109
|
-
return res
|
121
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
122
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
110
123
|
|
111
124
|
|
112
125
|
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
@@ -131,55 +144,63 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
131
144
|
intermediate_size=5632,
|
132
145
|
)
|
133
146
|
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
147
|
+
block_config = cfg.TransformerBlockConfig(
|
148
|
+
attn_config=attn_config,
|
149
|
+
ff_config=ff_config,
|
150
|
+
pre_attention_norm_config=norm_config,
|
151
|
+
post_attention_norm_config=norm_config,
|
152
|
+
)
|
134
153
|
config = cfg.ModelConfig(
|
135
154
|
vocab_size=32000,
|
136
155
|
num_layers=22,
|
137
156
|
max_seq_len=2048,
|
138
157
|
embedding_dim=2048,
|
139
158
|
kv_cache_max_len=kv_cache_max_len,
|
140
|
-
|
141
|
-
ff_config=ff_config,
|
142
|
-
pre_attention_norm_config=norm_config,
|
143
|
-
post_attention_norm_config=norm_config,
|
159
|
+
block_configs=block_config,
|
144
160
|
final_norm_config=norm_config,
|
145
161
|
enable_hlfb=True,
|
146
162
|
)
|
147
163
|
return config
|
148
164
|
|
149
165
|
|
150
|
-
def get_fake_model_config() -> cfg.ModelConfig:
|
151
|
-
config = get_model_config()
|
166
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
167
|
+
config = get_model_config(**kwargs)
|
152
168
|
config.vocab_size = 128
|
153
169
|
config.num_layers = 2
|
154
|
-
config.
|
170
|
+
# TinyLlama has only one block config.
|
171
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
155
172
|
return config
|
156
173
|
|
157
174
|
|
158
175
|
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
159
176
|
config = get_model_config(**kwargs)
|
160
|
-
model =
|
177
|
+
model = TinyLlama(config)
|
161
178
|
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
162
179
|
loader.load(model)
|
180
|
+
model.eval()
|
163
181
|
return model
|
164
182
|
|
165
183
|
|
166
|
-
def define_and_run() -> None:
|
184
|
+
def define_and_run(checkpoint_path: str) -> None:
|
167
185
|
"""Instantiates and runs a TinyLlama model."""
|
168
186
|
|
169
|
-
current_dir = Path(__file__).parent.resolve()
|
187
|
+
current_dir = pathlib.Path(__file__).parent.resolve()
|
170
188
|
tiny_llama_goldens = torch.load(current_dir / "tiny_llama_lm_logits.pt")
|
171
189
|
kv_cache_max_len = 1024
|
172
|
-
checkpoint_path = os.path.join(Path.home(), "Downloads/llm_data/tiny_llama")
|
173
190
|
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
174
191
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
175
192
|
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.long, device="cpu")
|
176
193
|
tokens[0, :4] = idx
|
177
194
|
input_pos = torch.arange(0, kv_cache_max_len)
|
178
|
-
|
195
|
+
kv = kv_utils.KVCache.from_model_config(model.config)
|
196
|
+
output = model.forward(tokens, input_pos, kv)
|
179
197
|
assert torch.allclose(
|
180
|
-
tiny_llama_goldens,
|
198
|
+
tiny_llama_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-02
|
181
199
|
)
|
182
200
|
|
183
201
|
|
184
202
|
if __name__ == "__main__":
|
185
|
-
|
203
|
+
input_checkpoint_path = os.path.join(
|
204
|
+
pathlib.Path.home(), "Downloads/llm_data/tiny_llama"
|
205
|
+
)
|
206
|
+
define_and_run(input_checkpoint_path)
|