ai-data-science-team 0.0.0.9010__py3-none-any.whl → 0.0.0.9012__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,41 +1,77 @@
1
1
 
2
2
  from langchain.tools import tool
3
+ from langgraph.prebuilt import InjectedState
3
4
 
4
5
  import pandas as pd
6
+ import os
5
7
 
6
- from typing import Tuple, List, Dict
8
+ from typing import Tuple, List, Dict, Optional, Annotated
7
9
 
8
10
 
9
11
  @tool(response_format='content_and_artifact')
10
- def load_directory(dir_path: str) -> Tuple[str, Dict]:
12
+ def load_directory(
13
+ directory_path: str = os.getcwd(),
14
+ file_type: Optional[str] = None
15
+ ) -> Tuple[str, Dict]:
11
16
  """
12
17
  Tool: load_directory
13
- Description: Loads all recognized tabular files in a directory.
18
+ Description: Loads all recognized tabular files in a directory.
19
+ If file_type is specified (e.g., 'csv'), only files
20
+ with that extension are loaded.
14
21
 
15
22
  Parameters:
16
23
  ----------
17
- dir_path : str
18
- The path to the directory to load.
24
+ directory_path : str
25
+ The path to the directory to load. Defaults to the current working directory.
26
+
27
+ file_type : str, optional
28
+ The extension of the file type you want to load exclusively
29
+ (e.g., 'csv', 'xlsx', 'parquet'). If None or not provided,
30
+ attempts to load all recognized tabular files.
19
31
 
20
32
  Returns:
21
33
  -------
22
34
  Tuple[str, Dict]
23
35
  A tuple containing a message and a dictionary of data frames.
24
36
  """
25
- print(" * Tool: load_directory")
37
+ print(f" * Tool: load_directory | {directory_path}")
38
+
26
39
  import os
27
40
  import pandas as pd
41
+
42
+ if directory_path is None:
43
+ return "No directory path provided.", {}
44
+
45
+ if not os.path.isdir(directory_path):
46
+ return f"Directory not found: {directory_path}", {}
47
+
28
48
  data_frames = {}
29
- for filename in os.listdir(dir_path):
30
- file_path = os.path.join(dir_path, filename)
49
+
50
+ for filename in os.listdir(directory_path):
51
+ file_path = os.path.join(directory_path, filename)
52
+
31
53
  # Skip directories
32
54
  if os.path.isdir(file_path):
33
55
  continue
56
+
57
+ # If file_type is specified, only process files that match.
58
+ if file_type:
59
+ # Make sure extension check is case-insensitive
60
+ if not filename.lower().endswith(f".{file_type.lower()}"):
61
+ continue
62
+
34
63
  try:
64
+ # Attempt to auto-detect and load the file
35
65
  data_frames[filename] = auto_load_file(file_path).to_dict()
36
66
  except Exception as e:
67
+ # If loading fails, record the error message
37
68
  data_frames[filename] = f"Error loading file: {e}"
38
- return f"Returned the following data frames: {list(data_frames.keys())}", data_frames
69
+
70
+ return (
71
+ f"Returned the following data frames: {list(data_frames.keys())}",
72
+ data_frames
73
+ )
74
+
39
75
 
40
76
  @tool(response_format='content_and_artifact')
41
77
  def load_file(file_path: str) -> Tuple[str, Dict]:
@@ -52,12 +88,15 @@ def load_file(file_path: str) -> Tuple[str, Dict]:
52
88
  Tuple[str, Dict]
53
89
  A tuple containing a message and a dictionary of the data frame.
54
90
  """
55
- print(" * Tool: load_file")
91
+ print(f" * Tool: load_file | {file_path}")
56
92
  return f"Returned the following data frame from this file: {file_path}", auto_load_file(file_path).to_dict()
57
93
 
58
94
 
59
95
  @tool(response_format='content_and_artifact')
60
- def list_directory_contents(directory_path: str, show_hidden: bool = False) -> Tuple[List[str], List[Dict]]:
96
+ def list_directory_contents(
97
+ directory_path: str = os.getcwd(),
98
+ show_hidden: bool = False
99
+ ) -> Tuple[List[str], List[Dict]]:
61
100
  """
62
101
  Tool: list_directory_contents
63
102
  Description: Lists all files and folders in the specified directory.
@@ -67,30 +106,51 @@ def list_directory_contents(directory_path: str, show_hidden: bool = False) -> T
67
106
  Returns:
68
107
  tuple:
69
108
  - content (list[str]): A list of filenames/folders (suitable for display)
70
- - artifact (list[dict]): A list of dictionaries where each dict has keys like {"filename": <name>}.
71
- This structure can be easily converted to a pandas DataFrame.
109
+ - artifact (list[dict]): A list of dictionaries where each dict includes
110
+ the keys {"filename": <name>, "type": <'file' or 'directory'>}.
111
+ This structure can be easily converted to a pandas DataFrame.
72
112
  """
73
- print(" * Tool: list_directory_contents")
113
+ print(f" * Tool: list_directory_contents | {directory_path}")
74
114
  import os
75
-
115
+
116
+ if directory_path is None:
117
+ return "No directory path provided.", []
118
+
119
+ if not os.path.isdir(directory_path):
120
+ return f"Directory not found: {directory_path}", []
121
+
76
122
  items = []
77
123
  for item in os.listdir(directory_path):
78
124
  # If show_hidden is False, skip items starting with '.'
79
125
  if not show_hidden and item.startswith('.'):
80
126
  continue
81
127
  items.append(item)
128
+ items.reverse()
82
129
 
83
- # content: just the raw list of filenames
84
- content = items
85
-
86
- # artifact: list of dicts (each row is {"filename": ...}), easily turned into a DataFrame
87
- artifact = [{"filename": item} for item in items]
130
+ # content: just the raw list of item names (files/folders).
131
+ content = items.copy()
132
+
133
+ content.append(f"Total items: {len(items)}")
134
+ content.append(f"Directory: {directory_path}")
135
+
136
+ # artifact: list of dicts with both "filename" and "type" keys.
137
+ artifact = []
138
+ for item in items:
139
+ item_path = os.path.join(directory_path, item)
140
+ artifact.append({
141
+ "filename": item,
142
+ "type": "directory" if os.path.isdir(item_path) else "file"
143
+ })
88
144
 
89
145
  return content, artifact
90
146
 
91
147
 
148
+
92
149
  @tool(response_format='content_and_artifact')
93
- def list_directory_recursive(directory_path: str, show_hidden: bool = False) -> Tuple[str, List[Dict]]:
150
+ def list_directory_recursive(
151
+ directory_path: str = os.getcwd(),
152
+ show_hidden: bool = False
153
+ ) -> Tuple[str, List[Dict]]:
94
154
  """
95
155
  Tool: list_directory_recursive
96
156
  Description:
@@ -111,13 +171,19 @@ def list_directory_recursive(directory_path: str, show_hidden: bool = False) ->
111
171
  Example:
112
172
  content, artifact = list_directory_recursive("/path/to/folder", show_hidden=False)
113
173
  """
114
- print(" * Tool: list_directory_recursive")
174
+ print(f" * Tool: list_directory_recursive | {directory_path}")
115
175
 
116
176
  # We'll store two things as we recurse:
117
177
  # 1) lines for building the "tree" string
118
178
  # 2) records in a list of dicts for easy DataFrame creation
119
179
  import os
120
180
 
181
+ if directory_path is None:
182
+ return "No directory path provided.", {}
183
+
184
+ if not os.path.isdir(directory_path):
185
+ return f"Directory not found: {directory_path}", {}
186
+
121
187
  lines = []
122
188
  records = []
123
189
 
@@ -210,7 +276,7 @@ def get_file_info(file_path: str) -> Tuple[str, List[Dict]]:
210
276
  Example:
211
277
  content, artifact = get_file_info("/path/to/mydata.csv")
212
278
  """
213
- print(" * Tool: get_file_info")
279
+ print(f" * Tool: get_file_info | {file_path}")
214
280
 
215
281
  # Ensure the file exists
216
282
  import os
@@ -244,7 +310,11 @@ def get_file_info(file_path: str) -> Tuple[str, List[Dict]]:
244
310
 
245
311
 
246
312
  @tool(response_format='content_and_artifact')
247
- def search_files_by_pattern(directory_path: str, pattern: str = "*.csv", recursive: bool = False) -> Tuple[str, List[Dict]]:
313
+ def search_files_by_pattern(
314
+ directory_path: str = os.getcwd(),
315
+ pattern: str = "*.csv",
316
+ recursive: bool = False
317
+ ) -> Tuple[str, List[Dict]]:
248
318
  """
249
319
  Tool: search_files_by_pattern
250
320
  Description:
@@ -266,7 +336,7 @@ def search_files_by_pattern(directory_path: str, pattern: str = "*.csv", recursi
266
336
  Example:
267
337
  content, artifact = search_files_by_pattern("/path/to/folder", "*.csv", recursive=True)
268
338
  """
269
- print(" * Tool: search_files_by_pattern")
339
+ print(f" * Tool: search_files_by_pattern | {directory_path}")
270
340
 
271
341
  import os
272
342
  import fnmatch
@@ -0,0 +1,293 @@
1
+
2
+ from typing import Annotated, Dict, Tuple, Union
3
+
4
+ import os
5
+
6
+ from langchain.tools import tool
7
+
8
+ from langgraph.prebuilt import InjectedState
9
+
10
+
11
+ @tool(response_format='content_and_artifact')
12
+ def describe_dataset(
13
+ data_raw: Annotated[dict, InjectedState("data_raw")]
14
+ ) -> Tuple[str, Dict]:
15
+ """
16
+ Tool: describe_dataset
17
+ Description:
18
+ Describe the dataset by computing summary
19
+ statistics using the DataFrame's describe() method.
20
+
21
+ Returns:
22
+ -------
23
+ Tuple[str, Dict]:
24
+ content: A textual summary of the DataFrame's descriptive statistics.
25
+ artifact: A dictionary (from DataFrame.describe()) for further inspection.
26
+ """
27
+ print(" * Tool: describe_dataset")
28
+ import pandas as pd
29
+ df = pd.DataFrame(data_raw)
30
+ description_df = df.describe(include='all')
31
+ content = "Summary statistics computed using pandas describe()."
32
+ artifact = description_df.to_dict()
33
+ return content, artifact
34
+
35
+
36
+ @tool(response_format='content_and_artifact')
37
+ def visualize_missing(
38
+ data_raw: Annotated[dict, InjectedState("data_raw")],
39
+ n_sample: int = None
40
+ ) -> Tuple[str, Dict]:
41
+ """
42
+ Tool: visualize_missing
43
+ Description:
44
+ Missing value analysis using the missingno library. Generates a matrix plot, bar plot, and heatmap plot.
45
+
46
+ Parameters:
47
+ -----------
48
+ data_raw : dict
49
+ The raw data in dictionary format.
50
+ n_sample : int, optional (default: None)
51
+ The number of rows to sample from the dataset if it is large.
52
+
53
+ Returns:
54
+ -------
55
+ Tuple[str, Dict]:
56
+ content: A message describing the generated plots.
57
+ artifact: A dict with keys 'matrix_plot', 'bar_plot', and 'heatmap_plot' each containing the
58
+ corresponding base64 encoded PNG image.
59
+ """
60
+ print(" * Tool: visualize_missing")
61
+
62
+ try:
63
+ import missingno as msno # Ensure missingno is installed
64
+ except ImportError:
65
+ raise ImportError("Please install the 'missingno' package to use this tool. pip install missingno")
66
+
67
+ import pandas as pd
68
+ import base64
69
+ from io import BytesIO
70
+ import matplotlib.pyplot as plt
71
+
72
+ # Create the DataFrame and sample if n_sample is provided.
73
+ df = pd.DataFrame(data_raw)
74
+ if n_sample is not None:
75
+ df = df.sample(n=n_sample, random_state=42)
76
+
77
+ # Dictionary to store the base64 encoded images for each plot.
78
+ encoded_plots = {}
79
+
80
+ # Define a helper function to create a plot, save it, and encode it.
81
+ def create_and_encode_plot(plot_func, plot_name: str):
82
+ plt.figure(figsize=(8, 6))
83
+ # Call the missingno plotting function.
84
+ plot_func(df)
85
+ plt.tight_layout()
86
+ buf = BytesIO()
87
+ plt.savefig(buf, format="png")
88
+ plt.close()
89
+ buf.seek(0)
90
+ return base64.b64encode(buf.getvalue()).decode("utf-8")
91
+
92
+ # Create and encode the matrix plot.
93
+ encoded_plots["matrix_plot"] = create_and_encode_plot(msno.matrix, "matrix")
94
+
95
+ # Create and encode the bar plot.
96
+ encoded_plots["bar_plot"] = create_and_encode_plot(msno.bar, "bar")
97
+
98
+ # Create and encode the heatmap plot.
99
+ encoded_plots["heatmap_plot"] = create_and_encode_plot(msno.heatmap, "heatmap")
100
+
101
+ content = "Missing data visualizations (matrix, bar, and heatmap) have been generated."
102
+ artifact = encoded_plots
103
+ return content, artifact
104
+
105
+
106
+
107
+ @tool(response_format='content_and_artifact')
108
+ def correlation_funnel(
109
+ data_raw: Annotated[dict, InjectedState("data_raw")],
110
+ target: str,
111
+ target_bin_index: Union[int, str] = -1,
112
+ corr_method: str = "pearson",
113
+ n_bins: int = 4,
114
+ thresh_infreq: float = 0.01,
115
+ name_infreq: str = "-OTHER",
116
+ ) -> Tuple[str, Dict]:
117
+ """
118
+ Tool: correlation_funnel
119
+ Description:
120
+ Correlation analysis using the correlation funnel method. The tool binarizes the data and computes correlation versus a target column.
121
+
122
+ Parameters:
123
+ ----------
124
+ target : str
125
+ The base target column name (e.g., 'Member_Status'). The tool will look for columns that begin
126
+ with this string followed by '__' (e.g., 'Member_Status__Gold', 'Member_Status__Platinum').
127
+ target_bin_index : int or str, default -1
128
+ If an integer, selects the target level by position from the matching columns.
129
+ If a string (e.g., "Yes"), attempts to match to the suffix of a column name
130
+ (i.e., 'target__Yes').
131
+ corr_method : str
132
+ The correlation method ('pearson', 'kendall', or 'spearman'). Default is 'pearson'.
133
+ n_bins : int
134
+ The number of bins to use for binarization. Default is 4.
135
+ thresh_infreq : float
136
+ The threshold for infrequent levels. Default is 0.01.
137
+ name_infreq : str
138
+ The name to use for infrequent levels. Default is '-OTHER'.
139
+ """
140
+ print(" * Tool: correlation_funnel")
141
+ try:
142
+ import pytimetk as tk
143
+ except ImportError:
144
+ raise ImportError("Please install the 'pytimetk' package to use this tool. pip install pytimetk")
145
+ import pandas as pd
146
+ import base64
147
+ from io import BytesIO
148
+ import matplotlib.pyplot as plt
149
+ import json
150
+ import plotly.graph_objects as go
151
+ import plotly.io as pio
152
+ from typing import Union
153
+
154
+ # Convert the raw injected state into a DataFrame.
155
+ df = pd.DataFrame(data_raw)
156
+
157
+ # Apply the binarization method.
158
+ df_binarized = df.binarize(
159
+ n_bins=n_bins,
160
+ thresh_infreq=thresh_infreq,
161
+ name_infreq=name_infreq,
162
+ one_hot=True
163
+ )
164
+
165
+ # Determine the full target column name.
166
+ # Look for all columns that start with "target__"
167
+ matching_columns = [col for col in df_binarized.columns if col.startswith(f"{target}__")]
168
+ if not matching_columns:
169
+ # If no matching columns are found, warn and use the provided target as-is.
170
+ full_target = target
171
+ else:
172
+ # Determine the full target based on target_bin_index.
173
+ if isinstance(target_bin_index, str):
174
+ # Build the candidate column name
175
+ candidate = f"{target}__{target_bin_index}"
176
+ if candidate in matching_columns:
177
+ full_target = candidate
178
+ else:
179
+ # If no matching candidate is found, default to the last matching column.
180
+ full_target = matching_columns[-1]
181
+ else:
182
+ # target_bin_index is an integer.
183
+ try:
184
+ full_target = matching_columns[target_bin_index]
185
+ except IndexError:
186
+ # If index is out of bounds, use the last matching column.
187
+ full_target = matching_columns[-1]
188
+
189
+ # Compute correlation funnel using the full target column name.
190
+ df_correlated = df_binarized.correlate(target=full_target, method=corr_method)
191
+
192
+ # Attempt to generate a static plot.
193
+ try:
194
+ # Here we assume that your DataFrame has a method plot_correlation_funnel.
195
+ fig = df_correlated.plot_correlation_funnel(engine='plotnine', height=600)
196
+ buf = BytesIO()
197
+ # Use the appropriate save method for your figure object.
198
+ fig.save(buf, format="png")
199
+ plt.close()
200
+ buf.seek(0)
201
+ encoded = base64.b64encode(buf.getvalue()).decode("utf-8")
202
+ except Exception as e:
203
+ encoded = {"error": str(e)}
204
+
205
+ # Attempt to generate a Plotly plot.
206
+ try:
207
+ fig = df_correlated.plot_correlation_funnel(engine='plotly')
208
+ fig_json = pio.to_json(fig)
209
+ fig_dict = json.loads(fig_json)
210
+ except Exception as e:
211
+ fig_dict = {"error": str(e)}
212
+
213
+ content = (f"Correlation funnel computed using method '{corr_method}' for target level '{full_target}'. "
214
+ f"Base target was '{target}' with target_bin_index '{target_bin_index}'.")
215
+ artifact = {
216
+ "correlation_data": df_correlated.to_dict(orient="list"),
217
+ "plot_image": encoded,
218
+ "plotly_figure": fig_dict,
219
+ }
220
+ return content, artifact
221
+
222
+
223
+
224
+ @tool(response_format='content_and_artifact')
225
+ def generate_sweetviz_report(
226
+ data_raw: Annotated[dict, InjectedState("data_raw")],
227
+ target: str = None,
228
+ report_name: str = "sweetviz_report.html",
229
+ report_directory: str = os.path.join(os.getcwd(), "reports"),
230
+ open_browser: bool = True,
231
+ ) -> Tuple[str, Dict]:
232
+ """
233
+ Tool: generate_sweetviz_report
234
+ Description:
235
+ Make an Exploratory Data Analysis (EDA) report using the Sweetviz library.
236
+
237
+ Parameters:
238
+ -----------
239
+ data_raw : dict
240
+ The raw data injected as a dictionary (converted from a DataFrame).
241
+ target : str, optional
242
+ The target feature to analyze. Default is None.
243
+ report_name : str, optional
244
+ The file name to save the Sweetviz HTML report. Default is "sweetviz_report.html".
245
+ report_directory : str, optional
246
+ The directory where the report should be saved. Defaults to a 'reports' directory in the current working directory.
247
+ open_browser : bool, optional
248
+ Whether to open the report in a web browser. Default is True.
249
+
250
+ Returns:
251
+ --------
252
+ Tuple[str, Dict]:
253
+ content: A summary message describing the generated report.
254
+ artifact: A dictionary with the report file path and optionally the report's HTML content.
255
+ """
256
+ print(" * Tool: generate_sweetviz_report")
257
+ try:
258
+ import sweetviz as sv
259
+ except ImportError:
260
+ raise ImportError("Please install the 'sweetviz' package to use this tool. Run: pip install sweetviz")
261
+ import pandas as pd
262
+ # Convert injected raw data to a DataFrame.
263
+ df = pd.DataFrame(data_raw)
264
+
265
+ # Create the Sweetviz report.
266
+ report = sv.analyze(df, target_feat=target)
267
+
268
+ # Ensure the directory exists; default is os.getcwd()/reports
269
+ if not os.path.exists(report_directory):
270
+ os.makedirs(report_directory)
271
+
272
+ # Determine the full path for the report.
273
+ full_report_path = os.path.join(report_directory, report_name)
274
+
275
+ # Save the report to the specified HTML file.
276
+ report.show_html(
277
+ filepath=full_report_path,
278
+ open_browser=True,
279
+ )
280
+
281
+ # Optionally, read the HTML content (if desired to pass along in the artifact).
282
+ try:
283
+ with open(full_report_path, "r", encoding="utf-8") as f:
284
+ html_content = f.read()
285
+ except Exception:
286
+ html_content = None
287
+
288
+ content = f"Sweetviz EDA report generated and saved as '{os.path.abspath(full_report_path)}'."
289
+ artifact = {
290
+ "report_file": os.path.abspath(full_report_path),
291
+ "report_html": html_content,
292
+ }
293
+ return content, artifact
@@ -0,0 +1,27 @@
1
+
2
+
3
+ import webbrowser
4
+ import os
5
+
6
+ def open_html_file_in_browser(file_path: str):
7
+ """
8
+ Opens an HTML file in the default web browser.
9
+
10
+ Parameters:
11
+ -----------
12
+ file_path : str
13
+ The file path or URL of the HTML file to open.
14
+
15
+ Returns:
16
+ --------
17
+ None
18
+ """
19
+ # Check if the file exists if a local path is provided.
20
+ if os.path.isfile(file_path):
21
+ # Convert file path to a file URL
22
+ file_url = 'file://' + os.path.abspath(file_path)
23
+ else:
24
+ # If the file doesn't exist locally, assume it's a URL
25
+ file_url = file_path
26
+
27
+ webbrowser.open(file_url)
@@ -0,0 +1,46 @@
1
+ import base64
2
+ from io import BytesIO
3
+ import matplotlib.pyplot as plt
4
+ from PIL import Image
5
+
6
+ def matplotlib_from_base64(encoded: str, title: str = None, figsize: tuple = (8, 6)):
7
+ """
8
+ Convert a base64-encoded image to a matplotlib plot and display it.
9
+
10
+ Parameters:
11
+ -----------
12
+ encoded : str
13
+ The base64-encoded image string.
14
+ title : str, optional
15
+ A title for the plot. Default is None.
16
+ figsize : tuple, optional
17
+ Figure size (width, height) for the plot. Default is (8, 6).
18
+
19
+ Returns:
20
+ --------
21
+ fig, ax : tuple
22
+ The matplotlib figure and axes objects.
23
+ """
24
+ # Decode the base64 string to bytes
25
+ img_data = base64.b64decode(encoded)
26
+
27
+ # Load the bytes data into a BytesIO buffer
28
+ buf = BytesIO(img_data)
29
+
30
+ # Open the image using Pillow
31
+ img = Image.open(buf)
32
+
33
+ # Create a matplotlib figure and axis
34
+ fig, ax = plt.subplots(figsize=figsize)
35
+
36
+ # Display the image
37
+ ax.imshow(img)
38
+ ax.axis('off') # Hide the axis
39
+
40
+ if title:
41
+ ax.set_title(title)
42
+
43
+ # Show the plot
44
+ plt.show()
45
+
46
+ return fig, ax
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ai-data-science-team
3
- Version: 0.0.0.9010
3
+ Version: 0.0.0.9012
4
4
  Summary: Build and run an AI-powered data science team.
5
5
  Home-page: https://github.com/business-science/ai-data-science-team
6
6
  Author: Matt Dancho
@@ -31,9 +31,16 @@ Requires-Dist: psutil
31
31
  Provides-Extra: machine-learning
32
32
  Requires-Dist: h2o; extra == "machine-learning"
33
33
  Requires-Dist: mlflow; extra == "machine-learning"
34
+ Provides-Extra: data-science
35
+ Requires-Dist: pytimetk; extra == "data-science"
36
+ Requires-Dist: missingno; extra == "data-science"
37
+ Requires-Dist: sweetviz; extra == "data-science"
34
38
  Provides-Extra: all
35
39
  Requires-Dist: h2o; extra == "all"
36
40
  Requires-Dist: mlflow; extra == "all"
41
+ Requires-Dist: pytimetk; extra == "all"
42
+ Requires-Dist: missingno; extra == "all"
43
+ Requires-Dist: sweetviz; extra == "all"
37
44
  Dynamic: author
38
45
  Dynamic: author-email
39
46
  Dynamic: classifier
@@ -59,6 +66,8 @@ Dynamic: summary
59
66
  <a href="https://pypi.python.org/pypi/ai-data-science-team"><img src="https://img.shields.io/pypi/v/ai-data-science-team.svg?style=for-the-badge" alt="PyPI"></a>
60
67
  <a href="https://github.com/business-science/ai-data-science-team"><img src="https://img.shields.io/pypi/pyversions/ai-data-science-team.svg?style=for-the-badge" alt="versions"></a>
61
68
  <a href="https://github.com/business-science/ai-data-science-team/blob/main/LICENSE"><img src="https://img.shields.io/github/license/business-science/ai-data-science-team.svg?style=for-the-badge" alt="license"></a>
69
+ <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/business-science/ai-data-science-team?style=for-the-badge">
70
+
62
71
  </div>
63
72
 
64
73
 
@@ -93,8 +102,9 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
93
102
  - [Apps Available Now](#apps-available-now)
94
103
  - [🔥 Agentic Applications](#-agentic-applications)
95
104
  - [Agents Available Now](#agents-available-now)
105
+ - [Standard Agents](#standard-agents)
96
106
  - [🔥🔥 NEW! Machine Learning Agents](#-new-machine-learning-agents)
97
- - [Data Science Agents](#data-science-agents-1)
107
+ - [🔥 NEW! Data Science Agents](#-new-data-science-agents)
98
108
  - [Multi-Agents](#multi-agents)
99
109
  - [Agents Coming Soon](#agents-coming-soon)
100
110
  - [Disclaimer](#disclaimer)
@@ -122,7 +132,7 @@ If you're an aspiring data scientist who wants to learn how to build AI Agents a
122
132
 
123
133
  This project is a work in progress. New data science agents will be released soon.
124
134
 
125
- ![Data Science Team](/img/ai_data_science_team.jpg)
135
+ ![AI Data Science Team](/img/ai_data_science_team.jpg)
126
136
 
127
137
  ### NEW: Multi-Agents
128
138
 
@@ -146,18 +156,25 @@ This is a top secret project I'm working on. It's a multi-agent data science app
146
156
 
147
157
  ### Agents Available Now
148
158
 
159
+ #### Standard Agents
160
+
161
+ 1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_wrangling_agent.ipynb)
162
+ 2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_visualization_agent.ipynb)
163
+ 3. **🔥 Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_cleaning_agent.ipynb)
164
+ 4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/feature_engineering_agent.ipynb)
165
+ 5. **🔥 SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/sql_database_agent.ipynb)
166
+ 6. **🔥 Data Loader Tools Agent:** Loads data from various sources including CSV, Excel, Parquet, and Pickle files. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_loader_tools_agent.ipynb)
167
+
168
+
149
169
  #### 🔥🔥 NEW! Machine Learning Agents
150
170
 
151
171
  1. **🔥 H2O Machine Learning Agent:** Builds and logs 100's of high-performance machine learning models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
152
172
  2. **🔥 MLflow Tools Agent (MLOps):** This agent has 11+ tools for managing models, ML projects, and making production ML predictions with MLflow. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/mlflow_tools_agent.ipynb)
153
173
 
154
- #### Data Science Agents
174
+ #### 🔥 NEW! Data Science Agents
175
+
176
+ 1. **🔥🔥 EDA Tools Agent:** Performs automated exploratory data analysis (EDA) with EDA Reporting, Missing Data Analysis, Correlation Analysis, and more. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ds_agents/eda_tools_agent.ipynb)
155
177
 
156
- 1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_wrangling_agent.ipynb)
157
- 2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_visualization_agent.ipynb)
158
- 3. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_cleaning_agent.ipynb)
159
- 4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/feature_engineering_agent.ipynb)
160
- 5. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/sql_database_agent.ipynb)
161
178
 
162
179
  #### Multi-Agents
163
180