ai-edge-torch-nightly 0.3.0.dev20240909__py3-none-any.whl → 0.3.0.dev20240913__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/_convert/test/test_convert.py +35 -13
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +31 -12
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/gemma/gemma.py +50 -30
- ai_edge_torch/generative/examples/gemma/gemma2.py +85 -58
- ai_edge_torch/generative/examples/{experimental/phi → phi}/convert_to_tflite.py +11 -12
- ai_edge_torch/generative/examples/{experimental/phi → phi}/phi2.py +46 -43
- ai_edge_torch/generative/examples/{experimental/gemma → smallm}/convert_to_tflite.py +12 -14
- ai_edge_torch/generative/examples/smallm/smallm.py +122 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +11 -5
- ai_edge_torch/generative/examples/t5/t5.py +35 -22
- ai_edge_torch/generative/examples/t5/t5_attention.py +18 -13
- ai_edge_torch/generative/examples/test_models/toy_model.py +15 -13
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +74 -33
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +25 -6
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +55 -34
- ai_edge_torch/generative/layers/attention.py +77 -73
- ai_edge_torch/generative/layers/builder.py +5 -3
- ai_edge_torch/generative/layers/kv_cache.py +163 -51
- ai_edge_torch/generative/layers/model_config.py +38 -19
- ai_edge_torch/generative/layers/normalization.py +158 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +0 -2
- ai_edge_torch/generative/test/{test_experimental_ekv.py → test_kv_cache.py} +12 -24
- ai_edge_torch/generative/test/test_loader.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion.py +72 -34
- ai_edge_torch/generative/test/test_model_conversion_large.py +51 -23
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/loader.py +15 -15
- ai_edge_torch/generative/utilities/t5_loader.py +21 -20
- ai_edge_torch/odml_torch/lowerings/__init__.py +1 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +196 -74
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -2
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/RECORD +41 -47
- ai_edge_torch/generative/examples/experimental/gemma/gemma.py +0 -219
- ai_edge_torch/generative/examples/experimental/phi/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/convert_to_tflite.py +0 -87
- ai_edge_torch/generative/examples/experimental/tiny_llama/tiny_llama.py +0 -205
- ai_edge_torch/generative/examples/phi2/__init__.py +0 -14
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -67
- ai_edge_torch/generative/examples/phi2/phi2.py +0 -189
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -176
- /ai_edge_torch/generative/examples/{experimental → phi}/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{experimental/gemma → smallm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240913.dist-info}/top_level.txt +0 -0
@@ -13,11 +13,14 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
+
"""Example of converting TinyLlama model to multi-signature tflite model."""
|
17
|
+
|
16
18
|
import os
|
17
|
-
|
19
|
+
import pathlib
|
18
20
|
|
19
21
|
import ai_edge_torch
|
20
22
|
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
21
24
|
from ai_edge_torch.generative.quantize import quant_recipes
|
22
25
|
import torch
|
23
26
|
|
@@ -48,20 +51,36 @@ def convert_tiny_llama_to_tflite(
|
|
48
51
|
prefill_input_pos = torch.arange(0, prefill_seq_len)
|
49
52
|
decode_token = torch.tensor([[0]], dtype=torch.long)
|
50
53
|
decode_input_pos = torch.tensor([0], dtype=torch.int64)
|
54
|
+
kv = kv_utils.KVCache.from_model_config(pytorch_model.config)
|
51
55
|
|
52
56
|
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
53
57
|
edge_model = (
|
54
58
|
ai_edge_torch.signature(
|
55
|
-
'prefill',
|
59
|
+
'prefill',
|
60
|
+
pytorch_model,
|
61
|
+
sample_kwargs={
|
62
|
+
'tokens': prefill_tokens,
|
63
|
+
'input_pos': prefill_input_pos,
|
64
|
+
'kv_cache': kv,
|
65
|
+
},
|
66
|
+
)
|
67
|
+
.signature(
|
68
|
+
'decode',
|
69
|
+
pytorch_model,
|
70
|
+
sample_kwargs={
|
71
|
+
'tokens': decode_token,
|
72
|
+
'input_pos': decode_input_pos,
|
73
|
+
'kv_cache': kv,
|
74
|
+
},
|
56
75
|
)
|
57
|
-
.signature('decode', pytorch_model, (decode_token, decode_input_pos))
|
58
76
|
.convert(quant_config=quant_config)
|
59
77
|
)
|
78
|
+
quant_suffix = 'q8' if quantize else 'f32'
|
60
79
|
edge_model.export(
|
61
|
-
f'/tmp/
|
80
|
+
f'/tmp/tiny_llama_{quant_suffix}_seq{prefill_seq_len}_ekv{kv_cache_max_len}.tflite'
|
62
81
|
)
|
63
82
|
|
64
83
|
|
65
84
|
if __name__ == '__main__':
|
66
|
-
|
67
|
-
convert_tiny_llama_to_tflite(
|
85
|
+
path = os.path.join(pathlib.Path.home(), 'Downloads/llm_data/tiny_llama')
|
86
|
+
convert_tiny_llama_to_tflite(path)
|
@@ -12,13 +12,15 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
|
16
|
+
"""Example of building a TinyLlama model."""
|
16
17
|
|
17
18
|
import os
|
18
|
-
|
19
|
+
import pathlib
|
19
20
|
|
20
21
|
from ai_edge_torch.generative.layers import attention
|
21
22
|
from ai_edge_torch.generative.layers import builder
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
24
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
23
25
|
import ai_edge_torch.generative.layers.model_config as cfg
|
24
26
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
@@ -42,13 +44,12 @@ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
|
42
44
|
)
|
43
45
|
|
44
46
|
|
45
|
-
class
|
47
|
+
class TinyLlama(nn.Module):
|
46
48
|
"""A TinyLlama model built from the Edge Generative API layers."""
|
47
49
|
|
48
50
|
def __init__(self, config: cfg.ModelConfig):
|
49
51
|
super().__init__()
|
50
52
|
|
51
|
-
self.config = config
|
52
53
|
# Construct model layers.
|
53
54
|
self.lm_head = nn.Linear(
|
54
55
|
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
@@ -56,18 +57,20 @@ class TinyLLamma(nn.Module):
|
|
56
57
|
self.tok_embedding = nn.Embedding(
|
57
58
|
config.vocab_size, config.embedding_dim, padding_idx=0
|
58
59
|
)
|
60
|
+
# TinyLlama has only one block config.
|
61
|
+
block_config = config.block_config(0)
|
59
62
|
self.transformer_blocks = nn.ModuleList(
|
60
|
-
attention.TransformerBlock(
|
63
|
+
attention.TransformerBlock(block_config, config)
|
64
|
+
for _ in range(config.num_layers)
|
61
65
|
)
|
62
66
|
self.final_norm = builder.build_norm(
|
63
67
|
config.embedding_dim,
|
64
68
|
config.final_norm_config,
|
65
69
|
)
|
70
|
+
attn_config = block_config.attn_config
|
66
71
|
self.rope_cache = attn_utils.build_rope_cache(
|
67
72
|
size=config.kv_cache_max,
|
68
|
-
dim=int(
|
69
|
-
config.attn_config.rotary_percentage * config.attn_config.head_dim
|
70
|
-
),
|
73
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
71
74
|
base=10_000,
|
72
75
|
condense_ratio=1,
|
73
76
|
dtype=torch.float32,
|
@@ -80,16 +83,22 @@ class TinyLLamma(nn.Module):
|
|
80
83
|
)
|
81
84
|
self.config = config
|
82
85
|
|
83
|
-
# The model's forward function takes in additional k/v cache tensors
|
84
|
-
# and returns the updated k/v cache tensors to the caller.
|
85
|
-
# This can be eliminated if we handle k/v cache updates inside the model itself.
|
86
86
|
@torch.inference_mode
|
87
|
-
def forward(
|
88
|
-
|
87
|
+
def forward(
|
88
|
+
self,
|
89
|
+
tokens: torch.Tensor,
|
90
|
+
input_pos: torch.Tensor,
|
91
|
+
kv_cache: kv_utils.KVCache,
|
92
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
93
|
+
_, seq_len = tokens.size()
|
89
94
|
assert self.config.max_seq_len >= seq_len, (
|
90
95
|
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
91
96
|
f" {self.config.max_seq_len}"
|
92
97
|
)
|
98
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
99
|
+
"The number of transformer blocks and the number of KV cache entries"
|
100
|
+
" must be the same."
|
101
|
+
)
|
93
102
|
|
94
103
|
cos, sin = self.rope_cache
|
95
104
|
cos = cos.index_select(0, input_pos)
|
@@ -97,16 +106,20 @@ class TinyLLamma(nn.Module):
|
|
97
106
|
mask = self.mask_cache.index_select(2, input_pos)
|
98
107
|
mask = mask[:, :, :, : self.config.kv_cache_max]
|
99
108
|
|
100
|
-
#
|
101
|
-
x = self.tok_embedding(
|
109
|
+
# token embeddings of shape (b, t, n_embd)
|
110
|
+
x = self.tok_embedding(tokens)
|
102
111
|
|
103
|
-
|
104
|
-
|
112
|
+
updated_kv_entires = []
|
113
|
+
for i, block in enumerate(self.transformer_blocks):
|
114
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
115
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
116
|
+
if kv_entry:
|
117
|
+
updated_kv_entires.append(kv_entry)
|
118
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
105
119
|
|
106
120
|
x = self.final_norm(x)
|
107
|
-
|
108
|
-
|
109
|
-
return res
|
121
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
122
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
110
123
|
|
111
124
|
|
112
125
|
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
@@ -131,55 +144,63 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
131
144
|
intermediate_size=5632,
|
132
145
|
)
|
133
146
|
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
147
|
+
block_config = cfg.TransformerBlockConfig(
|
148
|
+
attn_config=attn_config,
|
149
|
+
ff_config=ff_config,
|
150
|
+
pre_attention_norm_config=norm_config,
|
151
|
+
post_attention_norm_config=norm_config,
|
152
|
+
)
|
134
153
|
config = cfg.ModelConfig(
|
135
154
|
vocab_size=32000,
|
136
155
|
num_layers=22,
|
137
156
|
max_seq_len=2048,
|
138
157
|
embedding_dim=2048,
|
139
158
|
kv_cache_max_len=kv_cache_max_len,
|
140
|
-
|
141
|
-
ff_config=ff_config,
|
142
|
-
pre_attention_norm_config=norm_config,
|
143
|
-
post_attention_norm_config=norm_config,
|
159
|
+
block_configs=block_config,
|
144
160
|
final_norm_config=norm_config,
|
145
161
|
enable_hlfb=True,
|
146
162
|
)
|
147
163
|
return config
|
148
164
|
|
149
165
|
|
150
|
-
def get_fake_model_config() -> cfg.ModelConfig:
|
151
|
-
config = get_model_config()
|
166
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
167
|
+
config = get_model_config(**kwargs)
|
152
168
|
config.vocab_size = 128
|
153
169
|
config.num_layers = 2
|
154
|
-
config.
|
170
|
+
# TinyLlama has only one block config.
|
171
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
155
172
|
return config
|
156
173
|
|
157
174
|
|
158
175
|
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
159
176
|
config = get_model_config(**kwargs)
|
160
|
-
model =
|
177
|
+
model = TinyLlama(config)
|
161
178
|
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
162
179
|
loader.load(model)
|
180
|
+
model.eval()
|
163
181
|
return model
|
164
182
|
|
165
183
|
|
166
|
-
def define_and_run() -> None:
|
184
|
+
def define_and_run(checkpoint_path: str) -> None:
|
167
185
|
"""Instantiates and runs a TinyLlama model."""
|
168
186
|
|
169
|
-
current_dir = Path(__file__).parent.resolve()
|
187
|
+
current_dir = pathlib.Path(__file__).parent.resolve()
|
170
188
|
tiny_llama_goldens = torch.load(current_dir / "tiny_llama_lm_logits.pt")
|
171
189
|
kv_cache_max_len = 1024
|
172
|
-
checkpoint_path = os.path.join(Path.home(), "Downloads/llm_data/tiny_llama")
|
173
190
|
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
174
191
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
175
192
|
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.long, device="cpu")
|
176
193
|
tokens[0, :4] = idx
|
177
194
|
input_pos = torch.arange(0, kv_cache_max_len)
|
178
|
-
|
195
|
+
kv = kv_utils.KVCache.from_model_config(model.config)
|
196
|
+
output = model.forward(tokens, input_pos, kv)
|
179
197
|
assert torch.allclose(
|
180
|
-
tiny_llama_goldens,
|
198
|
+
tiny_llama_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-02
|
181
199
|
)
|
182
200
|
|
183
201
|
|
184
202
|
if __name__ == "__main__":
|
185
|
-
|
203
|
+
input_checkpoint_path = os.path.join(
|
204
|
+
pathlib.Path.home(), "Downloads/llm_data/tiny_llama"
|
205
|
+
)
|
206
|
+
define_and_run(input_checkpoint_path)
|
@@ -12,16 +12,16 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# Common building blocks for Attention layer.
|
16
15
|
|
17
|
-
|
16
|
+
"""Common building blocks for Attention layer."""
|
18
17
|
|
19
|
-
import
|
20
|
-
|
18
|
+
from typing import Optional, Tuple, Union
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import builder
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa
|
21
23
|
import ai_edge_torch.generative.layers.model_config as cfg
|
22
24
|
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
23
|
-
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention # NOQA
|
24
|
-
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention_with_hlfb # NOQA
|
25
25
|
import torch
|
26
26
|
from torch import nn
|
27
27
|
|
@@ -55,29 +55,35 @@ def _embed_rope(
|
|
55
55
|
|
56
56
|
class TransformerBlock(nn.Module):
|
57
57
|
|
58
|
-
def __init__(
|
58
|
+
def __init__(
|
59
|
+
self,
|
60
|
+
config: cfg.TransformerBlockConfig,
|
61
|
+
model_config: cfg.ModelConfig,
|
62
|
+
) -> None:
|
59
63
|
"""Initialize an instance of the TransformerBlock.
|
60
64
|
|
61
65
|
Args:
|
62
|
-
config (cfg.
|
63
|
-
block.
|
66
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
67
|
+
transformer block.
|
68
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
69
|
+
this transformer block belongs to.
|
64
70
|
"""
|
65
|
-
|
66
71
|
super().__init__()
|
67
72
|
self.pre_atten_norm = builder.build_norm(
|
68
|
-
|
73
|
+
model_config.embedding_dim,
|
74
|
+
config.pre_attention_norm_config,
|
69
75
|
)
|
70
76
|
self.atten_func = CausalSelfAttention(
|
71
|
-
|
72
|
-
|
77
|
+
model_config.batch_size,
|
78
|
+
model_config.embedding_dim,
|
73
79
|
config.attn_config,
|
74
|
-
|
75
|
-
config.enable_hlfb,
|
80
|
+
model_config.enable_hlfb,
|
76
81
|
)
|
77
82
|
self.post_atten_norm = builder.build_norm(
|
78
|
-
|
83
|
+
model_config.embedding_dim,
|
84
|
+
config.post_attention_norm_config,
|
79
85
|
)
|
80
|
-
self.ff = builder.build_ff(
|
86
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
81
87
|
self.config = config
|
82
88
|
|
83
89
|
def forward(
|
@@ -86,7 +92,8 @@ class TransformerBlock(nn.Module):
|
|
86
92
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
87
93
|
mask: Optional[torch.Tensor] = None,
|
88
94
|
input_pos: Optional[torch.Tensor] = None,
|
89
|
-
|
95
|
+
kv_cache: kv_utils.KVCacheEntry = None,
|
96
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
90
97
|
"""Forward function of the TransformerBlock.
|
91
98
|
|
92
99
|
Args:
|
@@ -94,24 +101,34 @@ class TransformerBlock(nn.Module):
|
|
94
101
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
95
102
|
mask (torch.Tensor): the optional mask tensor.
|
96
103
|
input_pos (torch.Tensor): the optional input position tensor.
|
104
|
+
kv_cache (KVCacheEntry): the optional kv cache entry.
|
97
105
|
|
98
106
|
Returns:
|
99
|
-
output activation from this transformer block
|
107
|
+
output activation from this transformer block, and updated kv cache (if
|
108
|
+
passed in).
|
100
109
|
"""
|
101
|
-
|
110
|
+
kv = None
|
102
111
|
if self.config.parallel_residual:
|
103
112
|
x_norm = self.pre_atten_norm(x)
|
104
|
-
|
113
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
114
|
+
if kv_cache is None:
|
115
|
+
attn_out = atten_func_out
|
116
|
+
else:
|
117
|
+
attn_out, kv = atten_func_out
|
105
118
|
ff_out = self.ff(x_norm)
|
106
119
|
output = x + attn_out + ff_out
|
107
120
|
else:
|
108
121
|
x_norm = self.pre_atten_norm(x)
|
109
|
-
|
122
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
123
|
+
if kv_cache is None:
|
124
|
+
attn_out = atten_func_out
|
125
|
+
else:
|
126
|
+
attn_out, kv = atten_func_out
|
110
127
|
x = x + attn_out
|
111
128
|
x_norm = self.post_atten_norm(x)
|
112
129
|
output = x + self.ff(x_norm)
|
113
130
|
|
114
|
-
return output
|
131
|
+
return output if kv is None else (output, kv)
|
115
132
|
|
116
133
|
|
117
134
|
class CausalSelfAttention(nn.Module):
|
@@ -121,7 +138,6 @@ class CausalSelfAttention(nn.Module):
|
|
121
138
|
batch_size: int,
|
122
139
|
dim: int,
|
123
140
|
config: cfg.AttentionConfig,
|
124
|
-
kv_cache_max: int,
|
125
141
|
enable_hlfb: bool,
|
126
142
|
) -> None:
|
127
143
|
"""Initialize an instance of CausalSelfAttention.
|
@@ -130,12 +146,9 @@ class CausalSelfAttention(nn.Module):
|
|
130
146
|
batch_size (int): batch size of the input tensor.
|
131
147
|
dim (int): causal attention's input/output dimmension.
|
132
148
|
config (cfg.AttentionConfig): attention specific configurations.
|
133
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
134
|
-
enabled.
|
135
149
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
136
150
|
"""
|
137
151
|
super().__init__()
|
138
|
-
self.config = config
|
139
152
|
self.kv_cache = None
|
140
153
|
self.batch_size = batch_size
|
141
154
|
qkv_shape = (
|
@@ -147,21 +160,13 @@ class CausalSelfAttention(nn.Module):
|
|
147
160
|
self.output_projection = nn.Linear(
|
148
161
|
output_shape, dim, bias=config.output_proj_use_bias
|
149
162
|
)
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
config.head_dim,
|
158
|
-
enable_hlfb,
|
159
|
-
)
|
160
|
-
|
161
|
-
if enable_hlfb:
|
162
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
163
|
-
else:
|
164
|
-
self.sdpa_func = scaled_dot_product_attention
|
163
|
+
self.config = config
|
164
|
+
self.enable_hlfb = enable_hlfb
|
165
|
+
self.sdpa_func = (
|
166
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
167
|
+
if enable_hlfb
|
168
|
+
else sdpa.scaled_dot_product_attention
|
169
|
+
)
|
165
170
|
|
166
171
|
def forward(
|
167
172
|
self,
|
@@ -169,7 +174,8 @@ class CausalSelfAttention(nn.Module):
|
|
169
174
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
170
175
|
mask: Optional[torch.Tensor] = None,
|
171
176
|
input_pos: Optional[torch.Tensor] = None,
|
172
|
-
|
177
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
178
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
173
179
|
"""Forward function of the CausalSelfAttention layer, which can support
|
174
180
|
|
175
181
|
MQA, GQA and MHA.
|
@@ -179,9 +185,11 @@ class CausalSelfAttention(nn.Module):
|
|
179
185
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
180
186
|
mask (torch.Tensor): the optional mask tensor.
|
181
187
|
input_pos (torch.Tensor): the optional input position tensor.
|
188
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
182
189
|
|
183
190
|
Returns:
|
184
|
-
output activation from this self attention layer
|
191
|
+
output activation from this self attention layer, and the updated
|
192
|
+
KV Cach Entry (if passed in).
|
185
193
|
"""
|
186
194
|
# Batch size, sequence length, embedding dimensionality.
|
187
195
|
B, T, E = x.size()
|
@@ -224,9 +232,11 @@ class CausalSelfAttention(nn.Module):
|
|
224
232
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
225
233
|
q, k = _embed_rope(q, k, n_elem, rope)
|
226
234
|
|
227
|
-
if
|
228
|
-
|
229
|
-
|
235
|
+
if kv_cache is not None:
|
236
|
+
kv_cache = kv_utils.update(
|
237
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
238
|
+
)
|
239
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
230
240
|
|
231
241
|
y = self.sdpa_func(
|
232
242
|
q,
|
@@ -240,7 +250,7 @@ class CausalSelfAttention(nn.Module):
|
|
240
250
|
|
241
251
|
# Compute the output projection.
|
242
252
|
y = self.output_projection(y)
|
243
|
-
return y
|
253
|
+
return y if kv_cache is None else (y, kv_cache)
|
244
254
|
|
245
255
|
|
246
256
|
class SelfAttention(CausalSelfAttention):
|
@@ -251,16 +261,19 @@ class SelfAttention(CausalSelfAttention):
|
|
251
261
|
x: torch.Tensor,
|
252
262
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
253
263
|
input_pos: Optional[torch.Tensor] = None,
|
254
|
-
|
264
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
265
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
255
266
|
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
256
267
|
|
257
268
|
Args:
|
258
269
|
x (torch.Tensor): the input tensor.
|
259
270
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
260
271
|
input_pos (torch.Tensor): the optional input position tensor.
|
272
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
261
273
|
|
262
274
|
Returns:
|
263
|
-
output activation from this self attention layer
|
275
|
+
output activation from this self attention layer, and the updated
|
276
|
+
KV Cach Entry (if passed in).
|
264
277
|
"""
|
265
278
|
B, T, _ = x.size()
|
266
279
|
return super().forward(
|
@@ -279,9 +292,8 @@ class CrossAttention(nn.Module):
|
|
279
292
|
query_dim: int,
|
280
293
|
cross_dim: int,
|
281
294
|
config: cfg.AttentionConfig,
|
282
|
-
kv_cache_max: int,
|
283
295
|
enable_hlfb: bool,
|
284
|
-
)
|
296
|
+
):
|
285
297
|
"""Initialize an instance of CrossAttention.
|
286
298
|
|
287
299
|
Args:
|
@@ -289,8 +301,6 @@ class CrossAttention(nn.Module):
|
|
289
301
|
query_dim (int): query tensor's dimension.
|
290
302
|
cross_dim (int): cross attention's dimensions, for key and value tensors.
|
291
303
|
config (cfg.AttentionConfig): attention specific configurations.
|
292
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
293
|
-
enabled.
|
294
304
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
295
305
|
"""
|
296
306
|
super().__init__()
|
@@ -309,21 +319,11 @@ class CrossAttention(nn.Module):
|
|
309
319
|
query_dim, query_dim, bias=config.output_proj_use_bias
|
310
320
|
)
|
311
321
|
|
312
|
-
self.
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
kv_cache_max,
|
318
|
-
config.num_query_groups,
|
319
|
-
self.config.head_dim,
|
320
|
-
enable_hlfb,
|
321
|
-
)
|
322
|
-
|
323
|
-
if enable_hlfb:
|
324
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
325
|
-
else:
|
326
|
-
self.sdpa_func = scaled_dot_product_attention
|
322
|
+
self.sdpa_func = (
|
323
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
324
|
+
if enable_hlfb
|
325
|
+
else sdpa.scaled_dot_product_attention
|
326
|
+
)
|
327
327
|
|
328
328
|
def forward(
|
329
329
|
self,
|
@@ -332,6 +332,7 @@ class CrossAttention(nn.Module):
|
|
332
332
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
333
333
|
mask: Optional[torch.Tensor] = None,
|
334
334
|
input_pos: Optional[torch.Tensor] = None,
|
335
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
335
336
|
):
|
336
337
|
"""Forward function of the CrossAttention layer.
|
337
338
|
|
@@ -342,6 +343,7 @@ class CrossAttention(nn.Module):
|
|
342
343
|
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
343
344
|
[B, n_heads, target_seq_len, source_seq_len].
|
344
345
|
input_pos (torch.Tensor): the optional input position tensor.
|
346
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
345
347
|
|
346
348
|
Returns:
|
347
349
|
output activation from this cross attention layer.
|
@@ -363,9 +365,11 @@ class CrossAttention(nn.Module):
|
|
363
365
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
364
366
|
q, k = _embed_rope(q, k, n_elem, rope)
|
365
367
|
|
366
|
-
if
|
367
|
-
|
368
|
-
|
368
|
+
if kv_cache is not None:
|
369
|
+
kv_cache = kv_utils.update(
|
370
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
371
|
+
)
|
372
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
369
373
|
if mask is None:
|
370
374
|
mask = torch.zeros(
|
371
375
|
(batch_size, 1, target_seq_len, source_seq_len), dtype=torch.float32
|
@@ -375,4 +379,4 @@ class CrossAttention(nn.Module):
|
|
375
379
|
|
376
380
|
# Compute the output projection.
|
377
381
|
y = self.output_projection(y)
|
378
|
-
return y
|
382
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -59,9 +59,11 @@ def build_norm(dim: int, config: cfg.NormalizationConfig):
|
|
59
59
|
zero_centered_gamma=config.zero_centered,
|
60
60
|
)
|
61
61
|
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
62
|
-
return
|
62
|
+
return normalization.LayerNorm(dim, config.epsilon, config.enable_hlfb)
|
63
63
|
elif config.type == cfg.NormalizationType.GROUP_NORM:
|
64
|
-
return
|
64
|
+
return normalization.GroupNorm(
|
65
|
+
config.group_num, dim, config.epsilon, config.enable_hlfb
|
66
|
+
)
|
65
67
|
else:
|
66
68
|
raise ValueError("Unsupported norm type.")
|
67
69
|
|
@@ -71,7 +73,7 @@ def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
71
73
|
|
72
74
|
Args:
|
73
75
|
dim (int): dimension of the input tensor.
|
74
|
-
config (`
|
76
|
+
config (`FeedForwardConfig` object): the model configuration.
|
75
77
|
|
76
78
|
Returns:
|
77
79
|
The constructed `nn.Module` feedforward layer.
|