ai-edge-torch-nightly 0.3.0.dev20240909__py3-none-any.whl → 0.3.0.dev20240913__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/_convert/test/test_convert.py +35 -13
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +31 -12
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/gemma/gemma.py +50 -30
- ai_edge_torch/generative/examples/gemma/gemma2.py +85 -58
- ai_edge_torch/generative/examples/{experimental/phi → phi}/convert_to_tflite.py +11 -12
- ai_edge_torch/generative/examples/{experimental/phi → phi}/phi2.py +46 -43
- ai_edge_torch/generative/examples/{experimental/gemma → smallm}/convert_to_tflite.py +12 -14
- ai_edge_torch/generative/examples/smallm/smallm.py +122 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +11 -5
- ai_edge_torch/generative/examples/t5/t5.py +35 -22
- ai_edge_torch/generative/examples/t5/t5_attention.py +18 -13
- ai_edge_torch/generative/examples/test_models/toy_model.py +15 -13
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +74 -33
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +55 -34
- ai_edge_torch/generative/layers/attention.py +77 -73
- ai_edge_torch/generative/layers/builder.py +5 -3
- ai_edge_torch/generative/layers/kv_cache.py +163 -51
- ai_edge_torch/generative/layers/model_config.py +38 -19
- ai_edge_torch/generative/layers/normalization.py +158 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +0 -2
- ai_edge_torch/generative/test/{test_experimental_ekv.py → test_kv_cache.py} +12 -24
- ai_edge_torch/generative/test/test_loader.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion.py +72 -34
- ai_edge_torch/generative/test/test_model_conversion_large.py +51 -23
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/loader.py +15 -15
- ai_edge_torch/generative/utilities/t5_loader.py +21 -20
- ai_edge_torch/odml_torch/lowerings/__init__.py +1 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +196 -74
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -2
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/RECORD +41 -47
- ai_edge_torch/generative/examples/experimental/gemma/gemma.py +0 -219
- ai_edge_torch/generative/examples/experimental/phi/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/convert_to_tflite.py +0 -87
- ai_edge_torch/generative/examples/experimental/tiny_llama/tiny_llama.py +0 -205
- ai_edge_torch/generative/examples/phi2/__init__.py +0 -14
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -67
- ai_edge_torch/generative/examples/phi2/phi2.py +0 -189
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -176
- /ai_edge_torch/generative/examples/{experimental → phi}/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{experimental/gemma → smallm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/top_level.txt +0 -0
@@ -12,22 +12,171 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
"""Provides lowering for coreaten to
|
15
|
+
"""Provides lowering for coreaten to stablehlo for Convolution."""
|
16
16
|
|
17
17
|
import math
|
18
18
|
from typing import Optional
|
19
19
|
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
20
21
|
from jax._src.lib.mlir import ir
|
21
22
|
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
22
23
|
import torch
|
23
24
|
|
24
|
-
|
25
|
+
|
26
|
+
def make_padding(padding):
|
27
|
+
"""Change the padding from pytorch to stablehlo style.
|
28
|
+
|
29
|
+
Stablehlo allows start and end padding for each dimension while aten only
|
30
|
+
allows symmetric padding and so only has one number per dimension.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
padding: The padding of the convolution
|
34
|
+
|
35
|
+
Returns:
|
36
|
+
The padding in stablehlo style
|
37
|
+
"""
|
38
|
+
return tuple((p, p) for p in padding)
|
39
|
+
|
40
|
+
|
41
|
+
def create_conv_dimension_numbers(lhs, transposed: bool = False):
|
42
|
+
"""Create the dimension numbers for the convolution.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
lhs: The input tensor
|
46
|
+
transposed: Whether the convolution is transposed
|
47
|
+
|
48
|
+
Returns:
|
49
|
+
The dimension numbers for the convolution
|
50
|
+
"""
|
51
|
+
num_spatial_dims = len(lhs.type.shape) - 2
|
52
|
+
spatial_dimensions = []
|
53
|
+
for i in range(0, num_spatial_dims):
|
54
|
+
spatial_dimensions.append(i + 2)
|
55
|
+
|
56
|
+
# Regular kernels are OIHW
|
57
|
+
# TransposedConv kernels are IOHW
|
58
|
+
dimension_numbers = stablehlo.ConvDimensionNumbers.get(
|
59
|
+
input_batch_dimension=0,
|
60
|
+
input_feature_dimension=1,
|
61
|
+
input_spatial_dimensions=spatial_dimensions,
|
62
|
+
kernel_input_feature_dimension=0 if transposed else 1,
|
63
|
+
kernel_output_feature_dimension=1 if transposed else 0,
|
64
|
+
kernel_spatial_dimensions=spatial_dimensions,
|
65
|
+
output_batch_dimension=0,
|
66
|
+
output_feature_dimension=1,
|
67
|
+
output_spatial_dimensions=spatial_dimensions,
|
68
|
+
)
|
69
|
+
return dimension_numbers
|
70
|
+
|
71
|
+
|
72
|
+
def infer_output_shape(
|
73
|
+
lhs,
|
74
|
+
rhs,
|
75
|
+
stride,
|
76
|
+
dilation,
|
77
|
+
padding,
|
78
|
+
transposed: bool = False,
|
79
|
+
output_padding: list[int] = 0,
|
80
|
+
):
|
81
|
+
"""Infer the output shape of the convolution.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
lhs: The input tensor
|
85
|
+
rhs: The kernel tensor
|
86
|
+
stride: The stride of the convolution (dilation of input in transposed conv)
|
87
|
+
dilation: The kernel dilation of the convolution
|
88
|
+
padding: The padding of the convolution
|
89
|
+
transposed: Whether the convolution is transposed
|
90
|
+
output_padding: The output padding of the convolution
|
91
|
+
|
92
|
+
Returns:
|
93
|
+
The output shape of the convolution
|
94
|
+
"""
|
95
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
96
|
+
lhs_shape: list[int] = lhs_type.shape
|
97
|
+
rhs_shape: list[int] = rhs.type.shape
|
98
|
+
|
99
|
+
# Input layout is: (N)CHW and Kernel layout is: (O)IHW for regular conv
|
100
|
+
# Input layout is: (N)CHW and Kernel layout is: I(O)HW for transposed conv
|
101
|
+
output_shape = (
|
102
|
+
[lhs_shape[0], rhs_shape[1]]
|
103
|
+
if transposed
|
104
|
+
else [lhs_shape[0], rhs_shape[0]]
|
105
|
+
)
|
106
|
+
num_spatial_dims = len(lhs.type.shape) - 2
|
107
|
+
|
108
|
+
# looping over the spatial dims (skipping the first 2 dims which are
|
109
|
+
# batch and features)
|
110
|
+
for spatial_dim in range(0, num_spatial_dims):
|
111
|
+
dim = spatial_dim + 2
|
112
|
+
dim_size = lhs_shape[dim]
|
113
|
+
kernel_dim_size = rhs_shape[dim]
|
114
|
+
|
115
|
+
if transposed:
|
116
|
+
output_dim_size = (
|
117
|
+
(dim_size - 1) * stride[spatial_dim]
|
118
|
+
- 2 * padding[spatial_dim]
|
119
|
+
+ dilation[spatial_dim] * (kernel_dim_size - 1)
|
120
|
+
+ output_padding[spatial_dim]
|
121
|
+
+ 1
|
122
|
+
)
|
123
|
+
else:
|
124
|
+
output_dim_size = math.floor(
|
125
|
+
(
|
126
|
+
(
|
127
|
+
dim_size
|
128
|
+
+ 2 * padding[spatial_dim]
|
129
|
+
- dilation[spatial_dim] * (kernel_dim_size - 1)
|
130
|
+
- 1
|
131
|
+
)
|
132
|
+
/ stride[spatial_dim]
|
133
|
+
)
|
134
|
+
+ 1
|
135
|
+
)
|
136
|
+
|
137
|
+
output_shape.append(output_dim_size)
|
138
|
+
|
139
|
+
return output_shape
|
140
|
+
|
141
|
+
|
142
|
+
def build_transpose_conv(
|
143
|
+
lctx,
|
144
|
+
output_type: ir.RankedTensorType,
|
145
|
+
lhs: ir.Value,
|
146
|
+
rhs: ir.Value,
|
147
|
+
stride: list[int],
|
148
|
+
padding: list[int],
|
149
|
+
dilation: list[int],
|
150
|
+
output_padding: list[int],
|
151
|
+
groups: int,
|
152
|
+
):
|
153
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
154
|
+
num_spatial_dims = len(lhs_type.shape) - 2
|
155
|
+
rhs = stablehlo.reverse(rhs, list(range(2, 2 + num_spatial_dims)))
|
156
|
+
|
157
|
+
kernel_size = rhs.type.shape
|
158
|
+
# We need to additional padding on the input to get the right output size.
|
159
|
+
adjusted_padding = [
|
160
|
+
dilation[dim] * (kernel_size[dim + 2] - 1) - padding[dim]
|
161
|
+
for dim in range(num_spatial_dims)
|
162
|
+
]
|
163
|
+
return stablehlo.convolution(
|
164
|
+
result=output_type,
|
165
|
+
lhs=lhs,
|
166
|
+
rhs=rhs,
|
167
|
+
dimension_numbers=create_conv_dimension_numbers(lhs, True),
|
168
|
+
feature_group_count=groups,
|
169
|
+
batch_group_count=1,
|
170
|
+
padding=make_padding(adjusted_padding),
|
171
|
+
lhs_dilation=stride,
|
172
|
+
rhs_dilation=dilation,
|
173
|
+
)
|
25
174
|
|
26
175
|
|
27
176
|
# convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride,
|
28
177
|
# SymInt[] padding, SymInt[] dilation, bool transposed,
|
29
178
|
# SymInt[] output_padding, SymInt groups) -> Tensor
|
30
|
-
|
179
|
+
@registry.lower(torch.ops.aten.convolution)
|
31
180
|
def _aten_convolution(
|
32
181
|
lctx,
|
33
182
|
lhs: ir.Value,
|
@@ -40,80 +189,53 @@ def _aten_convolution(
|
|
40
189
|
output_padding: list[int],
|
41
190
|
groups: int,
|
42
191
|
):
|
43
|
-
if transposed:
|
44
|
-
raise NotImplementedError("Transposed convolution is not implemented.")
|
45
192
|
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
# allows symmetric padding and so only has one number per dimension.
|
51
|
-
def make_padding(padding):
|
52
|
-
return tuple((p, p) for p in padding)
|
53
|
-
|
54
|
-
def create_conv_dimension_numbers():
|
55
|
-
num_spatial_dims = len(lhs.type.shape) - 2
|
56
|
-
spatial_dimensions = []
|
57
|
-
for i in range(0, num_spatial_dims):
|
58
|
-
spatial_dimensions.append(i + 2)
|
59
|
-
|
60
|
-
dimension_numbers = stablehlo.ConvDimensionNumbers.get(
|
61
|
-
input_batch_dimension=0,
|
62
|
-
input_feature_dimension=1,
|
63
|
-
input_spatial_dimensions=spatial_dimensions,
|
64
|
-
kernel_input_feature_dimension=1,
|
65
|
-
kernel_output_feature_dimension=0,
|
66
|
-
kernel_spatial_dimensions=spatial_dimensions,
|
67
|
-
output_batch_dimension=0,
|
68
|
-
output_feature_dimension=1,
|
69
|
-
output_spatial_dimensions=spatial_dimensions,
|
193
|
+
# TODO(b/365559296) Add support for output_padding
|
194
|
+
if any(output_padding):
|
195
|
+
raise NotImplementedError(
|
196
|
+
"Output padding on convolution is not implemented."
|
70
197
|
)
|
71
|
-
return dimension_numbers
|
72
|
-
|
73
|
-
def infer_output_shape():
|
74
|
-
lhs_type: ir.RankedTensorType = lhs.type
|
75
|
-
lhs_shape: list[int] = lhs_type.shape
|
76
|
-
rhs_shape: list[int] = rhs.type.shape
|
77
|
-
|
78
|
-
# Input layout is: (N)CHW and Kernel layout is: (O)IHW
|
79
|
-
output_shape = [lhs_shape[0], rhs_shape[0]]
|
80
|
-
num_spatial_dims = len(lhs.type.shape) - 2
|
81
|
-
|
82
|
-
# looping over the spatial dims (skipping the first 2 dims which are
|
83
|
-
# batch and features)
|
84
|
-
for spatial_dim in range(0, num_spatial_dims):
|
85
|
-
dim_size = lhs_shape[spatial_dim + 2]
|
86
|
-
kernel_dim_size = rhs_shape[spatial_dim + 2]
|
87
|
-
|
88
|
-
# for example, a dilation of 2 increases the dimension size by 2
|
89
|
-
dim_size *= dilation[spatial_dim]
|
90
|
-
|
91
|
-
# padding added to both sides
|
92
|
-
dim_size += 2 * padding[spatial_dim]
|
93
|
-
|
94
|
-
output_dim_size = math.ceil(
|
95
|
-
(dim_size - kernel_dim_size + 1) / stride[spatial_dim]
|
96
|
-
)
|
97
|
-
|
98
|
-
output_shape.append(output_dim_size)
|
99
|
-
|
100
|
-
return output_shape
|
101
198
|
|
102
199
|
lhs_type: ir.RankedTensorType = lhs.type
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
rhs=rhs,
|
110
|
-
dimension_numbers=create_conv_dimension_numbers(),
|
111
|
-
feature_group_count=groups,
|
112
|
-
batch_group_count=1,
|
113
|
-
window_strides=stride,
|
114
|
-
padding=make_padding(padding),
|
115
|
-
lhs_dilation=(1,) * len(stride),
|
116
|
-
rhs_dilation=dilation,
|
200
|
+
output_shape = infer_output_shape(
|
201
|
+
lhs, rhs, stride, dilation, padding, transposed, output_padding
|
202
|
+
)
|
203
|
+
output_type = ir.RankedTensorType.get(
|
204
|
+
output_shape,
|
205
|
+
lhs_type.element_type,
|
117
206
|
)
|
118
207
|
|
119
|
-
|
208
|
+
if transposed:
|
209
|
+
res = build_transpose_conv(
|
210
|
+
lctx,
|
211
|
+
output_type,
|
212
|
+
lhs,
|
213
|
+
rhs,
|
214
|
+
stride,
|
215
|
+
padding,
|
216
|
+
dilation,
|
217
|
+
output_padding,
|
218
|
+
groups,
|
219
|
+
)
|
220
|
+
else:
|
221
|
+
res = stablehlo.convolution(
|
222
|
+
result=output_type,
|
223
|
+
lhs=lhs,
|
224
|
+
rhs=rhs,
|
225
|
+
dimension_numbers=create_conv_dimension_numbers(lhs),
|
226
|
+
feature_group_count=groups,
|
227
|
+
batch_group_count=1,
|
228
|
+
window_strides=stride,
|
229
|
+
padding=make_padding(padding),
|
230
|
+
rhs_dilation=dilation,
|
231
|
+
)
|
232
|
+
|
233
|
+
if bias is not None:
|
234
|
+
# broadcast [C] to [NCHW]
|
235
|
+
broadcasted_bias = stablehlo.broadcast_in_dim(output_type, bias, [1])
|
236
|
+
res = stablehlo.add(
|
237
|
+
lhs=res,
|
238
|
+
rhs=broadcasted_bias,
|
239
|
+
)
|
240
|
+
|
241
|
+
return res
|
@@ -105,7 +105,6 @@ lower_by_torch_xla2(torch.ops.aten.clamp.default)
|
|
105
105
|
lower_by_torch_xla2(torch.ops.aten.clone)
|
106
106
|
lower_by_torch_xla2(torch.ops.aten.clone.default)
|
107
107
|
lower_by_torch_xla2(torch.ops.aten.constant_pad_nd)
|
108
|
-
lower_by_torch_xla2(torch.ops.aten.convolution)
|
109
108
|
lower_by_torch_xla2(torch.ops.aten.cos)
|
110
109
|
lower_by_torch_xla2(torch.ops.aten.cosh)
|
111
110
|
lower_by_torch_xla2(torch.ops.aten.cumsum)
|
@@ -168,7 +167,6 @@ lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
|
|
168
167
|
lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
|
169
168
|
lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
|
170
169
|
lower_by_torch_xla2(torch.ops.aten.native_group_norm)
|
171
|
-
lower_by_torch_xla2(torch.ops.aten.native_layer_norm)
|
172
170
|
lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
|
173
171
|
lower_by_torch_xla2(torch.ops.aten.ne)
|
174
172
|
lower_by_torch_xla2(torch.ops.aten.neg)
|
@@ -0,0 +1,78 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Provides lowering for coreaten to stablehlo for LayerNorm."""
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import Optional
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import utils
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import torch
|
24
|
+
|
25
|
+
|
26
|
+
# native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight,
|
27
|
+
# Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)
|
28
|
+
@registry.lower(torch.ops.aten.native_layer_norm)
|
29
|
+
def _aten_native_layer_norm(
|
30
|
+
lctx,
|
31
|
+
data: ir.Value,
|
32
|
+
normalized_shape: list[int],
|
33
|
+
weight: Optional[ir.Value],
|
34
|
+
bias: Optional[ir.Value],
|
35
|
+
eps: float,
|
36
|
+
):
|
37
|
+
data_type: ir.RankedTensorType = data.type
|
38
|
+
unnormalized_count = math.prod(data_type.shape) // math.prod(normalized_shape)
|
39
|
+
dest_shape = [
|
40
|
+
1,
|
41
|
+
unnormalized_count,
|
42
|
+
math.prod(normalized_shape),
|
43
|
+
]
|
44
|
+
dest_type = ir.RankedTensorType.get(dest_shape, data_type.element_type)
|
45
|
+
|
46
|
+
reshaped_data = stablehlo.reshape(dest_type, data)
|
47
|
+
|
48
|
+
one = utils.splat(1, data_type.element_type, [unnormalized_count])
|
49
|
+
zero = utils.splat(0, data_type.element_type, [unnormalized_count])
|
50
|
+
output, mean, var = stablehlo.batch_norm_training(
|
51
|
+
reshaped_data, one, zero, eps, 1
|
52
|
+
)
|
53
|
+
eps_splat = utils.splat(eps, var.type.element_type, var.type.shape)
|
54
|
+
rstd = stablehlo.rsqrt(stablehlo.add(var, eps_splat))
|
55
|
+
|
56
|
+
stats_shape = data_type.shape[: -1 * len(normalized_shape)] + [1] * len(
|
57
|
+
normalized_shape
|
58
|
+
)
|
59
|
+
stats_type = ir.RankedTensorType.get(stats_shape, data_type.element_type)
|
60
|
+
mean = stablehlo.reshape(stats_type, mean)
|
61
|
+
rstd = stablehlo.reshape(stats_type, rstd)
|
62
|
+
|
63
|
+
output = stablehlo.reshape(data_type, output)
|
64
|
+
|
65
|
+
data_rank = len(data_type.shape)
|
66
|
+
normalized_rank = len(normalized_shape)
|
67
|
+
if weight is not None:
|
68
|
+
weight = stablehlo.broadcast_in_dim(
|
69
|
+
data_type, weight, list(range(data_rank - normalized_rank, data_rank))
|
70
|
+
)
|
71
|
+
output = stablehlo.multiply(weight, output)
|
72
|
+
if bias is not None:
|
73
|
+
bias = stablehlo.broadcast_in_dim(
|
74
|
+
data_type, bias, list(range(data_rank - normalized_rank, data_rank))
|
75
|
+
)
|
76
|
+
output = stablehlo.add(bias, output)
|
77
|
+
|
78
|
+
return output, mean, rstd
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20240913
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -2,7 +2,7 @@ ai_edge_torch/__init__.py,sha256=48qP37uHT90YPs4eIUQxCiWVwqGEX3idCUs6mQKvX1U,116
|
|
2
2
|
ai_edge_torch/config.py,sha256=PCd9PVrbUNeVIUDFUCnW4goDWU4bjouK28yMYU6VOi0,877
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/model.py,sha256=NYV6Mkaje_ditIEI_s_7nLP_-8i4kbGM8nRzieVkbUI,5397
|
5
|
-
ai_edge_torch/version.py,sha256=
|
5
|
+
ai_edge_torch/version.py,sha256=2_ahYhvytovu9mWRifMKeqx6-0JbD7-iV5FXU890d7Y,706
|
6
6
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
7
7
|
ai_edge_torch/_convert/conversion.py,sha256=kcv_QgNgeyDmrqwdzHicGNP68w6zF7GJg7YkMEIXp4Q,3759
|
8
8
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -26,7 +26,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
|
|
26
26
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=L_x8BrF7UDah-SYl-pG11I6CIckdU9kBTUHcmwW4cts,2420
|
27
27
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
|
28
28
|
ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
29
|
-
ai_edge_torch/_convert/test/test_convert.py,sha256=
|
29
|
+
ai_edge_torch/_convert/test/test_convert.py,sha256=FSufFZEeTLBpUnzE1Iy-LvNN0mhDynWMNg7Mei8RpLQ,14973
|
30
30
|
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
|
31
31
|
ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
|
32
32
|
ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
|
@@ -39,27 +39,20 @@ ai_edge_torch/debug/test/test_search_model.py,sha256=-RuU0QsjqkfzZF2IbeA55MoeVOa
|
|
39
39
|
ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
40
40
|
ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
41
41
|
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
42
|
-
ai_edge_torch/generative/examples/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
43
|
-
ai_edge_torch/generative/examples/experimental/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
44
|
-
ai_edge_torch/generative/examples/experimental/gemma/convert_to_tflite.py,sha256=lpiPFSh3SJd6WwuZ0QegSva3__iSz2tUD7L7QfkAe4I,3085
|
45
|
-
ai_edge_torch/generative/examples/experimental/gemma/gemma.py,sha256=aCoD86pf4nuquUMk7MOR-jsN5FqvySSEuMx9Psxjblk,7261
|
46
|
-
ai_edge_torch/generative/examples/experimental/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
47
|
-
ai_edge_torch/generative/examples/experimental/phi/convert_to_tflite.py,sha256=DavrdGmqUgoThsGNRv3LXMW5tvJdYEvj66Hf1XRqkXU,3055
|
48
|
-
ai_edge_torch/generative/examples/experimental/phi/phi2.py,sha256=Jxf3ZyYDpS78l6uh4_LGGIcHawrOhZ1vHoHFVxRaK40,6789
|
49
|
-
ai_edge_torch/generative/examples/experimental/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
50
|
-
ai_edge_torch/generative/examples/experimental/tiny_llama/convert_to_tflite.py,sha256=xPVvHQjLJHFiRv_-Fy2sDm0Aft7SG8SXiV6o3rF03cQ,3108
|
51
|
-
ai_edge_torch/generative/examples/experimental/tiny_llama/tiny_llama.py,sha256=nUm0SQbCTmNAc5u-C9gbQRFPt7GDvUt6UjH6doTvH-I,6817
|
52
42
|
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
53
|
-
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=
|
54
|
-
ai_edge_torch/generative/examples/gemma/convert_to_tflite.py,sha256=
|
55
|
-
ai_edge_torch/generative/examples/gemma/gemma.py,sha256=
|
56
|
-
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=
|
57
|
-
ai_edge_torch/generative/examples/
|
58
|
-
ai_edge_torch/generative/examples/
|
59
|
-
ai_edge_torch/generative/examples/
|
43
|
+
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=ZJvw8uFVu7FEJ7eXfpzn-pPKgPELoxkGz4Zg7LKKMSI,3048
|
44
|
+
ai_edge_torch/generative/examples/gemma/convert_to_tflite.py,sha256=hM-fwjZG53p1UE_lkovLMmHRDHleJsb6_0ib0_k0v54,3040
|
45
|
+
ai_edge_torch/generative/examples/gemma/gemma.py,sha256=uejk9Mi85uRuFYIUi5XI58rf4K7TFeE5cZ1flejF8EE,7473
|
46
|
+
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=H0scyAdqRyV2wwaFx1LAa3A5oYn1C5tTdPWvbDTd_SQ,10256
|
47
|
+
ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
48
|
+
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=vqEpZVmB0_wMKcAl6RXm7W57DqPTzEdVVN6W2Z-QYzI,3011
|
49
|
+
ai_edge_torch/generative/examples/phi/phi2.py,sha256=wjTLCfCUDcLqvVsrPH-Wx04pOKeuigZCWHO3gL1WOEA,7072
|
50
|
+
ai_edge_torch/generative/examples/smallm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
51
|
+
ai_edge_torch/generative/examples/smallm/convert_to_tflite.py,sha256=aqqxQMBBO_dtGB1iZ1tpF8hbGpdZkx0VIz62ZqfVMCc,3036
|
52
|
+
ai_edge_torch/generative/examples/smallm/smallm.py,sha256=mzlbXxCCB10FN03QDRoPXw-cbucQM_O_Hs8hqLZAvck,4002
|
60
53
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
61
54
|
ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
|
62
|
-
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=
|
55
|
+
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=evl5Rn_Hlp9-BsNmcf6liXa2syET3-Fz-zVaWjqPKx8,4657
|
63
56
|
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=7ra36nM5tQwSw-vi6QCFLx5IssZhT-6yVK4H3XsAc4w,5044
|
64
57
|
ai_edge_torch/generative/examples/stable_diffusion/decoder.py,sha256=slieF2-QcDCwd4DRZ7snsZIphT97IXpp4plRRsRSwL8,13983
|
65
58
|
ai_edge_torch/generative/examples/stable_diffusion/diffusion.py,sha256=7oUIJ6HO0vmlhFdkXpqGm9KTB-eM4Ob9VrHSDlIGFOg,30926
|
@@ -74,29 +67,28 @@ ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py,sha256=ZE6H
|
|
74
67
|
ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py,sha256=RxR5rw0wFFm_5CfAY-3-EIz83vhM9EKye8Bb5zBb0Ok,1341
|
75
68
|
ai_edge_torch/generative/examples/t5/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
76
69
|
ai_edge_torch/generative/examples/t5/convert_to_tflite.py,sha256=CZVuNEL8OHPkdsz70WOvNpTJ9LFkiDnlwgJiXfUZCVk,4548
|
77
|
-
ai_edge_torch/generative/examples/t5/t5.py,sha256=
|
78
|
-
ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=
|
70
|
+
ai_edge_torch/generative/examples/t5/t5.py,sha256=Ekg92OwIXSkSRii9OY-mp3-SExtsxOdoIDTFxm25hso,21304
|
71
|
+
ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=l01oYyJo77INzRwN4xqXquaFQPvCFBFF5zOnmGVb3Hg,8731
|
79
72
|
ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
80
|
-
ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=
|
81
|
-
ai_edge_torch/generative/examples/test_models/
|
82
|
-
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=mQkcpSe6HlRLMkIRCEHc9ZXL7jxEp9RWSGUQjjd-r2w,4841
|
73
|
+
ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=QyLeCqDnk71WvvFH68g9UeF-HytonSk1ItGF9dc7Zj8,5854
|
74
|
+
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=oX_D_kU9PegBX3Fx9z_J3a1Oh2PF05F0nwZNxyLgQNA,5880
|
83
75
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
84
|
-
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=
|
85
|
-
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=
|
76
|
+
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=y4LiWhwgflqrg4WWh3wq5ei3VOT_cV0A62x62qptQiM,3070
|
77
|
+
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=Mnn_aMImR1CpC_T0CMKlp3XgoLyR7N56VR3blVSnMHQ,7007
|
86
78
|
ai_edge_torch/generative/fx_passes/__init__.py,sha256=fmNNXawJ722M4cTUuTx289rT0NHxBEsOy_k8baqCOms,1173
|
87
79
|
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=sXis0U4u-RoIp_NyrmWJNnqFqpqRuZOrhfsJIO6rMps,2028
|
88
80
|
ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
89
|
-
ai_edge_torch/generative/layers/attention.py,sha256=
|
81
|
+
ai_edge_torch/generative/layers/attention.py,sha256=d9yLaqxPCtClhNUmauOEFBKxhLnsXdN3NiYy1WspIPI,12826
|
90
82
|
ai_edge_torch/generative/layers/attention_utils.py,sha256=68GXGR2HSWBFViTxX7cHifzVG-kcLS2IL2tQJPIpupg,7344
|
91
|
-
ai_edge_torch/generative/layers/builder.py,sha256=
|
83
|
+
ai_edge_torch/generative/layers/builder.py,sha256=6jDNaa_djF32AjxIJtaDGBzlj3zlvl1yZivK3gC4j94,4424
|
92
84
|
ai_edge_torch/generative/layers/feed_forward.py,sha256=uto7xtwx6jPkk1GZ2x7pSTentQzRrPSKw4_PSE12ahA,3525
|
93
|
-
ai_edge_torch/generative/layers/kv_cache.py,sha256=
|
94
|
-
ai_edge_torch/generative/layers/model_config.py,sha256=
|
95
|
-
ai_edge_torch/generative/layers/normalization.py,sha256=
|
85
|
+
ai_edge_torch/generative/layers/kv_cache.py,sha256=FveTTO0z_yi0-ZdGMuamzSvuInn6B4lesKZ4PHT2Vmg,6088
|
86
|
+
ai_edge_torch/generative/layers/model_config.py,sha256=mil4RkGuNFBDKo3gPd9QnfGKLKPZWX9Gz2_q9hX8sNU,6407
|
87
|
+
ai_edge_torch/generative/layers/normalization.py,sha256=iod9oNkoDS5m-yFY_Y_XMyvCU5a88ESd_s5WY34ErKA,6129
|
96
88
|
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=CZqOoibLcHvUgrgaIIWAlmk3XgE2inzx340MN-npLoU,1347
|
97
89
|
ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=VW-VP8e7FTSPCdu-6DVxpwNrIdgX0R_kq6F6MSEiyXE,3848
|
98
90
|
ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
99
|
-
ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=
|
91
|
+
ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=cpygyJccLq6KHKxV7oz4YKh529YLjC9isupnsVmPi0A,27190
|
100
92
|
ai_edge_torch/generative/layers/unet/builder.py,sha256=zAqWXdimmMrQRhmE_t9XkS68mh6PSrzwb-2NZZXrR5I,1901
|
101
93
|
ai_edge_torch/generative/layers/unet/model_config.py,sha256=NvBJj09a7ZC-ChGE_ex-_kLnE_fjzrY6txbLSh1pMKA,9208
|
102
94
|
ai_edge_torch/generative/quantize/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
@@ -107,15 +99,16 @@ ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC
|
|
107
99
|
ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FBxkHM6RJ3C14B2I1mjItjc,2030
|
108
100
|
ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
|
109
101
|
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
110
|
-
ai_edge_torch/generative/test/
|
111
|
-
ai_edge_torch/generative/test/test_loader.py,sha256=
|
112
|
-
ai_edge_torch/generative/test/test_model_conversion.py,sha256=
|
113
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
102
|
+
ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
|
103
|
+
ai_edge_torch/generative/test/test_loader.py,sha256=8y74ChO3CZCfEi1eCf3-w47kRgAI4qPYCXpi8rTQXMA,3378
|
104
|
+
ai_edge_torch/generative/test/test_model_conversion.py,sha256=SIv7_sc5qHvbHFN8SbAfY00iXGvH7J6cJLkERU_cd5k,5888
|
105
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=F3q3K9ZgWBzlLy4WpE8-w6UWSuJ-UoJwMm3N6Zb3Y14,5016
|
114
106
|
ai_edge_torch/generative/test/test_quantize.py,sha256=kY_NRpF-v1i4clqI1CFFWEagJv-5PzBDkeJ2fInl9_w,5913
|
107
|
+
ai_edge_torch/generative/test/utils.py,sha256=YvEhO2HIj1LkBs5du1UxY-cGRW9HMyAYsOUhgsTrTpA,1796
|
115
108
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
116
|
-
ai_edge_torch/generative/utilities/loader.py,sha256=
|
109
|
+
ai_edge_torch/generative/utilities/loader.py,sha256=kn4TCgGAG8s4mdvPITimOBCaVyn04Ksz4gZIleFYF1o,12754
|
117
110
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=pKp3AMSbS3otCvgwJRF5M1l4JRNKk-aCKimXzIMSrds,35679
|
118
|
-
ai_edge_torch/generative/utilities/t5_loader.py,sha256=
|
111
|
+
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
119
112
|
ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
|
120
113
|
ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k63ylp7sdZmtZ8o,4790
|
121
114
|
ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
|
@@ -145,11 +138,12 @@ ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW
|
|
145
138
|
ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
|
146
139
|
ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=drN3L0uTsSjkluKgt6Ngq7b5HLReE_7iAitHpZ9PKqE,5428
|
147
140
|
ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
|
148
|
-
ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=
|
141
|
+
ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=dE_qzh-OnCNjWzqs1-PHs5PNlRF726qMQKM3tkwAzEs,959
|
149
142
|
ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=wV8AUK8dvjLUy3qjqw_IxpiYVDWUMPNZRfi3XYE_hDs,6972
|
150
143
|
ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
|
151
|
-
ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=
|
152
|
-
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=
|
144
|
+
ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
|
145
|
+
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=Ii1akrKLhRTkZ715JxXBBGKv3jGfXReXMQCYNzSnxmM,10567
|
146
|
+
ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=1ePJs7oIdUkVdMddFsXMc53qTkEKqGz0ZhQQoNzBa10,2862
|
153
147
|
ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
|
154
148
|
ai_edge_torch/odml_torch/lowerings/registry.py,sha256=ES3x_RJ22T5rlmMrlomex2DdcZbhlyVJ7_HS3rjz3Uk,2851
|
155
149
|
ai_edge_torch/odml_torch/lowerings/utils.py,sha256=NczqpsSd3Fn7yVcPC3qllemiZxxDAZgcW1T5l8-W9fE,5593
|
@@ -161,8 +155,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
161
155
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
162
156
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
163
157
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
164
|
-
ai_edge_torch_nightly-0.3.0.
|
165
|
-
ai_edge_torch_nightly-0.3.0.
|
166
|
-
ai_edge_torch_nightly-0.3.0.
|
167
|
-
ai_edge_torch_nightly-0.3.0.
|
168
|
-
ai_edge_torch_nightly-0.3.0.
|
158
|
+
ai_edge_torch_nightly-0.3.0.dev20240913.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
159
|
+
ai_edge_torch_nightly-0.3.0.dev20240913.dist-info/METADATA,sha256=ahbsMN1e0Tuq_LmrkB6NE-VgVTC65KEiZX3VVmTbcWQ,1859
|
160
|
+
ai_edge_torch_nightly-0.3.0.dev20240913.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
161
|
+
ai_edge_torch_nightly-0.3.0.dev20240913.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
162
|
+
ai_edge_torch_nightly-0.3.0.dev20240913.dist-info/RECORD,,
|