ai-data-science-team 0.0.0.9009__py3-none-any.whl → 0.0.0.9011__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +1 -0
- ai_data_science_team/agents/data_cleaning_agent.py +6 -6
- ai_data_science_team/agents/data_loader_tools_agent.py +272 -0
- ai_data_science_team/agents/data_visualization_agent.py +6 -7
- ai_data_science_team/agents/data_wrangling_agent.py +6 -6
- ai_data_science_team/agents/feature_engineering_agent.py +6 -6
- ai_data_science_team/agents/sql_database_agent.py +6 -6
- ai_data_science_team/ml_agents/__init__.py +1 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +206 -385
- ai_data_science_team/ml_agents/h2o_ml_tools_agent.py +0 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +350 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +3 -4
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/agent_templates.py +6 -6
- ai_data_science_team/tools/data_loader.py +448 -0
- ai_data_science_team/tools/dataframe.py +139 -0
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/{metadata.py → sql.py} +1 -137
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/METADATA +40 -19
- ai_data_science_team-0.0.0.9011.dist-info/RECORD +36 -0
- ai_data_science_team-0.0.0.9009.dist-info/RECORD +0 -28
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- /ai_data_science_team/{tools → utils}/regex.py +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/top_level.txt +0 -0
@@ -1,143 +1,7 @@
|
|
1
|
-
|
1
|
+
|
2
2
|
import pandas as pd
|
3
3
|
import sqlalchemy as sql
|
4
4
|
from sqlalchemy import inspect
|
5
|
-
from typing import Union, List, Dict
|
6
|
-
|
7
|
-
def get_dataframe_summary(
|
8
|
-
dataframes: Union[pd.DataFrame, List[pd.DataFrame], Dict[str, pd.DataFrame]],
|
9
|
-
n_sample: int = 30,
|
10
|
-
skip_stats: bool = False,
|
11
|
-
) -> List[str]:
|
12
|
-
"""
|
13
|
-
Generate a summary for one or more DataFrames. Accepts a single DataFrame, a list of DataFrames,
|
14
|
-
or a dictionary mapping names to DataFrames.
|
15
|
-
|
16
|
-
Parameters
|
17
|
-
----------
|
18
|
-
dataframes : pandas.DataFrame or list of pandas.DataFrame or dict of (str -> pandas.DataFrame)
|
19
|
-
- Single DataFrame: produce a single summary (returned within a one-element list).
|
20
|
-
- List of DataFrames: produce a summary for each DataFrame, using index-based names.
|
21
|
-
- Dictionary of DataFrames: produce a summary for each DataFrame, using dictionary keys as names.
|
22
|
-
n_sample : int, default 30
|
23
|
-
Number of rows to display in the "Data (first 30 rows)" section.
|
24
|
-
skip_stats : bool, default False
|
25
|
-
If True, skip the descriptive statistics and DataFrame info sections.
|
26
|
-
|
27
|
-
Example:
|
28
|
-
--------
|
29
|
-
``` python
|
30
|
-
import pandas as pd
|
31
|
-
from sklearn.datasets import load_iris
|
32
|
-
data = load_iris(as_frame=True)
|
33
|
-
dataframes = {
|
34
|
-
"iris": data.frame,
|
35
|
-
"iris_target": data.target,
|
36
|
-
}
|
37
|
-
summaries = get_dataframe_summary(dataframes)
|
38
|
-
print(summaries[0])
|
39
|
-
```
|
40
|
-
|
41
|
-
Returns
|
42
|
-
-------
|
43
|
-
list of str
|
44
|
-
A list of summaries, one for each provided DataFrame. Each summary includes:
|
45
|
-
- Shape of the DataFrame (rows, columns)
|
46
|
-
- Column data types
|
47
|
-
- Missing value percentage
|
48
|
-
- Unique value counts
|
49
|
-
- First 30 rows
|
50
|
-
- Descriptive statistics
|
51
|
-
- DataFrame info output
|
52
|
-
"""
|
53
|
-
|
54
|
-
summaries = []
|
55
|
-
|
56
|
-
# --- Dictionary Case ---
|
57
|
-
if isinstance(dataframes, dict):
|
58
|
-
for dataset_name, df in dataframes.items():
|
59
|
-
summaries.append(_summarize_dataframe(df, dataset_name, n_sample, skip_stats))
|
60
|
-
|
61
|
-
# --- Single DataFrame Case ---
|
62
|
-
elif isinstance(dataframes, pd.DataFrame):
|
63
|
-
summaries.append(_summarize_dataframe(dataframes, "Single_Dataset", n_sample, skip_stats))
|
64
|
-
|
65
|
-
# --- List of DataFrames Case ---
|
66
|
-
elif isinstance(dataframes, list):
|
67
|
-
for idx, df in enumerate(dataframes):
|
68
|
-
dataset_name = f"Dataset_{idx}"
|
69
|
-
summaries.append(_summarize_dataframe(df, dataset_name, n_sample, skip_stats))
|
70
|
-
|
71
|
-
else:
|
72
|
-
raise TypeError(
|
73
|
-
"Input must be a single DataFrame, a list of DataFrames, or a dictionary of DataFrames."
|
74
|
-
)
|
75
|
-
|
76
|
-
return summaries
|
77
|
-
|
78
|
-
|
79
|
-
def _summarize_dataframe(df: pd.DataFrame, dataset_name: str, n_sample=30, skip_stats=False) -> str:
|
80
|
-
"""Generate a summary string for a single DataFrame."""
|
81
|
-
# 1. Convert dictionary-type cells to strings
|
82
|
-
# This prevents unhashable dict errors during df.nunique().
|
83
|
-
df = df.apply(lambda col: col.map(lambda x: str(x) if isinstance(x, dict) else x))
|
84
|
-
|
85
|
-
# 2. Capture df.info() output
|
86
|
-
buffer = io.StringIO()
|
87
|
-
df.info(buf=buffer)
|
88
|
-
info_text = buffer.getvalue()
|
89
|
-
|
90
|
-
# 3. Calculate missing value stats
|
91
|
-
missing_stats = (df.isna().sum() / len(df) * 100).sort_values(ascending=False)
|
92
|
-
missing_summary = "\n".join([f"{col}: {val:.2f}%" for col, val in missing_stats.items()])
|
93
|
-
|
94
|
-
# 4. Get column data types
|
95
|
-
column_types = "\n".join([f"{col}: {dtype}" for col, dtype in df.dtypes.items()])
|
96
|
-
|
97
|
-
# 5. Get unique value counts
|
98
|
-
unique_counts = df.nunique() # Will no longer fail on unhashable dict
|
99
|
-
unique_counts_summary = "\n".join([f"{col}: {count}" for col, count in unique_counts.items()])
|
100
|
-
|
101
|
-
# 6. Generate the summary text
|
102
|
-
if not skip_stats:
|
103
|
-
summary_text = f"""
|
104
|
-
Dataset Name: {dataset_name}
|
105
|
-
----------------------------
|
106
|
-
Shape: {df.shape[0]} rows x {df.shape[1]} columns
|
107
|
-
|
108
|
-
Column Data Types:
|
109
|
-
{column_types}
|
110
|
-
|
111
|
-
Missing Value Percentage:
|
112
|
-
{missing_summary}
|
113
|
-
|
114
|
-
Unique Value Counts:
|
115
|
-
{unique_counts_summary}
|
116
|
-
|
117
|
-
Data (first {n_sample} rows):
|
118
|
-
{df.head(n_sample).to_string()}
|
119
|
-
|
120
|
-
Data Description:
|
121
|
-
{df.describe().to_string()}
|
122
|
-
|
123
|
-
Data Info:
|
124
|
-
{info_text}
|
125
|
-
"""
|
126
|
-
else:
|
127
|
-
summary_text = f"""
|
128
|
-
Dataset Name: {dataset_name}
|
129
|
-
----------------------------
|
130
|
-
Shape: {df.shape[0]} rows x {df.shape[1]} columns
|
131
|
-
|
132
|
-
Column Data Types:
|
133
|
-
{column_types}
|
134
|
-
|
135
|
-
Data (first {n_sample} rows):
|
136
|
-
{df.head(n_sample).to_string()}
|
137
|
-
"""
|
138
|
-
|
139
|
-
return summary_text.strip()
|
140
|
-
|
141
5
|
|
142
6
|
|
143
7
|
def get_database_metadata(connection, n_samples=10) -> dict:
|
{ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: ai-data-science-team
|
3
|
-
Version: 0.0.0.
|
3
|
+
Version: 0.0.0.9011
|
4
4
|
Summary: Build and run an AI-powered data science team.
|
5
5
|
Home-page: https://github.com/business-science/ai-data-science-team
|
6
6
|
Author: Matt Dancho
|
@@ -27,10 +27,13 @@ Requires-Dist: plotly
|
|
27
27
|
Requires-Dist: streamlit
|
28
28
|
Requires-Dist: scikit-learn
|
29
29
|
Requires-Dist: xgboost
|
30
|
-
|
31
|
-
|
30
|
+
Requires-Dist: psutil
|
31
|
+
Provides-Extra: machine-learning
|
32
|
+
Requires-Dist: h2o; extra == "machine-learning"
|
33
|
+
Requires-Dist: mlflow; extra == "machine-learning"
|
32
34
|
Provides-Extra: all
|
33
35
|
Requires-Dist: h2o; extra == "all"
|
36
|
+
Requires-Dist: mlflow; extra == "all"
|
34
37
|
Dynamic: author
|
35
38
|
Dynamic: author-email
|
36
39
|
Dynamic: classifier
|
@@ -45,7 +48,7 @@ Dynamic: summary
|
|
45
48
|
<div align="center">
|
46
49
|
<a href="https://github.com/business-science/ai-data-science-team">
|
47
50
|
<picture>
|
48
|
-
<img src="/img/
|
51
|
+
<img src="/img/ai_data_science_team_logo_small.jpg" alt="AI Data Science Team" width="400">
|
49
52
|
</picture>
|
50
53
|
</a>
|
51
54
|
</div>
|
@@ -86,9 +89,12 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
86
89
|
- [Generative AI for Data Scientists Workshop](#generative-ai-for-data-scientists-workshop)
|
87
90
|
- [Data Science Agents](#data-science-agents)
|
88
91
|
- [NEW: Multi-Agents](#new-multi-agents)
|
89
|
-
- [
|
92
|
+
- [Data Science Apps](#data-science-apps)
|
93
|
+
- [Apps Available Now](#apps-available-now)
|
94
|
+
- [🔥 Agentic Applications](#-agentic-applications)
|
90
95
|
- [Agents Available Now](#agents-available-now)
|
91
|
-
- [
|
96
|
+
- [Agents](#agents)
|
97
|
+
- [🔥🔥 NEW! Machine Learning Agents](#-new-machine-learning-agents)
|
92
98
|
- [Multi-Agents](#multi-agents)
|
93
99
|
- [Agents Coming Soon](#agents-coming-soon)
|
94
100
|
- [Disclaimer](#disclaimer)
|
@@ -116,7 +122,7 @@ If you're an aspiring data scientist who wants to learn how to build AI Agents a
|
|
116
122
|
|
117
123
|
This project is a work in progress. New data science agents will be released soon.
|
118
124
|
|
119
|
-

|
120
126
|
|
121
127
|
### NEW: Multi-Agents
|
122
128
|
|
@@ -124,32 +130,47 @@ This is the internals of the SQL Data Analyst Agent that connects to SQL databas
|
|
124
130
|
|
125
131
|

|
126
132
|
|
127
|
-
###
|
133
|
+
### Data Science Apps
|
128
134
|
|
129
135
|
This is a top secret project I'm working on. It's a multi-agent data science app that performs time series forecasting.
|
130
136
|
|
131
|
-

|
137
|
+

|
138
|
+
|
139
|
+
### Apps Available Now
|
140
|
+
|
141
|
+
[See all available apps here](/apps)
|
142
|
+
|
143
|
+
#### 🔥 Agentic Applications
|
144
|
+
|
145
|
+
1. **SQL Database Agent App:** Connects any SQL Database, generates SQL queries from natural language, and returns data as a downloadable table. [See Application](/apps/sql-database-agent-app/)
|
132
146
|
|
133
147
|
### Agents Available Now
|
134
148
|
|
135
|
-
####
|
149
|
+
#### Agents
|
150
|
+
|
151
|
+
1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_wrangling_agent.ipynb)
|
152
|
+
2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_visualization_agent.ipynb)
|
153
|
+
3. **🔥 Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_cleaning_agent.ipynb)
|
154
|
+
4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/feature_engineering_agent.ipynb)
|
155
|
+
5. **🔥 SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/sql_database_agent.ipynb)
|
156
|
+
6. **Data Loader Tools Agent:** Loads data from various sources including CSV, Excel, Parquet, and Pickle files. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_loader_tools_agent.ipynb)
|
157
|
+
|
158
|
+
|
159
|
+
#### 🔥🔥 NEW! Machine Learning Agents
|
160
|
+
|
161
|
+
1. **🔥 H2O Machine Learning Agent:** Builds and logs 100's of high-performance machine learning models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
|
162
|
+
2. **🔥 MLflow Tools Agent (MLOps):** This agent has 11+ tools for managing models, ML projects, and making production ML predictions with MLflow. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/mlflow_tools_agent.ipynb)
|
136
163
|
|
137
|
-
1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis.
|
138
|
-
2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations.
|
139
|
-
3. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions.
|
140
|
-
4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models.
|
141
|
-
5. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations.
|
142
164
|
|
143
165
|
#### Multi-Agents
|
144
166
|
|
145
|
-
1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data.
|
167
|
+
1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
|
146
168
|
|
147
169
|
### Agents Coming Soon
|
148
170
|
|
149
171
|
1. **Data Analyst:** Analyzes data structure, creates exploratory visualizations, and performs correlation analysis to identify relationships.
|
150
|
-
2. **
|
151
|
-
3. **
|
152
|
-
4. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
|
172
|
+
2. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
|
173
|
+
3. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
|
153
174
|
|
154
175
|
## Disclaimer
|
155
176
|
|
@@ -0,0 +1,36 @@
|
|
1
|
+
ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
ai_data_science_team/_version.py,sha256=2kHKuNhTDtlOUMah-41rNdTSBWrq3Lr4KsZbtsfHvPE,26
|
3
|
+
ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
|
4
|
+
ai_data_science_team/agents/__init__.py,sha256=Gnotza9SKr_0IxuaX8k1nsZK48wXkkeZcGcrR1EqNks,668
|
5
|
+
ai_data_science_team/agents/data_cleaning_agent.py,sha256=V5tJMwGJK0JwrF_H-7r3S0E8UkAY6ci4BGxqjhZiGBI,27352
|
6
|
+
ai_data_science_team/agents/data_loader_tools_agent.py,sha256=fnkOvmrXzvTTt1mnAyTlsF_7ZGrkp3P97YU_LgeffMg,8445
|
7
|
+
ai_data_science_team/agents/data_visualization_agent.py,sha256=tJy9Ehnh9mvAu6H--TXI8esSHmK1RW_L1RDAdn7Xek4,28821
|
8
|
+
ai_data_science_team/agents/data_wrangling_agent.py,sha256=LxzphH-TmrFG0GjejGOjulhPq4SsWFo5Y9tk4WEuN4M,32347
|
9
|
+
ai_data_science_team/agents/feature_engineering_agent.py,sha256=KmPBkj7WUBz6LFUlDDfQHMi7ujXwsH5P9LWRS-F4tdM,31026
|
10
|
+
ai_data_science_team/agents/sql_database_agent.py,sha256=1K2o3NiuKgGKdbMz_Tq9IeQ8xhXjpfGOxx9lArZh1yE,31173
|
11
|
+
ai_data_science_team/ml_agents/__init__.py,sha256=qq3UlDCRV_z4FHQ1jj3YR6zPbA6kuCvYCisj_bHYfO4,190
|
12
|
+
ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=DamR72agrTKfdcdhablmP2mpbj0CqtMonP-QU8p7o9w,33394
|
13
|
+
ai_data_science_team/ml_agents/h2o_ml_tools_agent.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
|
+
ai_data_science_team/ml_agents/mlflow_tools_agent.py,sha256=zbT0KIsmQp_sEyxzXRguhqx5913Q2yPYyKGU6TUWEM8,11067
|
15
|
+
ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
|
16
|
+
ai_data_science_team/multiagents/sql_data_analyst.py,sha256=kmmED3gLf5STWWY6ZVJYd7_Pt8NMl6SHyBocuQzRDGk,14193
|
17
|
+
ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
|
18
|
+
ai_data_science_team/parsers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
19
|
+
ai_data_science_team/parsers/parsers.py,sha256=hIsMZXRHz9hqs8R1ebymKA7D6NxOf5UVMpDAr_gGhE8,2027
|
20
|
+
ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
|
21
|
+
ai_data_science_team/templates/agent_templates.py,sha256=Lezp0ugtIP3m5WUOmjLwghNnjjyQVQecysONeIHWwi0,29133
|
22
|
+
ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
|
+
ai_data_science_team/tools/data_loader.py,sha256=ITs_6UAJ0m9h68R9_LruiaJSElv9l7SxTQYryI7YZPY,14702
|
24
|
+
ai_data_science_team/tools/dataframe.py,sha256=qSflGDByqqCXv4TjuvOFvGPZmegzeOesb0Y4i4Y0gdQ,4551
|
25
|
+
ai_data_science_team/tools/h2o.py,sha256=gSK0f2FULfAfipFTTjDMUS6DjHwFFvvl4jxshr6QpS0,38997
|
26
|
+
ai_data_science_team/tools/mlflow.py,sha256=8NTkSOvbTk01GOmwFaMkLBRse80w9Kk7Ypi6Fv4kTII,29475
|
27
|
+
ai_data_science_team/tools/sql.py,sha256=vvz_CiOg6GqXo2_mlF4kq5IS6if79dpaizAgLR9sRyg,4784
|
28
|
+
ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
29
|
+
ai_data_science_team/utils/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
|
30
|
+
ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
|
31
|
+
ai_data_science_team/utils/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
|
32
|
+
ai_data_science_team-0.0.0.9011.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
|
33
|
+
ai_data_science_team-0.0.0.9011.dist-info/METADATA,sha256=LxSjuOR2ArtBi-jauFoWQx7TGakHg7TJ8leKQIi7fmk,11854
|
34
|
+
ai_data_science_team-0.0.0.9011.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
35
|
+
ai_data_science_team-0.0.0.9011.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
|
36
|
+
ai_data_science_team-0.0.0.9011.dist-info/RECORD,,
|
@@ -1,28 +0,0 @@
|
|
1
|
-
ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
ai_data_science_team/_version.py,sha256=IEp7uHd_8RlLYvLFCpp_wJCutdvJI7cJ73IN0GzK3ts,26
|
3
|
-
ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
|
4
|
-
ai_data_science_team/agents/__init__.py,sha256=KSwxfciazWyaDG-xM93SadiIyT6X4d3uJLTdvHvVKq0,553
|
5
|
-
ai_data_science_team/agents/data_cleaning_agent.py,sha256=OWJ3tEA5cy2fo92bTmKS8CDA48ZRRqmWg2kH7cacjDM,27337
|
6
|
-
ai_data_science_team/agents/data_visualization_agent.py,sha256=pm7yln3GI91mOAjwDveenWwYXtJqh990oFvsoFhX3aA,28864
|
7
|
-
ai_data_science_team/agents/data_wrangling_agent.py,sha256=UUoejYBmVFdM4At_CKQjYUyFHkaloowdd6yAElfeV9Q,32332
|
8
|
-
ai_data_science_team/agents/feature_engineering_agent.py,sha256=bngc0COOYa8AolJwQrNuO1aDRgwBCp6LCN9_otIscWk,31011
|
9
|
-
ai_data_science_team/agents/sql_database_agent.py,sha256=M_7IBOu7ISZZEtDAC9KGQIE7FPaXSyQ5IdD8vu91_DM,31164
|
10
|
-
ai_data_science_team/ml_agents/__init__.py,sha256=fA5uX6dSVMAf2ApmBJXEArbnKNmsmuE0nbBsCeNAksk,86
|
11
|
-
ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=h6kz8ZPw7ApCdfrKBqggHfBnwBJ3kDSzLMwxMxz_2tM,55181
|
12
|
-
ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
|
13
|
-
ai_data_science_team/multiagents/sql_data_analyst.py,sha256=2gETU9O5t9R5Ut1kEW1T3H-6Sh8xDzDfQmFV3i5lMKs,14233
|
14
|
-
ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
|
15
|
-
ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
|
16
|
-
ai_data_science_team/templates/agent_templates.py,sha256=pphuitXUVv21ljr_H-aof6Xq78KvDY0adF3K6lXGEz4,29107
|
17
|
-
ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
18
|
-
ai_data_science_team/tools/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
|
19
|
-
ai_data_science_team/tools/metadata.py,sha256=3lPxLEUr3I9AF6wIKx5en-GV6JVkpUHDSLQxKj1N5Gs,9313
|
20
|
-
ai_data_science_team/tools/parsers.py,sha256=BAi-fJT7BBt9nRS3w5n9LDTsu7JAJsH8CAI9-Qf7jCs,2086
|
21
|
-
ai_data_science_team/tools/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
|
22
|
-
ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
|
-
ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
|
24
|
-
ai_data_science_team-0.0.0.9009.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
|
25
|
-
ai_data_science_team-0.0.0.9009.dist-info/METADATA,sha256=iMIyksmkPmuj9TI_oIa1lXGJYKVspxhWvflBJ1zlW0o,9875
|
26
|
-
ai_data_science_team-0.0.0.9009.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
27
|
-
ai_data_science_team-0.0.0.9009.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
|
28
|
-
ai_data_science_team-0.0.0.9009.dist-info/RECORD,,
|
File without changes
|
File without changes
|
{ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/LICENSE
RENAMED
File without changes
|
{ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|