ai-data-science-team 0.0.0.9010__py3-none-any.whl → 0.0.0.9012__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +1 -0
- ai_data_science_team/agents/data_loader_tools_agent.py +210 -7
- ai_data_science_team/ds_agents/__init__.py +1 -0
- ai_data_science_team/ds_agents/eda_tools_agent.py +245 -0
- ai_data_science_team/ds_agents/modeling_tools_agent.py +0 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +2 -1
- ai_data_science_team/ml_agents/h2o_ml_tools_agent.py +0 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +32 -9
- ai_data_science_team/tools/data_loader.py +95 -25
- ai_data_science_team/tools/eda.py +293 -0
- ai_data_science_team/utils/html.py +27 -0
- ai_data_science_team/utils/matplotlib.py +46 -0
- {ai_data_science_team-0.0.0.9010.dist-info → ai_data_science_team-0.0.0.9012.dist-info}/METADATA +26 -9
- {ai_data_science_team-0.0.0.9010.dist-info → ai_data_science_team-0.0.0.9012.dist-info}/RECORD +18 -11
- {ai_data_science_team-0.0.0.9010.dist-info → ai_data_science_team-0.0.0.9012.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9010.dist-info → ai_data_science_team-0.0.0.9012.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9010.dist-info → ai_data_science_team-0.0.0.9012.dist-info}/top_level.txt +0 -0
ai_data_science_team/_version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.0.0.
|
1
|
+
__version__ = "0.0.0.9012"
|
@@ -3,3 +3,4 @@ from ai_data_science_team.agents.feature_engineering_agent import make_feature_e
|
|
3
3
|
from ai_data_science_team.agents.data_wrangling_agent import make_data_wrangling_agent, DataWranglingAgent
|
4
4
|
from ai_data_science_team.agents.sql_database_agent import make_sql_database_agent, SQLDatabaseAgent
|
5
5
|
from ai_data_science_team.agents.data_visualization_agent import make_data_visualization_agent, DataVisualizationAgent
|
6
|
+
from ai_data_science_team.agents.data_loader_tools_agent import make_data_loader_tools_agent, DataLoaderToolsAgent
|
@@ -37,11 +37,150 @@ tools = [
|
|
37
37
|
search_files_by_pattern,
|
38
38
|
]
|
39
39
|
|
40
|
+
class DataLoaderToolsAgent(BaseAgent):
|
41
|
+
"""
|
42
|
+
A Data Loader Agent that can interact with data loading tools and search for files in your file system.
|
43
|
+
|
44
|
+
Parameters:
|
45
|
+
----------
|
46
|
+
model : langchain.llms.base.LLM
|
47
|
+
The language model used to generate the tool calling agent.
|
48
|
+
react_agent_kwargs : dict
|
49
|
+
Additional keyword arguments to pass to the create_react_agent function.
|
50
|
+
invoke_react_agent_kwargs : dict
|
51
|
+
Additional keyword arguments to pass to the invoke method of the react agent.
|
52
|
+
|
53
|
+
Methods:
|
54
|
+
--------
|
55
|
+
update_params(**kwargs)
|
56
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
57
|
+
ainvoke_agent(user_instructions: str=None, **kwargs)
|
58
|
+
Runs the agent with the given user instructions asynchronously.
|
59
|
+
invoke_agent(user_instructions: str=None, **kwargs)
|
60
|
+
Runs the agent with the given user instructions.
|
61
|
+
get_internal_messages(markdown: bool=False)
|
62
|
+
Returns the internal messages from the agent's response.
|
63
|
+
get_artifacts(as_dataframe: bool=False)
|
64
|
+
Returns the MLflow artifacts from the agent's response.
|
65
|
+
get_ai_message(markdown: bool=False)
|
66
|
+
Returns the AI message from the agent's response.
|
67
|
+
|
68
|
+
"""
|
69
|
+
|
70
|
+
def __init__(
|
71
|
+
self,
|
72
|
+
model: Any,
|
73
|
+
create_react_agent_kwargs: Optional[Dict]={},
|
74
|
+
invoke_react_agent_kwargs: Optional[Dict]={},
|
75
|
+
):
|
76
|
+
self._params = {
|
77
|
+
"model": model,
|
78
|
+
"create_react_agent_kwargs": create_react_agent_kwargs,
|
79
|
+
"invoke_react_agent_kwargs": invoke_react_agent_kwargs,
|
80
|
+
}
|
81
|
+
self._compiled_graph = self._make_compiled_graph()
|
82
|
+
self.response = None
|
83
|
+
|
84
|
+
def _make_compiled_graph(self):
|
85
|
+
"""
|
86
|
+
Creates the compiled graph for the agent.
|
87
|
+
"""
|
88
|
+
self.response = None
|
89
|
+
return make_data_loader_tools_agent(**self._params)
|
90
|
+
|
91
|
+
|
92
|
+
def update_params(self, **kwargs):
|
93
|
+
"""
|
94
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
95
|
+
"""
|
96
|
+
for k, v in kwargs.items():
|
97
|
+
self._params[k] = v
|
98
|
+
self._compiled_graph = self._make_compiled_graph()
|
99
|
+
|
100
|
+
async def ainvoke_agent(
|
101
|
+
self,
|
102
|
+
user_instructions: str=None,
|
103
|
+
**kwargs
|
104
|
+
):
|
105
|
+
"""
|
106
|
+
Runs the agent with the given user instructions.
|
107
|
+
|
108
|
+
Parameters:
|
109
|
+
----------
|
110
|
+
user_instructions : str, optional
|
111
|
+
The user instructions to pass to the agent.
|
112
|
+
kwargs : dict, optional
|
113
|
+
Additional keyword arguments to pass to the agents ainvoke method.
|
114
|
+
|
115
|
+
"""
|
116
|
+
response = await self._compiled_graph.ainvoke(
|
117
|
+
{
|
118
|
+
"user_instructions": user_instructions,
|
119
|
+
},
|
120
|
+
**kwargs
|
121
|
+
)
|
122
|
+
self.response = response
|
123
|
+
return None
|
124
|
+
|
125
|
+
def invoke_agent(
|
126
|
+
self,
|
127
|
+
user_instructions: str=None,
|
128
|
+
**kwargs
|
129
|
+
):
|
130
|
+
"""
|
131
|
+
Runs the agent with the given user instructions.
|
132
|
+
|
133
|
+
Parameters:
|
134
|
+
----------
|
135
|
+
user_instructions : str, optional
|
136
|
+
The user instructions to pass to the agent.
|
137
|
+
kwargs : dict, optional
|
138
|
+
Additional keyword arguments to pass to the agents invoke method.
|
139
|
+
|
140
|
+
"""
|
141
|
+
response = self._compiled_graph.invoke(
|
142
|
+
{
|
143
|
+
"user_instructions": user_instructions,
|
144
|
+
},
|
145
|
+
**kwargs
|
146
|
+
)
|
147
|
+
self.response = response
|
148
|
+
return None
|
149
|
+
|
150
|
+
def get_internal_messages(self, markdown: bool=False):
|
151
|
+
"""
|
152
|
+
Returns the internal messages from the agent's response.
|
153
|
+
"""
|
154
|
+
pretty_print = "\n\n".join([f"### {msg.type.upper()}\n\nID: {msg.id}\n\nContent:\n\n{msg.content}" for msg in self.response["internal_messages"]])
|
155
|
+
if markdown:
|
156
|
+
return Markdown(pretty_print)
|
157
|
+
else:
|
158
|
+
return self.response["internal_messages"]
|
159
|
+
|
160
|
+
def get_artifacts(self, as_dataframe: bool=False):
|
161
|
+
"""
|
162
|
+
Returns the MLflow artifacts from the agent's response.
|
163
|
+
"""
|
164
|
+
if as_dataframe:
|
165
|
+
return pd.DataFrame(self.response["data_loader_artifacts"])
|
166
|
+
else:
|
167
|
+
return self.response["data_loader_artifacts"]
|
168
|
+
|
169
|
+
def get_ai_message(self, markdown: bool=False):
|
170
|
+
"""
|
171
|
+
Returns the AI message from the agent's response.
|
172
|
+
"""
|
173
|
+
if markdown:
|
174
|
+
return Markdown(self.response["messages"][0].content)
|
175
|
+
else:
|
176
|
+
return self.response["messages"][0].content
|
40
177
|
|
178
|
+
|
41
179
|
|
42
180
|
def make_data_loader_tools_agent(
|
43
181
|
model: Any,
|
44
|
-
|
182
|
+
create_react_agent_kwargs: Optional[Dict]={},
|
183
|
+
invoke_react_agent_kwargs: Optional[Dict]={},
|
45
184
|
):
|
46
185
|
"""
|
47
186
|
Creates a Data Loader Agent that can interact with data loading tools.
|
@@ -50,20 +189,84 @@ def make_data_loader_tools_agent(
|
|
50
189
|
----------
|
51
190
|
model : langchain.llms.base.LLM
|
52
191
|
The language model used to generate the tool calling agent.
|
53
|
-
|
54
|
-
|
192
|
+
react_agent_kwargs : dict
|
193
|
+
Additional keyword arguments to pass to the create_react_agent function.
|
194
|
+
invoke_react_agent_kwargs : dict
|
195
|
+
Additional keyword arguments to pass to the invoke method of the react agent.
|
55
196
|
|
56
197
|
Returns:
|
57
198
|
--------
|
58
|
-
|
199
|
+
app : langchain.graphs.CompiledStateGraph
|
59
200
|
An agent that can interact with data loading tools.
|
60
201
|
"""
|
61
202
|
|
62
203
|
class GraphState(AgentState):
|
63
204
|
internal_messages: Annotated[Sequence[BaseMessage], operator.add]
|
64
|
-
directory: str
|
65
205
|
user_instructions: str
|
66
|
-
|
206
|
+
data_loader_artifacts: dict
|
207
|
+
|
208
|
+
def data_loader_agent(state):
|
209
|
+
|
210
|
+
print(format_agent_name(AGENT_NAME))
|
211
|
+
print(" ")
|
212
|
+
|
213
|
+
print(" * RUN REACT TOOL-CALLING AGENT")
|
214
|
+
|
215
|
+
tool_node = ToolNode(
|
216
|
+
tools=tools
|
217
|
+
)
|
218
|
+
|
219
|
+
data_loader_agent = create_react_agent(
|
220
|
+
model,
|
221
|
+
tools=tool_node,
|
222
|
+
state_schema=GraphState,
|
223
|
+
**create_react_agent_kwargs,
|
224
|
+
)
|
225
|
+
|
226
|
+
response = data_loader_agent.invoke(
|
227
|
+
{
|
228
|
+
"messages": [("user", state["user_instructions"])],
|
229
|
+
},
|
230
|
+
invoke_react_agent_kwargs,
|
231
|
+
)
|
232
|
+
|
233
|
+
print(" * POST-PROCESS RESULTS")
|
234
|
+
|
235
|
+
internal_messages = response['messages']
|
236
|
+
|
237
|
+
# Ensure there is at least one AI message
|
238
|
+
if not internal_messages:
|
239
|
+
return {
|
240
|
+
"internal_messages": [],
|
241
|
+
"mlflow_artifacts": None,
|
242
|
+
}
|
243
|
+
|
244
|
+
# Get the last AI message
|
245
|
+
last_ai_message = AIMessage(internal_messages[-1].content, role = AGENT_NAME)
|
246
|
+
|
247
|
+
# Get the last tool artifact safely
|
248
|
+
last_tool_artifact = None
|
249
|
+
if len(internal_messages) > 1:
|
250
|
+
last_message = internal_messages[-2] # Get second-to-last message
|
251
|
+
if hasattr(last_message, "artifact"): # Check if it has an "artifact"
|
252
|
+
last_tool_artifact = last_message.artifact
|
253
|
+
elif isinstance(last_message, dict) and "artifact" in last_message:
|
254
|
+
last_tool_artifact = last_message["artifact"]
|
255
|
+
|
256
|
+
return {
|
257
|
+
"messages": [last_ai_message],
|
258
|
+
"internal_messages": internal_messages,
|
259
|
+
"data_loader_artifacts": last_tool_artifact,
|
260
|
+
}
|
261
|
+
|
262
|
+
workflow = StateGraph(GraphState)
|
67
263
|
|
68
|
-
|
264
|
+
workflow.add_node("data_loader_agent", data_loader_agent)
|
265
|
+
|
266
|
+
workflow.add_edge(START, "data_loader_agent")
|
267
|
+
workflow.add_edge("data_loader_agent", END)
|
268
|
+
|
269
|
+
app = workflow.compile()
|
270
|
+
|
271
|
+
return app
|
69
272
|
|
@@ -0,0 +1 @@
|
|
1
|
+
from ai_data_science_team.ds_agents.eda_tools_agent import EDAToolsAgent, make_eda_tools_agent
|
@@ -0,0 +1,245 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
from typing import Any, Optional, Annotated, Sequence, List, Dict, Tuple
|
4
|
+
import operator
|
5
|
+
import pandas as pd
|
6
|
+
import os
|
7
|
+
from io import StringIO, BytesIO
|
8
|
+
import base64
|
9
|
+
import matplotlib.pyplot as plt
|
10
|
+
|
11
|
+
from IPython.display import Markdown
|
12
|
+
|
13
|
+
from langchain_core.messages import BaseMessage, AIMessage
|
14
|
+
from langgraph.prebuilt import create_react_agent, ToolNode
|
15
|
+
from langgraph.prebuilt.chat_agent_executor import AgentState
|
16
|
+
from langgraph.graph import START, END, StateGraph
|
17
|
+
|
18
|
+
from ai_data_science_team.templates import BaseAgent
|
19
|
+
from ai_data_science_team.utils.regex import format_agent_name
|
20
|
+
|
21
|
+
from ai_data_science_team.tools.eda import (
|
22
|
+
describe_dataset,
|
23
|
+
visualize_missing,
|
24
|
+
correlation_funnel,
|
25
|
+
generate_sweetviz_report,
|
26
|
+
)
|
27
|
+
|
28
|
+
|
29
|
+
AGENT_NAME = "exploratory_data_analyst_agent"
|
30
|
+
|
31
|
+
# Updated tool list for EDA
|
32
|
+
EDA_TOOLS = [
|
33
|
+
describe_dataset,
|
34
|
+
visualize_missing,
|
35
|
+
correlation_funnel,
|
36
|
+
generate_sweetviz_report,
|
37
|
+
]
|
38
|
+
|
39
|
+
class EDAToolsAgent(BaseAgent):
|
40
|
+
"""
|
41
|
+
An Exploratory Data Analysis Tools Agent that interacts with EDA tools to generate summary statistics,
|
42
|
+
missing data visualizations, correlation funnels, EDA reports, etc.
|
43
|
+
|
44
|
+
Parameters:
|
45
|
+
----------
|
46
|
+
model : langchain.llms.base.LLM
|
47
|
+
The language model for generating the tool-calling agent.
|
48
|
+
create_react_agent_kwargs : dict
|
49
|
+
Additional kwargs for create_react_agent.
|
50
|
+
invoke_react_agent_kwargs : dict
|
51
|
+
Additional kwargs for agent invocation.
|
52
|
+
"""
|
53
|
+
|
54
|
+
def __init__(
|
55
|
+
self,
|
56
|
+
model: Any,
|
57
|
+
create_react_agent_kwargs: Optional[Dict] = {},
|
58
|
+
invoke_react_agent_kwargs: Optional[Dict] = {},
|
59
|
+
):
|
60
|
+
self._params = {
|
61
|
+
"model": model,
|
62
|
+
"create_react_agent_kwargs": create_react_agent_kwargs,
|
63
|
+
"invoke_react_agent_kwargs": invoke_react_agent_kwargs,
|
64
|
+
}
|
65
|
+
self._compiled_graph = self._make_compiled_graph()
|
66
|
+
self.response = None
|
67
|
+
|
68
|
+
def _make_compiled_graph(self):
|
69
|
+
"""
|
70
|
+
Creates the compiled state graph for the EDA agent.
|
71
|
+
"""
|
72
|
+
self.response = None
|
73
|
+
return make_eda_tools_agent(**self._params)
|
74
|
+
|
75
|
+
def update_params(self, **kwargs):
|
76
|
+
"""
|
77
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
78
|
+
"""
|
79
|
+
for k, v in kwargs.items():
|
80
|
+
self._params[k] = v
|
81
|
+
self._compiled_graph = self._make_compiled_graph()
|
82
|
+
|
83
|
+
async def ainvoke_agent(
|
84
|
+
self,
|
85
|
+
user_instructions: str = None,
|
86
|
+
data_raw: pd.DataFrame = None,
|
87
|
+
**kwargs
|
88
|
+
):
|
89
|
+
"""
|
90
|
+
Asynchronously runs the agent with user instructions and data.
|
91
|
+
|
92
|
+
Parameters:
|
93
|
+
----------
|
94
|
+
user_instructions : str, optional
|
95
|
+
The instructions for the agent.
|
96
|
+
data_raw : pd.DataFrame, optional
|
97
|
+
The input data as a DataFrame.
|
98
|
+
"""
|
99
|
+
response = await self._compiled_graph.ainvoke(
|
100
|
+
{
|
101
|
+
"user_instructions": user_instructions,
|
102
|
+
"data_raw": data_raw.to_dict() if data_raw is not None else None,
|
103
|
+
},
|
104
|
+
**kwargs
|
105
|
+
)
|
106
|
+
self.response = response
|
107
|
+
return None
|
108
|
+
|
109
|
+
def invoke_agent(
|
110
|
+
self,
|
111
|
+
user_instructions: str = None,
|
112
|
+
data_raw: pd.DataFrame = None,
|
113
|
+
**kwargs
|
114
|
+
):
|
115
|
+
"""
|
116
|
+
Synchronously runs the agent with user instructions and data.
|
117
|
+
|
118
|
+
Parameters:
|
119
|
+
----------
|
120
|
+
user_instructions : str, optional
|
121
|
+
The instructions for the agent.
|
122
|
+
data_raw : pd.DataFrame, optional
|
123
|
+
The input data as a DataFrame.
|
124
|
+
"""
|
125
|
+
response = self._compiled_graph.invoke(
|
126
|
+
{
|
127
|
+
"user_instructions": user_instructions,
|
128
|
+
"data_raw": data_raw.to_dict() if data_raw is not None else None,
|
129
|
+
},
|
130
|
+
**kwargs
|
131
|
+
)
|
132
|
+
self.response = response
|
133
|
+
return None
|
134
|
+
|
135
|
+
def get_internal_messages(self, markdown: bool = False):
|
136
|
+
"""
|
137
|
+
Returns internal messages from the agent response.
|
138
|
+
"""
|
139
|
+
pretty_print = "\n\n".join(
|
140
|
+
[f"### {msg.type.upper()}\n\nID: {msg.id}\n\nContent:\n\n{msg.content}"
|
141
|
+
for msg in self.response["internal_messages"]]
|
142
|
+
)
|
143
|
+
if markdown:
|
144
|
+
return Markdown(pretty_print)
|
145
|
+
else:
|
146
|
+
return self.response["internal_messages"]
|
147
|
+
|
148
|
+
def get_artifacts(self, as_dataframe: bool = False):
|
149
|
+
"""
|
150
|
+
Returns the EDA artifacts from the agent response.
|
151
|
+
"""
|
152
|
+
if as_dataframe:
|
153
|
+
return pd.DataFrame(self.response["eda_artifacts"])
|
154
|
+
else:
|
155
|
+
return self.response["eda_artifacts"]
|
156
|
+
|
157
|
+
def get_ai_message(self, markdown: bool = False):
|
158
|
+
"""
|
159
|
+
Returns the AI message from the agent response.
|
160
|
+
"""
|
161
|
+
if markdown:
|
162
|
+
return Markdown(self.response["messages"][0].content)
|
163
|
+
else:
|
164
|
+
return self.response["messages"][0].content
|
165
|
+
|
166
|
+
def make_eda_tools_agent(
|
167
|
+
model: Any,
|
168
|
+
create_react_agent_kwargs: Optional[Dict] = {},
|
169
|
+
invoke_react_agent_kwargs: Optional[Dict] = {},
|
170
|
+
):
|
171
|
+
"""
|
172
|
+
Creates an Exploratory Data Analyst Agent that can interact with EDA tools.
|
173
|
+
|
174
|
+
Parameters:
|
175
|
+
----------
|
176
|
+
model : Any
|
177
|
+
The language model used for tool-calling.
|
178
|
+
create_react_agent_kwargs : dict
|
179
|
+
Additional kwargs for create_react_agent.
|
180
|
+
invoke_react_agent_kwargs : dict
|
181
|
+
Additional kwargs for agent invocation.
|
182
|
+
|
183
|
+
Returns:
|
184
|
+
-------
|
185
|
+
app : langgraph.graph.CompiledStateGraph
|
186
|
+
The compiled state graph for the EDA agent.
|
187
|
+
"""
|
188
|
+
|
189
|
+
class GraphState(AgentState):
|
190
|
+
internal_messages: Annotated[Sequence[BaseMessage], operator.add]
|
191
|
+
user_instructions: str
|
192
|
+
data_raw: dict
|
193
|
+
eda_artifacts: dict
|
194
|
+
|
195
|
+
def exploratory_agent(state):
|
196
|
+
print(format_agent_name(AGENT_NAME))
|
197
|
+
print(" * RUN REACT TOOL-CALLING AGENT FOR EDA")
|
198
|
+
|
199
|
+
tool_node = ToolNode(
|
200
|
+
tools=EDA_TOOLS
|
201
|
+
)
|
202
|
+
|
203
|
+
eda_agent = create_react_agent(
|
204
|
+
model,
|
205
|
+
tools=tool_node,
|
206
|
+
state_schema=GraphState,
|
207
|
+
**create_react_agent_kwargs,
|
208
|
+
)
|
209
|
+
|
210
|
+
response = eda_agent.invoke(
|
211
|
+
{
|
212
|
+
"messages": [("user", state["user_instructions"])],
|
213
|
+
"data_raw": state["data_raw"],
|
214
|
+
},
|
215
|
+
invoke_react_agent_kwargs,
|
216
|
+
)
|
217
|
+
|
218
|
+
print(" * POST-PROCESSING EDA RESULTS")
|
219
|
+
|
220
|
+
internal_messages = response['messages']
|
221
|
+
if not internal_messages:
|
222
|
+
return {"internal_messages": [], "eda_artifacts": None}
|
223
|
+
|
224
|
+
last_ai_message = AIMessage(internal_messages[-1].content, role=AGENT_NAME)
|
225
|
+
last_tool_artifact = None
|
226
|
+
if len(internal_messages) > 1:
|
227
|
+
last_message = internal_messages[-2]
|
228
|
+
if hasattr(last_message, "artifact"):
|
229
|
+
last_tool_artifact = last_message.artifact
|
230
|
+
elif isinstance(last_message, dict) and "artifact" in last_message:
|
231
|
+
last_tool_artifact = last_message["artifact"]
|
232
|
+
|
233
|
+
return {
|
234
|
+
"messages": [last_ai_message],
|
235
|
+
"internal_messages": internal_messages,
|
236
|
+
"eda_artifacts": last_tool_artifact,
|
237
|
+
}
|
238
|
+
|
239
|
+
workflow = StateGraph(GraphState)
|
240
|
+
workflow.add_node("exploratory_agent", exploratory_agent)
|
241
|
+
workflow.add_edge(START, "exploratory_agent")
|
242
|
+
workflow.add_edge("exploratory_agent", END)
|
243
|
+
|
244
|
+
app = workflow.compile()
|
245
|
+
return app
|
File without changes
|
@@ -506,6 +506,7 @@ def make_h2o_ml_agent(
|
|
506
506
|
while remaining flexible to user instructions.
|
507
507
|
- Return a dict with keys: leaderboard, best_model_id, model_path, and model_results.
|
508
508
|
- If enable_mlfow is True, log the top metrics and save the model as an artifact. (See example function)
|
509
|
+
- IMPORTANT: if enable_mlflow is True, make sure to set enable_mlflow to True in the function definition.
|
509
510
|
|
510
511
|
Initial User Instructions (Disregard any instructions that are unrelated to modeling):
|
511
512
|
{user_instructions}
|
@@ -533,7 +534,7 @@ def make_h2o_ml_agent(
|
|
533
534
|
sort_metric: str ,
|
534
535
|
model_directory: Optional[str] = None,
|
535
536
|
log_path: Optional[str] = None,
|
536
|
-
enable_mlflow: bool,
|
537
|
+
enable_mlflow: bool, # If use has specified to enable MLflow, make sure to make this True
|
537
538
|
mlflow_tracking_uri: Optional[str],
|
538
539
|
mlflow_experiment_name: str,
|
539
540
|
mlflow_run_name: str,
|
File without changes
|
@@ -1,5 +1,5 @@
|
|
1
1
|
|
2
|
-
from typing import Any, Optional, Annotated, Sequence
|
2
|
+
from typing import Any, Optional, Annotated, Sequence, Dict
|
3
3
|
import operator
|
4
4
|
|
5
5
|
import pandas as pd
|
@@ -63,8 +63,10 @@ class MLflowToolsAgent(BaseAgent):
|
|
63
63
|
The tracking URI for MLflow. Defaults to None.
|
64
64
|
mlflow_registry_uri : str, optional
|
65
65
|
The registry URI for MLflow. Defaults to None.
|
66
|
-
|
67
|
-
Additional keyword arguments to pass to the
|
66
|
+
react_agent_kwargs : dict
|
67
|
+
Additional keyword arguments to pass to the create_react_agent function.
|
68
|
+
invoke_react_agent_kwargs : dict
|
69
|
+
Additional keyword arguments to pass to the invoke method of the react agent.
|
68
70
|
|
69
71
|
Methods:
|
70
72
|
--------
|
@@ -114,13 +116,15 @@ class MLflowToolsAgent(BaseAgent):
|
|
114
116
|
model: Any,
|
115
117
|
mlflow_tracking_uri: Optional[str]=None,
|
116
118
|
mlflow_registry_uri: Optional[str]=None,
|
117
|
-
|
119
|
+
create_react_agent_kwargs: Optional[Dict]={},
|
120
|
+
invoke_react_agent_kwargs: Optional[Dict]={},
|
118
121
|
):
|
119
122
|
self._params = {
|
120
123
|
"model": model,
|
121
124
|
"mlflow_tracking_uri": mlflow_tracking_uri,
|
122
125
|
"mlflow_registry_uri": mlflow_registry_uri,
|
123
|
-
|
126
|
+
"create_react_agent_kwargs": create_react_agent_kwargs,
|
127
|
+
"invoke_react_agent_kwargs": invoke_react_agent_kwargs,
|
124
128
|
}
|
125
129
|
self._compiled_graph = self._make_compiled_graph()
|
126
130
|
self.response = None
|
@@ -185,8 +189,6 @@ class MLflowToolsAgent(BaseAgent):
|
|
185
189
|
The user instructions to pass to the agent.
|
186
190
|
data_raw : pd.DataFrame, optional
|
187
191
|
The raw data to pass to the agent. Used for prediction and tool calls where data is required.
|
188
|
-
kwargs : dict, optional
|
189
|
-
Additional keyword arguments to pass to the agents invoke method.
|
190
192
|
|
191
193
|
"""
|
192
194
|
response = self._compiled_graph.invoke(
|
@@ -234,10 +236,30 @@ def make_mlflow_tools_agent(
|
|
234
236
|
model: Any,
|
235
237
|
mlflow_tracking_uri: str=None,
|
236
238
|
mlflow_registry_uri: str=None,
|
237
|
-
|
239
|
+
create_react_agent_kwargs: Optional[Dict]={},
|
240
|
+
invoke_react_agent_kwargs: Optional[Dict]={},
|
238
241
|
):
|
239
242
|
"""
|
240
243
|
MLflow Tool Calling Agent
|
244
|
+
|
245
|
+
Parameters:
|
246
|
+
----------
|
247
|
+
model : Any
|
248
|
+
The language model used to generate the agent.
|
249
|
+
mlflow_tracking_uri : str, optional
|
250
|
+
The tracking URI for MLflow. Defaults to None.
|
251
|
+
mlflow_registry_uri : str, optional
|
252
|
+
The registry URI for MLflow. Defaults to None.
|
253
|
+
create_react_agent_kwargs : dict, optional
|
254
|
+
Additional keyword arguments to pass to the agent's create_react_agent method.
|
255
|
+
invoke_react_agent_kwargs : dict, optional
|
256
|
+
Additional keyword arguments to pass to the agent's invoke method.
|
257
|
+
|
258
|
+
Returns
|
259
|
+
-------
|
260
|
+
app : langchain.graphs.CompiledStateGraph
|
261
|
+
A compiled state graph for the MLflow Tool Calling Agent.
|
262
|
+
|
241
263
|
"""
|
242
264
|
|
243
265
|
try:
|
@@ -274,7 +296,7 @@ def make_mlflow_tools_agent(
|
|
274
296
|
model,
|
275
297
|
tools=tool_node,
|
276
298
|
state_schema=GraphState,
|
277
|
-
**
|
299
|
+
**create_react_agent_kwargs,
|
278
300
|
)
|
279
301
|
|
280
302
|
response = mlflow_agent.invoke(
|
@@ -282,6 +304,7 @@ def make_mlflow_tools_agent(
|
|
282
304
|
"messages": [("user", state["user_instructions"])],
|
283
305
|
"data_raw": state["data_raw"],
|
284
306
|
},
|
307
|
+
invoke_react_agent_kwargs,
|
285
308
|
)
|
286
309
|
|
287
310
|
print(" * POST-PROCESS RESULTS")
|