ai-edge-quantizer-nightly 0.0.1.dev20250302__py3-none-any.whl → 0.5.0.dev20260103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_quantizer/algorithm_manager.py +224 -0
- ai_edge_quantizer/algorithm_manager_api_test.py +7 -0
- ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting_test.py +2 -2
- ai_edge_quantizer/algorithms/uniform_quantize/common_quantize.py +643 -20
- ai_edge_quantizer/algorithms/uniform_quantize/common_quantize_test.py +29 -2
- ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery.py +29 -35
- ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery_test.py +35 -12
- ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation.py +414 -0
- ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation_test.py +440 -0
- ai_edge_quantizer/algorithms/uniform_quantize/mse.py +127 -0
- ai_edge_quantizer/algorithms/uniform_quantize/mse_test.py +195 -0
- ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize.py +54 -168
- ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_test.py +54 -17
- ai_edge_quantizer/algorithms/uniform_quantize/octav.py +188 -0
- ai_edge_quantizer/algorithms/uniform_quantize/octav_test.py +240 -0
- ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor.py +260 -13
- ai_edge_quantizer/algorithms/uniform_quantize/uniform_quantize_tensor_test.py +152 -5
- ai_edge_quantizer/algorithms/utils/common_utils.py +142 -54
- ai_edge_quantizer/calibrator.py +58 -94
- ai_edge_quantizer/calibrator_test.py +5 -74
- ai_edge_quantizer/default_policy.py +108 -16
- ai_edge_quantizer/model_modifier.py +132 -8
- ai_edge_quantizer/model_modifier_test.py +81 -1
- ai_edge_quantizer/model_validator.py +38 -10
- ai_edge_quantizer/model_validator_test.py +2 -1
- ai_edge_quantizer/params_generator.py +230 -47
- ai_edge_quantizer/params_generator_test.py +366 -261
- ai_edge_quantizer/qtyping.py +92 -6
- ai_edge_quantizer/quantizer.py +167 -23
- ai_edge_quantizer/quantizer_test.py +288 -26
- ai_edge_quantizer/recipe.py +156 -21
- ai_edge_quantizer/recipe_manager.py +158 -1
- ai_edge_quantizer/recipe_manager_test.py +146 -32
- ai_edge_quantizer/recipe_test.py +93 -17
- ai_edge_quantizer/transformation_instruction_generator.py +313 -46
- ai_edge_quantizer/transformation_instruction_generator_test.py +449 -27
- ai_edge_quantizer/transformation_performer.py +112 -58
- ai_edge_quantizer/transformation_performer_test.py +176 -4
- ai_edge_quantizer/transformations/duplicate_buffer.py +46 -0
- ai_edge_quantizer/transformations/duplicate_buffer_test.py +106 -0
- ai_edge_quantizer/transformations/duplicate_tensor.py +62 -0
- ai_edge_quantizer/transformations/duplicate_tensor_test.py +131 -0
- ai_edge_quantizer/transformations/insert_decomposed_hadamard_rotation.py +299 -0
- ai_edge_quantizer/transformations/insert_decomposed_hadamard_rotation_test.py +244 -0
- ai_edge_quantizer/transformations/insert_hadamard_rotation.py +186 -0
- ai_edge_quantizer/transformations/insert_hadamard_rotation_test.py +200 -0
- ai_edge_quantizer/transformations/quantize_tensor.py +24 -44
- ai_edge_quantizer/transformations/quantize_tensor_test.py +3 -2
- ai_edge_quantizer/transformations/transformation_utils.py +157 -11
- ai_edge_quantizer/transformations/transformation_utils_test.py +96 -2
- ai_edge_quantizer/utils/calibration_utils.py +263 -1
- ai_edge_quantizer/utils/calibration_utils_test.py +173 -3
- ai_edge_quantizer/utils/constrained_ops_utils.py +111 -0
- ai_edge_quantizer/utils/constrained_ops_utils_test.py +50 -0
- ai_edge_quantizer/utils/test_utils.py +191 -58
- ai_edge_quantizer/utils/tfl_flatbuffer_utils.py +96 -50
- ai_edge_quantizer/utils/tfl_flatbuffer_utils_test.py +20 -0
- ai_edge_quantizer/utils/tfl_interpreter_utils.py +138 -5
- ai_edge_quantizer/utils/tfl_interpreter_utils_test.py +29 -2
- ai_edge_quantizer/utils/validation_utils.py +114 -4
- ai_edge_quantizer/utils/validation_utils_test.py +80 -0
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info}/METADATA +13 -3
- ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info/RECORD +81 -0
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info}/WHEEL +1 -1
- ai_edge_quantizer/transformations/emulated_subchannel.py +0 -363
- ai_edge_quantizer/transformations/emulated_subchannel_test.py +0 -212
- ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info/RECORD +0 -67
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info/licenses}/LICENSE +0 -0
- {ai_edge_quantizer_nightly-0.0.1.dev20250302.dist-info → ai_edge_quantizer_nightly-0.5.0.dev20260103.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,440 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
"""Test Hadamard rotation materialization."""
|
|
17
|
+
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
from absl.testing import parameterized
|
|
21
|
+
import numpy as np
|
|
22
|
+
|
|
23
|
+
from tensorflow.python.platform import googletest
|
|
24
|
+
from ai_edge_quantizer import qtyping
|
|
25
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import hadamard_rotation
|
|
26
|
+
from ai_edge_quantizer.utils import test_utils
|
|
27
|
+
from ai_edge_quantizer.utils import tfl_flatbuffer_utils
|
|
28
|
+
|
|
29
|
+
_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile("../../tests/models")
|
|
30
|
+
_TFLOpName = qtyping.TFLOperationName
|
|
31
|
+
_TensorQuantConfig = qtyping.TensorQuantizationConfig
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class HadamardRotationFullyConnectedTest(parameterized.TestCase):
|
|
35
|
+
|
|
36
|
+
def setUp(self):
|
|
37
|
+
super().setUp()
|
|
38
|
+
np.random.seed(888)
|
|
39
|
+
self._test_model_path = os.path.join(
|
|
40
|
+
_TEST_DATA_PREFIX_PATH, "conv_fc_mnist.tflite"
|
|
41
|
+
)
|
|
42
|
+
self._test_model = tfl_flatbuffer_utils.read_model(self._test_model_path)
|
|
43
|
+
self._graph_info = qtyping.GraphInfo(
|
|
44
|
+
subgraph_tensors=self._test_model.subgraphs[0].tensors,
|
|
45
|
+
buffers=self._test_model.buffers,
|
|
46
|
+
)
|
|
47
|
+
self._tensor_name_to_qsv = None
|
|
48
|
+
self._subgraph = self._test_model.subgraphs[0]
|
|
49
|
+
self._fc_subgraph_op_index = 3
|
|
50
|
+
self._fc_op = self._subgraph.operators[self._fc_subgraph_op_index]
|
|
51
|
+
self._fc_buffer_id = self._subgraph.tensors[self._fc_op.inputs[1]].buffer
|
|
52
|
+
self._op_info = qtyping.OpInfo(
|
|
53
|
+
op=self._fc_op,
|
|
54
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
|
55
|
+
subgraph_op_index=self._fc_subgraph_op_index,
|
|
56
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
57
|
+
weight_tensor_config=_TensorQuantConfig(
|
|
58
|
+
num_bits=8,
|
|
59
|
+
symmetric=True,
|
|
60
|
+
granularity=qtyping.QuantGranularity.CHANNELWISE,
|
|
61
|
+
),
|
|
62
|
+
),
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
def test_materialize_fully_connected_basic(self):
|
|
66
|
+
params = hadamard_rotation.materialize_fully_connected_custom_op(
|
|
67
|
+
self._op_info, self._graph_info, self._tensor_name_to_qsv
|
|
68
|
+
)
|
|
69
|
+
fc_input = params[0]
|
|
70
|
+
weight = params[1]
|
|
71
|
+
bias = params[2]
|
|
72
|
+
output = params[3]
|
|
73
|
+
|
|
74
|
+
self.assertLen(params, 4)
|
|
75
|
+
self.assertIsNone(fc_input.producer)
|
|
76
|
+
self.assertIsNotNone(fc_input.consumers)
|
|
77
|
+
self.assertIsNone(weight.producer)
|
|
78
|
+
self.assertIsNotNone(weight.consumers)
|
|
79
|
+
self.assertIsNone(bias.producer)
|
|
80
|
+
self.assertIsNotNone(bias.consumers)
|
|
81
|
+
self.assertIsNotNone(output.producer)
|
|
82
|
+
self.assertIsNone(output.consumers)
|
|
83
|
+
self.assertEqual(
|
|
84
|
+
fc_input.consumers[0].transformations,
|
|
85
|
+
[qtyping.QuantTransformation.INSERT_HADAMARD_ROTATION],
|
|
86
|
+
)
|
|
87
|
+
self.assertEqual(
|
|
88
|
+
weight.consumers[0].transformations,
|
|
89
|
+
[qtyping.QuantTransformation.QUANTIZE_TENSOR],
|
|
90
|
+
)
|
|
91
|
+
self.assertEqual(
|
|
92
|
+
bias.consumers[0].transformations,
|
|
93
|
+
[qtyping.QuantTransformation.NO_QUANTIZE],
|
|
94
|
+
)
|
|
95
|
+
if output.producer is not None:
|
|
96
|
+
self.assertEqual(
|
|
97
|
+
output.producer.transformations,
|
|
98
|
+
[qtyping.QuantTransformation.NO_QUANTIZE],
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
def test_fully_connected_tensorwise_supported(self):
|
|
102
|
+
self._op_info = qtyping.OpInfo(
|
|
103
|
+
op=self._fc_op,
|
|
104
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
|
105
|
+
subgraph_op_index=self._fc_subgraph_op_index,
|
|
106
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
107
|
+
weight_tensor_config=_TensorQuantConfig(
|
|
108
|
+
num_bits=8,
|
|
109
|
+
symmetric=True,
|
|
110
|
+
granularity=qtyping.QuantGranularity.TENSORWISE,
|
|
111
|
+
),
|
|
112
|
+
),
|
|
113
|
+
)
|
|
114
|
+
params = hadamard_rotation.materialize_fully_connected_custom_op(
|
|
115
|
+
self._op_info, self._graph_info, self._tensor_name_to_qsv
|
|
116
|
+
)
|
|
117
|
+
self.assertLen(params, 4)
|
|
118
|
+
fc_input = params[0]
|
|
119
|
+
self.assertIsNotNone(fc_input)
|
|
120
|
+
self.assertIsNotNone(fc_input.consumers)
|
|
121
|
+
self.assertIsNotNone(fc_input.consumers[0].parameters)
|
|
122
|
+
self.assertIsInstance(
|
|
123
|
+
fc_input.consumers[0].parameters, qtyping.UniformQuantParams
|
|
124
|
+
)
|
|
125
|
+
if isinstance(
|
|
126
|
+
fc_input.consumers[0].parameters, qtyping.UniformQuantParams
|
|
127
|
+
):
|
|
128
|
+
self.assertIsNone(fc_input.consumers[0].parameters.quantized_dimension)
|
|
129
|
+
weight = params[1]
|
|
130
|
+
self.assertIsNotNone(weight)
|
|
131
|
+
self.assertIsNotNone(weight.consumers)
|
|
132
|
+
self.assertIsNotNone(weight.consumers[0].parameters)
|
|
133
|
+
self.assertIsInstance(
|
|
134
|
+
weight.consumers[0].parameters, qtyping.UniformQuantParams
|
|
135
|
+
)
|
|
136
|
+
if isinstance(
|
|
137
|
+
weight.consumers[0].parameters, qtyping.UniformQuantParams
|
|
138
|
+
):
|
|
139
|
+
self.assertIsNone(weight.consumers[0].parameters.quantized_dimension)
|
|
140
|
+
|
|
141
|
+
def test_fully_connected_blockwise_supported(self):
|
|
142
|
+
self._op_info = qtyping.OpInfo(
|
|
143
|
+
op=self._fc_op,
|
|
144
|
+
op_name=_TFLOpName.FULLY_CONNECTED,
|
|
145
|
+
subgraph_op_index=self._fc_subgraph_op_index,
|
|
146
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
147
|
+
weight_tensor_config=_TensorQuantConfig(
|
|
148
|
+
num_bits=8,
|
|
149
|
+
symmetric=True,
|
|
150
|
+
granularity=qtyping.QuantGranularity.BLOCKWISE_32,
|
|
151
|
+
),
|
|
152
|
+
),
|
|
153
|
+
)
|
|
154
|
+
params = hadamard_rotation.materialize_fully_connected_custom_op(
|
|
155
|
+
self._op_info, self._graph_info, self._tensor_name_to_qsv
|
|
156
|
+
)
|
|
157
|
+
self.assertLen(params, 4)
|
|
158
|
+
fc_input = params[0]
|
|
159
|
+
self.assertIsNotNone(fc_input)
|
|
160
|
+
self.assertIsNotNone(fc_input.consumers)
|
|
161
|
+
self.assertIsNotNone(fc_input.consumers[0].parameters)
|
|
162
|
+
self.assertIsInstance(
|
|
163
|
+
fc_input.consumers[0].parameters, qtyping.UniformQuantParams
|
|
164
|
+
)
|
|
165
|
+
if isinstance(
|
|
166
|
+
fc_input.consumers[0].parameters, qtyping.UniformQuantParams
|
|
167
|
+
):
|
|
168
|
+
self.assertEqual(fc_input.consumers[0].parameters.quantized_dimension, 1)
|
|
169
|
+
weight = params[1]
|
|
170
|
+
self.assertIsNotNone(weight)
|
|
171
|
+
self.assertIsNotNone(weight.consumers)
|
|
172
|
+
self.assertIsNotNone(weight.consumers[0].parameters)
|
|
173
|
+
self.assertIsInstance(
|
|
174
|
+
weight.consumers[0].parameters, qtyping.UniformQuantParams
|
|
175
|
+
)
|
|
176
|
+
if isinstance(
|
|
177
|
+
weight.consumers[0].parameters, qtyping.UniformQuantParams
|
|
178
|
+
):
|
|
179
|
+
self.assertEqual(weight.consumers[0].parameters.quantized_dimension, 1)
|
|
180
|
+
|
|
181
|
+
def test_materialize_fully_connected_decomposed(self):
|
|
182
|
+
params = hadamard_rotation.materialize_fully_connected_decomposed(
|
|
183
|
+
self._op_info, self._graph_info, self._tensor_name_to_qsv
|
|
184
|
+
)
|
|
185
|
+
fc_input = params[0]
|
|
186
|
+
weight = params[1]
|
|
187
|
+
bias = params[2]
|
|
188
|
+
output = params[3]
|
|
189
|
+
|
|
190
|
+
self.assertLen(params, 4)
|
|
191
|
+
self.assertEqual(
|
|
192
|
+
fc_input.consumers[0].transformations,
|
|
193
|
+
[qtyping.QuantTransformation.INSERT_DECOMPOSED_HADAMARD_ROTATION],
|
|
194
|
+
)
|
|
195
|
+
self.assertEqual(
|
|
196
|
+
weight.consumers[0].transformations,
|
|
197
|
+
[qtyping.QuantTransformation.QUANTIZE_TENSOR],
|
|
198
|
+
)
|
|
199
|
+
self.assertEqual(
|
|
200
|
+
bias.consumers[0].transformations,
|
|
201
|
+
[qtyping.QuantTransformation.NO_QUANTIZE],
|
|
202
|
+
)
|
|
203
|
+
if output.producer is not None:
|
|
204
|
+
self.assertEqual(
|
|
205
|
+
output.producer.transformations,
|
|
206
|
+
[qtyping.QuantTransformation.NO_QUANTIZE],
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
def test_get_tensor_quant_params_basic(self):
|
|
210
|
+
input_tensor = self._subgraph.tensors[self._fc_op.inputs[1]]
|
|
211
|
+
buffer = self._graph_info.buffers[self._fc_buffer_id]
|
|
212
|
+
np_buffer = np.frombuffer(buffer.data, dtype=np.float32).reshape(
|
|
213
|
+
input_tensor.shape
|
|
214
|
+
)
|
|
215
|
+
qparams = hadamard_rotation.get_tensor_quant_params(
|
|
216
|
+
self._op_info,
|
|
217
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
218
|
+
np_buffer,
|
|
219
|
+
self._tensor_name_to_qsv,
|
|
220
|
+
)
|
|
221
|
+
self.assertEqual(qparams.num_bits, 8)
|
|
222
|
+
self.assertEqual(qparams.zero_point.all(), 0)
|
|
223
|
+
self.assertEqual(qparams.symmetric, True)
|
|
224
|
+
self.assertIsNotNone(qparams.quantized_data)
|
|
225
|
+
self.assertEqual(qparams.block_size, 0)
|
|
226
|
+
self.assertIsNotNone(qparams.hadamard)
|
|
227
|
+
if qparams.hadamard is not None:
|
|
228
|
+
self.assertEqual(qparams.hadamard.hadamard_size, 32)
|
|
229
|
+
|
|
230
|
+
def test_get_tensor_quant_params_golden_1(self):
|
|
231
|
+
test_data = np.ones((6, 6))
|
|
232
|
+
# expected:
|
|
233
|
+
# [[127 0 127 0 127 0]
|
|
234
|
+
# [127 0 127 0 127 0]
|
|
235
|
+
# [127 0 127 0 127 0]
|
|
236
|
+
# [127 0 127 0 127 0]
|
|
237
|
+
# [127 0 127 0 127 0]
|
|
238
|
+
# [127 0 127 0 127 0]]
|
|
239
|
+
expected = np.tile([127, 0], [6, 3])
|
|
240
|
+
qparams = hadamard_rotation.get_tensor_quant_params(
|
|
241
|
+
self._op_info,
|
|
242
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
243
|
+
test_data,
|
|
244
|
+
self._tensor_name_to_qsv,
|
|
245
|
+
)
|
|
246
|
+
self.assertIsNotNone(qparams.quantized_data)
|
|
247
|
+
np.testing.assert_array_equal(
|
|
248
|
+
np.array(qparams.quantized_data), expected
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
def test_get_tensor_quant_params_golden_2(self):
|
|
252
|
+
# test_data:
|
|
253
|
+
# [[1 2 1 2 1 2]
|
|
254
|
+
# [3 4 3 4 3 4]
|
|
255
|
+
# [1 2 1 2 1 2]
|
|
256
|
+
# [3 4 3 4 3 4]
|
|
257
|
+
# [1 2 1 2 1 2]
|
|
258
|
+
# [3 4 3 4 3 4]]
|
|
259
|
+
test_data = np.tile([[1, 2], [3, 4]], [3, 3])
|
|
260
|
+
# expected:
|
|
261
|
+
# [[127 -42 127 -42 127 -42]
|
|
262
|
+
# [127 -18 127 -18 127 -18]
|
|
263
|
+
# [127 -42 127 -42 127 -42]
|
|
264
|
+
# [127 -18 127 -18 127 -18]
|
|
265
|
+
# [127 -42 127 -42 127 -42]
|
|
266
|
+
# [127 -18 127 -18 127 -18]]
|
|
267
|
+
expected = np.tile([[127, -42], [127, -18]], [3, 3])
|
|
268
|
+
qparams = hadamard_rotation.get_tensor_quant_params(
|
|
269
|
+
self._op_info,
|
|
270
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
271
|
+
test_data,
|
|
272
|
+
self._tensor_name_to_qsv,
|
|
273
|
+
)
|
|
274
|
+
self.assertIsNotNone(qparams.quantized_data)
|
|
275
|
+
np.testing.assert_array_equal(
|
|
276
|
+
np.array(qparams.quantized_data), expected
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
def test_get_tensor_quant_params_golden_3(self):
|
|
280
|
+
# test_data:
|
|
281
|
+
# [[[1 2 1 2 1 2]
|
|
282
|
+
# [3 4 3 4 3 4]
|
|
283
|
+
# [1 2 1 2 1 2]]
|
|
284
|
+
# [[3 4 3 4 3 4]
|
|
285
|
+
# [1 2 1 2 1 2]
|
|
286
|
+
# [3 4 3 4 3 4]]]
|
|
287
|
+
test_data = np.tile([[1, 2], [3, 4]], [3, 3])
|
|
288
|
+
test_data = np.reshape(test_data, (2, 3, 6))
|
|
289
|
+
# expected:
|
|
290
|
+
# [[[ 54 -18 54 -18 54 -18]
|
|
291
|
+
# [127 -18 127 -18 127 -18]
|
|
292
|
+
# [ 54 -18 54 -18 54 -18]]
|
|
293
|
+
# [[127 -18 127 -18 127 -18]
|
|
294
|
+
# [ 54 -18 54 -18 54 -18]
|
|
295
|
+
# [127 -18 127 -18 127 -18]]]
|
|
296
|
+
expected = np.tile([[54, -18], [127, -18]], [3, 3])
|
|
297
|
+
expected = np.reshape(expected, (2, 3, 6))
|
|
298
|
+
qparams = hadamard_rotation.get_tensor_quant_params(
|
|
299
|
+
self._op_info,
|
|
300
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
301
|
+
test_data,
|
|
302
|
+
self._tensor_name_to_qsv,
|
|
303
|
+
)
|
|
304
|
+
self.assertIsNotNone(qparams.quantized_data)
|
|
305
|
+
np.testing.assert_array_equal(
|
|
306
|
+
np.array(qparams.quantized_data), expected
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
def test_raise_missing_tensor_content(self):
|
|
310
|
+
with self.assertRaisesWithPredicateMatch(
|
|
311
|
+
ValueError, lambda err: "weight tensor" in str(err)
|
|
312
|
+
):
|
|
313
|
+
hadamard_rotation.get_tensor_quant_params(
|
|
314
|
+
self._op_info,
|
|
315
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
316
|
+
None,
|
|
317
|
+
self._tensor_name_to_qsv,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
def test_raise_qsv_set(self):
|
|
321
|
+
with self.assertRaisesWithPredicateMatch(
|
|
322
|
+
ValueError, lambda err: "static quantization" in str(err)
|
|
323
|
+
):
|
|
324
|
+
hadamard_rotation.get_tensor_quant_params(
|
|
325
|
+
self._op_info,
|
|
326
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
327
|
+
self._graph_info.buffers[self._fc_buffer_id],
|
|
328
|
+
self._graph_info.buffers[self._fc_buffer_id],
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
def test_raise_1d_constant(self):
|
|
332
|
+
with self.assertRaisesWithPredicateMatch(
|
|
333
|
+
ValueError, lambda err: "rank >= 2" in str(err)
|
|
334
|
+
):
|
|
335
|
+
hadamard_rotation.get_tensor_quant_params(
|
|
336
|
+
self._op_info,
|
|
337
|
+
self._op_info.op_quant_config.weight_tensor_config,
|
|
338
|
+
np.array([1.0, 2.0, 3.0]),
|
|
339
|
+
self._tensor_name_to_qsv,
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
|
|
343
|
+
class HadamardRotationEmbeddingLookupTest(parameterized.TestCase):
|
|
344
|
+
|
|
345
|
+
def setUp(self):
|
|
346
|
+
super().setUp()
|
|
347
|
+
np.random.seed(888)
|
|
348
|
+
self._test_model_path = os.path.join(
|
|
349
|
+
_TEST_DATA_PREFIX_PATH, "embedding_lookup.tflite"
|
|
350
|
+
)
|
|
351
|
+
self._test_model = tfl_flatbuffer_utils.read_model(self._test_model_path)
|
|
352
|
+
self._graph_info = qtyping.GraphInfo(
|
|
353
|
+
subgraph_tensors=self._test_model.subgraphs[0].tensors,
|
|
354
|
+
buffers=self._test_model.buffers,
|
|
355
|
+
)
|
|
356
|
+
self._tensor_name_to_qsv = None
|
|
357
|
+
|
|
358
|
+
def test_materialize_embedding_lookup_basic(self):
|
|
359
|
+
subgraph = self._test_model.subgraphs[0]
|
|
360
|
+
embedding_subgraph_op_index = 0
|
|
361
|
+
embedding_op = subgraph.operators[embedding_subgraph_op_index]
|
|
362
|
+
op_info = qtyping.OpInfo(
|
|
363
|
+
op=embedding_op,
|
|
364
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
|
365
|
+
subgraph_op_index=embedding_subgraph_op_index,
|
|
366
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
367
|
+
weight_tensor_config=_TensorQuantConfig(
|
|
368
|
+
num_bits=8,
|
|
369
|
+
symmetric=True,
|
|
370
|
+
granularity=qtyping.QuantGranularity.CHANNELWISE,
|
|
371
|
+
),
|
|
372
|
+
),
|
|
373
|
+
)
|
|
374
|
+
params = hadamard_rotation.materialize_embedding_lookup_custom_op(
|
|
375
|
+
op_info, self._graph_info, self._tensor_name_to_qsv
|
|
376
|
+
)
|
|
377
|
+
self.assertLen(params, 3)
|
|
378
|
+
lookup = params[0]
|
|
379
|
+
value = params[1]
|
|
380
|
+
output = params[2]
|
|
381
|
+
self.assertIsNone(lookup.producer)
|
|
382
|
+
self.assertIsNotNone(lookup.consumers)
|
|
383
|
+
self.assertIsNone(value.producer)
|
|
384
|
+
self.assertIsNotNone(value.consumers)
|
|
385
|
+
self.assertIsNotNone(output.producer)
|
|
386
|
+
self.assertIsNone(output.consumers)
|
|
387
|
+
self.assertEqual(
|
|
388
|
+
lookup.consumers[0].transformations,
|
|
389
|
+
[qtyping.QuantTransformation.NO_QUANTIZE],
|
|
390
|
+
)
|
|
391
|
+
self.assertEqual(
|
|
392
|
+
value.consumers[0].transformations,
|
|
393
|
+
[qtyping.QuantTransformation.QUANTIZE_TENSOR],
|
|
394
|
+
)
|
|
395
|
+
if output.producer is not None:
|
|
396
|
+
self.assertEqual(
|
|
397
|
+
output.producer.transformations,
|
|
398
|
+
[qtyping.QuantTransformation.INSERT_HADAMARD_ROTATION],
|
|
399
|
+
)
|
|
400
|
+
|
|
401
|
+
def test_materialize_embedding_lookup_decomposed(self):
|
|
402
|
+
subgraph = self._test_model.subgraphs[0]
|
|
403
|
+
embedding_subgraph_op_index = 0
|
|
404
|
+
embedding_op = subgraph.operators[embedding_subgraph_op_index]
|
|
405
|
+
op_info = qtyping.OpInfo(
|
|
406
|
+
op=embedding_op,
|
|
407
|
+
op_name=_TFLOpName.EMBEDDING_LOOKUP,
|
|
408
|
+
subgraph_op_index=embedding_subgraph_op_index,
|
|
409
|
+
op_quant_config=qtyping.OpQuantizationConfig(
|
|
410
|
+
weight_tensor_config=_TensorQuantConfig(
|
|
411
|
+
num_bits=8,
|
|
412
|
+
symmetric=True,
|
|
413
|
+
granularity=qtyping.QuantGranularity.CHANNELWISE,
|
|
414
|
+
),
|
|
415
|
+
),
|
|
416
|
+
)
|
|
417
|
+
params = hadamard_rotation.materialize_embedding_lookup_decomposed(
|
|
418
|
+
op_info, self._graph_info, self._tensor_name_to_qsv
|
|
419
|
+
)
|
|
420
|
+
self.assertLen(params, 3)
|
|
421
|
+
lookup = params[0]
|
|
422
|
+
value = params[1]
|
|
423
|
+
output = params[2]
|
|
424
|
+
self.assertEqual(
|
|
425
|
+
lookup.consumers[0].transformations,
|
|
426
|
+
[qtyping.QuantTransformation.NO_QUANTIZE],
|
|
427
|
+
)
|
|
428
|
+
self.assertEqual(
|
|
429
|
+
value.consumers[0].transformations,
|
|
430
|
+
[qtyping.QuantTransformation.QUANTIZE_TENSOR],
|
|
431
|
+
)
|
|
432
|
+
if output.producer is not None:
|
|
433
|
+
self.assertEqual(
|
|
434
|
+
output.producer.transformations,
|
|
435
|
+
[qtyping.QuantTransformation.INSERT_DECOMPOSED_HADAMARD_ROTATION],
|
|
436
|
+
)
|
|
437
|
+
|
|
438
|
+
|
|
439
|
+
if __name__ == "__main__":
|
|
440
|
+
googletest.main()
|
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
"""Implements the MSE quantization."""
|
|
17
|
+
|
|
18
|
+
import dataclasses
|
|
19
|
+
from typing import Any, Optional
|
|
20
|
+
import numpy as np
|
|
21
|
+
from ai_edge_quantizer import qtyping
|
|
22
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import common_quantize
|
|
23
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize
|
|
24
|
+
from ai_edge_quantizer.algorithms.uniform_quantize import uniform_quantize_tensor
|
|
25
|
+
from ai_edge_quantizer.algorithms.utils import common_utils
|
|
26
|
+
|
|
27
|
+
ALGORITHM_KEY = "MSE"
|
|
28
|
+
|
|
29
|
+
# Coefficients from offline numeric analysis.
|
|
30
|
+
_MSE_QUANT_MULS = {
|
|
31
|
+
8: 0.05408,
|
|
32
|
+
4: 0.37755,
|
|
33
|
+
}
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def get_tensor_quant_params(
|
|
37
|
+
op_info: qtyping.OpInfo,
|
|
38
|
+
tensor_quant_config: qtyping.TensorQuantizationConfig,
|
|
39
|
+
tensor_content: Optional[np.ndarray] = None,
|
|
40
|
+
tensor_qsv: Optional[dict[str, Any]] = None,
|
|
41
|
+
) -> qtyping.UniformQuantParams:
|
|
42
|
+
"""Returns the quantization parameters for a tensor.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
op_info: Aggregated information about the op (e.g., quantization config).
|
|
46
|
+
tensor_quant_config: The quantization config for the tensor.
|
|
47
|
+
tensor_content: The content of the tensor. When None, it means the tensor is
|
|
48
|
+
not a weight tensor (e.g. static quantization) so we fallback to using
|
|
49
|
+
naive_min_max_quantize.
|
|
50
|
+
tensor_qsv: A dictionary containing the min/max of the tensor.
|
|
51
|
+
|
|
52
|
+
Raises:
|
|
53
|
+
ValueError: If the blockwise quantization is requested.
|
|
54
|
+
ValueError: If the asymmetric quantization is requested.
|
|
55
|
+
ValueError: `tensor_qsv` must contain min/max values, or `tensor_content`
|
|
56
|
+
must be provided so that they can be inferred.
|
|
57
|
+
"""
|
|
58
|
+
if uniform_quantize_tensor.is_blockwise(tensor_quant_config.granularity):
|
|
59
|
+
raise ValueError(
|
|
60
|
+
"Blockwise quantization is not supported for MSE quantization."
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
# Fallback to naive_min_max_quantize.py for non-weight tensors.
|
|
64
|
+
if tensor_content is None:
|
|
65
|
+
return naive_min_max_quantize.get_tensor_quant_params(
|
|
66
|
+
op_info, tensor_quant_config, tensor_content, tensor_qsv
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
if not tensor_quant_config.symmetric:
|
|
70
|
+
raise ValueError(
|
|
71
|
+
f"Unsupported symmetry: {tensor_quant_config.symmetric}. MSE"
|
|
72
|
+
" supports symmetric quantization only for now."
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
if not tensor_qsv:
|
|
76
|
+
# We need min/max to calculate quantization parameters, which
|
|
77
|
+
# should be collected during the calibration process. However,
|
|
78
|
+
# weight-only and DRQ do not require calibration, thus it is
|
|
79
|
+
# possible that this information is missing here. In that case we
|
|
80
|
+
# collect min/max on the spot.
|
|
81
|
+
tensor_min_max = common_quantize.init_tensor_min_max(
|
|
82
|
+
tensor_content,
|
|
83
|
+
op_info,
|
|
84
|
+
)
|
|
85
|
+
else:
|
|
86
|
+
tensor_min_max = tensor_qsv
|
|
87
|
+
|
|
88
|
+
if "min" not in tensor_min_max or "max" not in tensor_min_max:
|
|
89
|
+
raise ValueError(
|
|
90
|
+
"min and max must be provided to produce tensor quantization"
|
|
91
|
+
" parameters. Check if the correct calibration results are passed into"
|
|
92
|
+
" the ParamsGenerator."
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
quantized_dim = common_utils.get_weight_quantized_dim(
|
|
96
|
+
op_info, tensor_content, tensor_quant_config.granularity
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
reshaped_data = tensor_content
|
|
100
|
+
reduce_dims = common_utils.get_reduce_dims(
|
|
101
|
+
quantized_dim, tensor_content.shape
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
multiplier = _MSE_QUANT_MULS[tensor_quant_config.num_bits]
|
|
105
|
+
scale = multiplier * np.sqrt(
|
|
106
|
+
np.mean(reshaped_data**2, axis=reduce_dims, keepdims=True)
|
|
107
|
+
)
|
|
108
|
+
zp = np.zeros_like(scale, dtype=np.int32)
|
|
109
|
+
|
|
110
|
+
quant_params = qtyping.UniformQuantParams(
|
|
111
|
+
scale=scale,
|
|
112
|
+
zero_point=zp,
|
|
113
|
+
num_bits=tensor_quant_config.num_bits,
|
|
114
|
+
symmetric=tensor_quant_config.symmetric,
|
|
115
|
+
quantized_dimension=quantized_dim,
|
|
116
|
+
block_size=uniform_quantize_tensor.extract_block_size_from_granularity(
|
|
117
|
+
tensor_quant_config.granularity
|
|
118
|
+
),
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
quantized_vars = uniform_quantize_tensor.uniform_quantize(
|
|
122
|
+
tensor_content,
|
|
123
|
+
quant_params,
|
|
124
|
+
uniform_quantize_tensor.is_blockwise(tensor_quant_config.granularity),
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
return dataclasses.replace(quant_params, quantized_data=quantized_vars)
|