ai-edge-quantizer-nightly 0.0.1.dev20250302__py3-none-any.whl → 0.5.0.dev20260103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_quantizer/algorithm_manager.py +224 -0
- ai_edge_quantizer/algorithm_manager_api_test.py +7 -0
- ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting_test.py +2 -2
- ai_edge_quantizer/algorithms/uniform_quantize/common_quantize.py +643 -20
- ai_edge_quantizer/algorithms/uniform_quantize/common_quantize_test.py +29 -2
- ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery.py +29 -35
- ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery_test.py +35 -12
- ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation.py +414 -0
- ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation_test.py +440 -0
- ai_edge_quantizer/algorithms/uniform_quantize/mse.py +127 -0
- ai_edge_quantizer/algorithms/uniform_quantize/mse_test.py +195 -0
- ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize.py +54 -168
- ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_test.py +54 -17
- ai_edge_quantizer/algorithms/uniform_quantize/octav.py +188 -0
- ai_edge_quantizer/algorithms/uniform_quantize/octav_test.py +240 -0
- ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor.py +260 -13
- ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor_test.py +152 -5
- ai_edge_quantizer/algorithms/utils/common_utils.py +142 -54
- ai_edge_quantizer/calibrator.py +58 -94
- ai_edge_quantizer/calibrator_test.py +5 -74
- ai_edge_quantizer/default_policy.py +108 -16
- ai_edge_quantizer/model_modifier.py +132 -8
- ai_edge_quantizer/model_modifier_test.py +81 -1
- ai_edge_quantizer/model_validator.py +38 -10
- ai_edge_quantizer/model_validator_test.py +2 -1
- ai_edge_quantizer/params_generator.py +230 -47
- ai_edge_quantizer/params_generator_test.py +366 -261
- ai_edge_quantizer/qtyping.py +92 -6
- ai_edge_quantizer/quantizer.py +167 -23
- ai_edge_quantizer/quantizer_test.py +288 -26
- ai_edge_quantizer/recipe.py +156 -21
- ai_edge_quantizer/recipe_manager.py +158 -1
- ai_edge_quantizer/recipe_manager_test.py +146 -32
- ai_edge_quantizer/recipe_test.py +93 -17
- ai_edge_quantizer/transformation_instruction_generator.py +313 -46
- ai_edge_quantizer/transformation_instruction_generator_test.py +449 -27
- ai_edge_quantizer/transformation_performer.py +112 -58
- ai_edge_quantizer/transformation_performer_test.py +176 -4
- ai_edge_quantizer/transformations/duplicate_buffer.py +46 -0
- ai_edge_quantizer/transformations/duplicate_buffer_test.py +106 -0
- ai_edge_quantizer/transformations/duplicate_tensor.py +62 -0
- ai_edge_quantizer/transformations/duplicate_tensor_test.py +131 -0
- ai_edge_quantizer/transformations/insert_decomposed_hadamard_rotation.py +299 -0
- ai_edge_quantizer/transformations/insert_decomposed_hadamard_rotation_test.py +244 -0
- ai_edge_quantizer/transformations/insert_hadamard_rotation.py +186 -0
- ai_edge_quantizer/transformations/insert_hadamard_rotation_test.py +200 -0
- ai_edge_quantizer/transformations/quantize_tensor.py +24 -44
- ai_edge_quantizer/transformations/quantize_tensor_test.py +3 -2
- ai_edge_quantizer/transformations/transformation_utils.py +157 -11
- ai_edge_quantizer/transformations/transformation_utils_test.py +96 -2
- ai_edge_quantizer/utils/calibration_utils.py +263 -1
- ai_edge_quantizer/utils/calibration_utils_test.py +173 -3
- ai_edge_quantizer/utils/constrained_ops_utils.py +111 -0
- ai_edge_quantizer/utils/constrained_ops_utils_test.py +50 -0
- ai_edge_quantizer/utils/test_utils.py +191 -58
- ai_edge_quantizer/utils/tfl_flatbuffer_utils.py +96 -50
- ai_edge_quantizer/utils/tfl_flatbuffer_utils_test.py +20 -0
- ai_edge_quantizer/utils/tfl_interpreter_utils.py +138 -5
- ai_edge_quantizer/utils/tfl_interpreter_utils_test.py +29 -2
- ai_edge_quantizer/utils/validation_utils.py +114 -4
- ai_edge_quantizer/utils/validation_utils_test.py +80 -0
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info}/METADATA +13 -3
- ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info/RECORD +81 -0
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info}/WHEEL +1 -1
- ai_edge_quantizer/transformations/emulated_subchannel.py +0 -363
- ai_edge_quantizer/transformations/emulated_subchannel_test.py +0 -212
- ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info/RECORD +0 -67
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info/licenses}/LICENSE +0 -0
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,188 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
"""Implements the OCTAV quantization."""
|
|
17
|
+
|
|
18
|
+
import dataclasses
|
|
19
|
+
from typing import Any, Optional, Sequence, Union
|
|
20
|
+
import numpy as np
|
|
21
|
+
from ai_edge_quantizer import qtyping
|
|
22
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import common_quantize
|
|
23
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize
|
|
24
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import uniform_quantize_tensor
|
|
25
|
+
from ai_edge_quantizer.algorithms.utils import common_utils
|
|
26
|
+
|
|
27
|
+
ALGORITHM_KEY = "OCTAV"
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def _guess_clipping_with_octav(
|
|
31
|
+
x: np.ndarray,
|
|
32
|
+
bits: int,
|
|
33
|
+
axis: Union[int, Sequence[int]],
|
|
34
|
+
max_iterations: int,
|
|
35
|
+
exponent_divisor: float,
|
|
36
|
+
early_stop: bool = True,
|
|
37
|
+
) -> np.ndarray:
|
|
38
|
+
"""Returns a tensor of absolute clipping constants for a tensor using OCTAV.
|
|
39
|
+
|
|
40
|
+
This method implements equation (6) from the OCTAV paper:
|
|
41
|
+
https://arxiv.org/abs/2206.06501
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
x: Tensor data to return guesses for.
|
|
45
|
+
bits: Number of bits used during quantization.
|
|
46
|
+
axis: Axis to reduce the tensor along to get the guesses.
|
|
47
|
+
max_iterations: Number of Newton-Raphson iterations to use.
|
|
48
|
+
exponent_divisor: What factor to divide the 4^-bits term by. In the paper,
|
|
49
|
+
3.0 is optimal for signed ints and 12.0 for unsigned ints.
|
|
50
|
+
early_stop: If True, stop the iteration if the guess doesn't change.
|
|
51
|
+
|
|
52
|
+
Returns:
|
|
53
|
+
A tensor of shape [num_channels] with clipping constant guesses.
|
|
54
|
+
"""
|
|
55
|
+
magnitude = np.abs(x)
|
|
56
|
+
x_reduced = np.mean(x, axis=axis, keepdims=True)
|
|
57
|
+
old_guess = np.zeros(x_reduced.shape)
|
|
58
|
+
guess = np.ones(x_reduced.shape)
|
|
59
|
+
for _ in range(max_iterations):
|
|
60
|
+
if early_stop and np.allclose(guess, old_guess):
|
|
61
|
+
break
|
|
62
|
+
guess_broadcasted = np.broadcast_to(guess, magnitude.shape)
|
|
63
|
+
guess_mask = np.asarray(magnitude < guess_broadcasted, dtype=x.dtype)
|
|
64
|
+
numerator = np.sum(
|
|
65
|
+
magnitude * np.asarray(1.0 - guess_mask), axis=axis, keepdims=True
|
|
66
|
+
)
|
|
67
|
+
denominator1 = (4.0 ** (-bits) / exponent_divisor) * np.sum(
|
|
68
|
+
guess_mask, axis=axis, keepdims=True
|
|
69
|
+
)
|
|
70
|
+
denominator2 = np.sum(1.0 - guess_mask, axis=axis, keepdims=True)
|
|
71
|
+
old_guess = guess
|
|
72
|
+
guess = numerator / (denominator1 + denominator2)
|
|
73
|
+
|
|
74
|
+
return guess
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def get_tensor_quant_params(
|
|
78
|
+
op_info: qtyping.OpInfo,
|
|
79
|
+
tensor_quant_config: qtyping.TensorQuantizationConfig,
|
|
80
|
+
tensor_content: Optional[np.ndarray] = None,
|
|
81
|
+
tensor_qsv: Optional[dict[str, Any]] = None,
|
|
82
|
+
) -> qtyping.UniformQuantParams:
|
|
83
|
+
"""Returns the quantization parameters for a tensor.
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
op_info: Aggregated information about the op (e.g., quantization config).
|
|
87
|
+
tensor_quant_config: The quantization config for the tensor.
|
|
88
|
+
tensor_content: The content of the tensor. When None, it means the tensor is
|
|
89
|
+
not a weight tensor (e.g. static quantization) so we fallback to using
|
|
90
|
+
naive_min_max_quantize.
|
|
91
|
+
tensor_qsv: A dictionary containing the min/max of the tensor.
|
|
92
|
+
|
|
93
|
+
Raises:
|
|
94
|
+
ValueError: If the blockwise quantization is requested.
|
|
95
|
+
ValueError: If the asymmetric quantization is requested.
|
|
96
|
+
ValueError: `tensor_qsv` must contain min/max values, or `tensor_content`
|
|
97
|
+
must be provided so that they can be inferred.
|
|
98
|
+
"""
|
|
99
|
+
# Fallback to naive_min_max_quantize.py for non-weight tensors.
|
|
100
|
+
if tensor_content is None:
|
|
101
|
+
return naive_min_max_quantize.get_tensor_quant_params(
|
|
102
|
+
op_info, tensor_quant_config, tensor_content, tensor_qsv
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
if not tensor_quant_config.symmetric:
|
|
106
|
+
raise ValueError(
|
|
107
|
+
f"Unsupported symmetry: {tensor_quant_config.symmetric}. OCTAV"
|
|
108
|
+
" supports symmetric quantization only for now."
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
if not tensor_qsv:
|
|
112
|
+
# We need min/max to calculate quantization parameters, which
|
|
113
|
+
# should be collected during the calibration process. However,
|
|
114
|
+
# weight-only and DRQ do not require calibration, thus it is
|
|
115
|
+
# possible that this information is missing here. In that case we
|
|
116
|
+
# collect min/max on the spot.
|
|
117
|
+
tensor_min_max = common_quantize.init_tensor_min_max(
|
|
118
|
+
tensor_content,
|
|
119
|
+
op_info,
|
|
120
|
+
)
|
|
121
|
+
else:
|
|
122
|
+
tensor_min_max = tensor_qsv
|
|
123
|
+
|
|
124
|
+
if "min" not in tensor_min_max or "max" not in tensor_min_max:
|
|
125
|
+
raise ValueError(
|
|
126
|
+
"min and max must be provided to produce tensor quantization"
|
|
127
|
+
" parameters. Check if the correct calibration results are passed into"
|
|
128
|
+
" the ParamsGenerator."
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
quantized_dim = common_utils.get_weight_quantized_dim(
|
|
132
|
+
op_info, tensor_content, tensor_quant_config.granularity
|
|
133
|
+
)
|
|
134
|
+
if uniform_quantize_tensor.is_blockwise(tensor_quant_config.granularity):
|
|
135
|
+
reshaped_data, reduce_dims = (
|
|
136
|
+
uniform_quantize_tensor.reshape_data_for_blockwise(
|
|
137
|
+
tensor_content,
|
|
138
|
+
op_info.op_name,
|
|
139
|
+
tensor_quant_config.granularity,
|
|
140
|
+
)
|
|
141
|
+
)
|
|
142
|
+
else:
|
|
143
|
+
reshaped_data = tensor_content
|
|
144
|
+
reduce_dims = common_utils.get_reduce_dims(
|
|
145
|
+
quantized_dim, tensor_content.shape
|
|
146
|
+
)
|
|
147
|
+
clipping_constants = _guess_clipping_with_octav(
|
|
148
|
+
reshaped_data,
|
|
149
|
+
tensor_quant_config.num_bits,
|
|
150
|
+
reduce_dims,
|
|
151
|
+
max_iterations=10,
|
|
152
|
+
exponent_divisor=3.0 if tensor_quant_config.symmetric else 12.0,
|
|
153
|
+
)
|
|
154
|
+
# We created a new dimension in order to reduce properly for blockwise
|
|
155
|
+
# quantization, so we need to reshape the clipping constants back to the
|
|
156
|
+
# min/max shape for the next step.
|
|
157
|
+
if uniform_quantize_tensor.is_blockwise(tensor_quant_config.granularity):
|
|
158
|
+
clipping_constants = clipping_constants.reshape(tensor_min_max["min"].shape)
|
|
159
|
+
|
|
160
|
+
zp, scale = uniform_quantize_tensor.tensor_zp_scale_from_min_max(
|
|
161
|
+
tensor_min_max["min"],
|
|
162
|
+
tensor_min_max["max"],
|
|
163
|
+
tensor_quant_config.num_bits,
|
|
164
|
+
tensor_quant_config.symmetric,
|
|
165
|
+
tensor_quant_config.granularity,
|
|
166
|
+
clipping_constants,
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
quant_params = qtyping.UniformQuantParams(
|
|
170
|
+
scale=scale,
|
|
171
|
+
zero_point=zp,
|
|
172
|
+
num_bits=tensor_quant_config.num_bits,
|
|
173
|
+
symmetric=tensor_quant_config.symmetric,
|
|
174
|
+
quantized_dimension=quantized_dim,
|
|
175
|
+
block_size=uniform_quantize_tensor.extract_block_size_from_granularity(
|
|
176
|
+
tensor_quant_config.granularity
|
|
177
|
+
),
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
quantized_vars = uniform_quantize_tensor.uniform_quantize(
|
|
181
|
+
tensor_content,
|
|
182
|
+
quant_params,
|
|
183
|
+
is_blockwise_quant=uniform_quantize_tensor.is_blockwise(
|
|
184
|
+
tensor_quant_config.granularity
|
|
185
|
+
),
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
return dataclasses.replace(quant_params, quantized_data=quantized_vars)
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
from typing import cast
|
|
18
|
+
|
|
19
|
+
from absl.testing import parameterized
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
22
|
+
from tensorflow.python.platform import googletest
|
|
23
|
+
from ai_edge_quantizer import qtyping
|
|
24
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import octav
|
|
25
|
+
from ai_edge_quantizer.utils import test_utils
|
|
26
|
+
from ai_edge_quantizer.utils import tfl_flatbuffer_utils
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class OctavQuantizeTest(parameterized.TestCase):
|
|
30
|
+
"""Tests for general functions for OCTAV."""
|
|
31
|
+
|
|
32
|
+
def setUp(self):
|
|
33
|
+
super().setUp()
|
|
34
|
+
np.random.seed(666)
|
|
35
|
+
self._test_model_path = os.path.join(
|
|
36
|
+
test_utils.get_path_to_datafile("../../tests/models"),
|
|
37
|
+
"conv_fc_mnist.tflite",
|
|
38
|
+
)
|
|
39
|
+
self._test_model = tfl_flatbuffer_utils.read_model(self._test_model_path)
|
|
40
|
+
# The test model has one subgraph for now.
|
|
41
|
+
self._graph_info = qtyping.GraphInfo(
|
|
42
|
+
subgraph_tensors=self._test_model.subgraphs[0].tensors,
|
|
43
|
+
buffers=self._test_model.buffers,
|
|
44
|
+
)
|
|
45
|
+
self._tensor_name_to_qsv = {}
|
|
46
|
+
subgraph0 = self._test_model.subgraphs[0]
|
|
47
|
+
self._subgraph_op_index = 3
|
|
48
|
+
self._fc_op = subgraph0.operators[self._subgraph_op_index]
|
|
49
|
+
self._fc_op_info = qtyping.OpInfo(
|
|
50
|
+
op=self._fc_op,
|
|
51
|
+
op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
|
|
52
|
+
subgraph_op_index=self._subgraph_op_index,
|
|
53
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
54
|
+
weight_tensor_config=None,
|
|
55
|
+
),
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
def test_get_tensor_quant_params_unsupported_symmetry(self):
|
|
59
|
+
err_msg = "Unsupported symmetry"
|
|
60
|
+
test_data = np.array([[-7, 7], [4, -4], [4, -4], [7, 7]])
|
|
61
|
+
with self.assertRaisesWithPredicateMatch(
|
|
62
|
+
ValueError, lambda err: err_msg in str(err)
|
|
63
|
+
):
|
|
64
|
+
_ = octav.get_tensor_quant_params(
|
|
65
|
+
op_info=self._fc_op_info,
|
|
66
|
+
tensor_quant_config=qtyping.TensorQuantizationConfig(
|
|
67
|
+
num_bits=4,
|
|
68
|
+
symmetric=False,
|
|
69
|
+
granularity=qtyping.QuantGranularity.CHANNELWISE,
|
|
70
|
+
),
|
|
71
|
+
tensor_content=test_data,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
def test_get_tensor_quant_params_success_with_qsv(self):
|
|
75
|
+
# Fall back to naive_min_max_quantize.py for non-weight tensors.
|
|
76
|
+
tensor_quant_params = octav.get_tensor_quant_params(
|
|
77
|
+
op_info=self._fc_op_info,
|
|
78
|
+
tensor_quant_config=qtyping.TensorQuantizationConfig(
|
|
79
|
+
num_bits=8,
|
|
80
|
+
granularity=qtyping.QuantGranularity.TENSORWISE,
|
|
81
|
+
),
|
|
82
|
+
tensor_qsv={
|
|
83
|
+
"min": np.array([-1]),
|
|
84
|
+
"max": np.array([1]),
|
|
85
|
+
},
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
self.assertIsNone(tensor_quant_params.quantized_dimension)
|
|
89
|
+
scale = tensor_quant_params.scale
|
|
90
|
+
self.assertEqual(scale.shape, (1,))
|
|
91
|
+
self.assertSequenceAlmostEqual(scale.flatten(), [1 / 127])
|
|
92
|
+
|
|
93
|
+
# Zero point should be zero for symmetric quantization.
|
|
94
|
+
zp = tensor_quant_params.zero_point
|
|
95
|
+
self.assertEqual(np.sum(zp), 0)
|
|
96
|
+
self.assertEqual(zp.shape, (1,))
|
|
97
|
+
|
|
98
|
+
def test_get_tensor_quant_params_sanity_tensorwise(self):
|
|
99
|
+
test_data = np.array([
|
|
100
|
+
[-1e5, 25, -50, 75, -100, 125],
|
|
101
|
+
[25, -30, 50, -75, 1e5, -125],
|
|
102
|
+
[50, -60, 70, -80, 90, -100],
|
|
103
|
+
])
|
|
104
|
+
tensor_config = qtyping.TensorQuantizationConfig(
|
|
105
|
+
num_bits=4,
|
|
106
|
+
symmetric=True,
|
|
107
|
+
granularity=qtyping.QuantGranularity.TENSORWISE,
|
|
108
|
+
)
|
|
109
|
+
fc_op_info = qtyping.OpInfo(
|
|
110
|
+
op=self._fc_op,
|
|
111
|
+
op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
|
|
112
|
+
subgraph_op_index=self._subgraph_op_index,
|
|
113
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
114
|
+
weight_tensor_config=tensor_config,
|
|
115
|
+
),
|
|
116
|
+
)
|
|
117
|
+
quant_params = octav.get_tensor_quant_params(
|
|
118
|
+
op_info=fc_op_info,
|
|
119
|
+
tensor_quant_config=tensor_config,
|
|
120
|
+
tensor_content=test_data,
|
|
121
|
+
)
|
|
122
|
+
adjusted_test_data = quant_params.quantized_data * quant_params.scale
|
|
123
|
+
real_max = np.max(np.abs(test_data))
|
|
124
|
+
adjusted_max = np.max(np.abs(adjusted_test_data))
|
|
125
|
+
|
|
126
|
+
# Check that some clipping occurred.
|
|
127
|
+
with self.subTest(name="CheckClipping"):
|
|
128
|
+
self.assertLess(adjusted_max, real_max)
|
|
129
|
+
|
|
130
|
+
with self.subTest(name="CheckQuantParamsShapes"):
|
|
131
|
+
self.assertEqual(quant_params.zero_point.shape, (1, 1))
|
|
132
|
+
self.assertEqual(quant_params.scale.shape, (1, 1))
|
|
133
|
+
self.assertIsNone(quant_params.quantized_dimension)
|
|
134
|
+
self.assertIsNotNone(quant_params.quantized_data)
|
|
135
|
+
self.assertTupleEqual(
|
|
136
|
+
cast(np.ndarray, quant_params.quantized_data).shape, test_data.shape
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
with self.subTest(name="CheckQuantParamsValues"):
|
|
140
|
+
self.assertTrue(np.all(quant_params.zero_point == 0))
|
|
141
|
+
|
|
142
|
+
def test_get_tensor_quant_params_sanity_channelwise(self):
|
|
143
|
+
# Test that the call generates quant params that are appropriately shaped,
|
|
144
|
+
# have some clipping, and correct config values without checking the
|
|
145
|
+
# actual values numerically.
|
|
146
|
+
test_data = np.array([
|
|
147
|
+
[-1e5, 25, -50, 75, -100, 125],
|
|
148
|
+
[25, -30, 50, -75, 1e5, -125],
|
|
149
|
+
[50, -60, 70, -80, 90, -100],
|
|
150
|
+
])
|
|
151
|
+
tensor_config = qtyping.TensorQuantizationConfig(
|
|
152
|
+
num_bits=4,
|
|
153
|
+
symmetric=True,
|
|
154
|
+
granularity=qtyping.QuantGranularity.CHANNELWISE,
|
|
155
|
+
)
|
|
156
|
+
fc_op_info = qtyping.OpInfo(
|
|
157
|
+
op=self._fc_op,
|
|
158
|
+
op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
|
|
159
|
+
subgraph_op_index=self._subgraph_op_index,
|
|
160
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
161
|
+
weight_tensor_config=tensor_config,
|
|
162
|
+
),
|
|
163
|
+
)
|
|
164
|
+
quant_params = octav.get_tensor_quant_params(
|
|
165
|
+
op_info=fc_op_info,
|
|
166
|
+
tensor_quant_config=tensor_config,
|
|
167
|
+
tensor_content=test_data,
|
|
168
|
+
)
|
|
169
|
+
# Dequantize output to compare with the original test data.
|
|
170
|
+
adjusted_test_data = quant_params.quantized_data * quant_params.scale
|
|
171
|
+
|
|
172
|
+
for i, row in enumerate(test_data):
|
|
173
|
+
real_max = np.max(np.abs(row))
|
|
174
|
+
adjusted_max = np.max(np.abs(adjusted_test_data[i]))
|
|
175
|
+
# Check that some clipping occurred.
|
|
176
|
+
with self.subTest(name="CheckClipping"):
|
|
177
|
+
self.assertLess(adjusted_max, real_max)
|
|
178
|
+
|
|
179
|
+
with self.subTest(name="CheckQuantParamsShapes"):
|
|
180
|
+
self.assertEqual(quant_params.zero_point.shape, (test_data.shape[0], 1))
|
|
181
|
+
self.assertEqual(quant_params.scale.shape, (test_data.shape[0], 1))
|
|
182
|
+
self.assertIsNotNone(quant_params.quantized_data)
|
|
183
|
+
self.assertTupleEqual(
|
|
184
|
+
cast(np.ndarray, quant_params.quantized_data).shape, test_data.shape
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
with self.subTest(name="CheckQuantParamsValues"):
|
|
188
|
+
self.assertTrue(np.all(quant_params.zero_point == 0))
|
|
189
|
+
self.assertEqual(quant_params.quantized_dimension, 0)
|
|
190
|
+
|
|
191
|
+
def test_get_tensor_quant_params_sanity_blockwise(self):
|
|
192
|
+
# Test that the call generates quant params that are appropriately shaped,
|
|
193
|
+
# have some clipping, and correct config values without checking the
|
|
194
|
+
# actual values numerically.
|
|
195
|
+
test_data = np.random.randint(0, 1024, size=(32, 128))
|
|
196
|
+
tensor_config = qtyping.TensorQuantizationConfig(
|
|
197
|
+
num_bits=4,
|
|
198
|
+
symmetric=True,
|
|
199
|
+
granularity=qtyping.QuantGranularity.BLOCKWISE_32,
|
|
200
|
+
)
|
|
201
|
+
fc_op_info = qtyping.OpInfo(
|
|
202
|
+
op=self._fc_op,
|
|
203
|
+
op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
|
|
204
|
+
subgraph_op_index=self._subgraph_op_index,
|
|
205
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
206
|
+
weight_tensor_config=tensor_config,
|
|
207
|
+
),
|
|
208
|
+
)
|
|
209
|
+
quant_params = octav.get_tensor_quant_params(
|
|
210
|
+
op_info=fc_op_info,
|
|
211
|
+
tensor_quant_config=tensor_config,
|
|
212
|
+
tensor_content=test_data,
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
with self.subTest(name="CheckQuantParamsShapes"):
|
|
216
|
+
# Check that quant params have appropriate shapes.
|
|
217
|
+
self.assertEqual(quant_params.zero_point.shape, (32, 4))
|
|
218
|
+
self.assertEqual(quant_params.scale.shape, (32, 4))
|
|
219
|
+
self.assertIsNotNone(quant_params.quantized_data)
|
|
220
|
+
self.assertTupleEqual(
|
|
221
|
+
cast(np.ndarray, quant_params.quantized_data).shape, test_data.shape
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
scales = np.repeat(quant_params.scale, 32, axis=1)
|
|
225
|
+
adjusted_test_data = quant_params.quantized_data * scales
|
|
226
|
+
for i, row in enumerate(test_data):
|
|
227
|
+
real_max = np.max(np.abs(row))
|
|
228
|
+
adjusted_max = np.max(np.abs(adjusted_test_data[i]))
|
|
229
|
+
# Check that some clipping occurred.
|
|
230
|
+
with self.subTest(name="CheckClipping"):
|
|
231
|
+
self.assertLess(adjusted_max, real_max)
|
|
232
|
+
|
|
233
|
+
with self.subTest(name="CheckQuantParamsValues"):
|
|
234
|
+
self.assertTrue(np.all(quant_params.zero_point == 0))
|
|
235
|
+
# See TFL_OP_TO_BLOCKWISE_WEIGHT_QUANTIZED_DIM.
|
|
236
|
+
self.assertEqual(quant_params.quantized_dimension, 1)
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
if __name__ == "__main__":
|
|
240
|
+
googletest.main()
|