ai-data-science-team 0.0.0.9009__py3-none-any.whl → 0.0.0.9011__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (29) hide show
  1. ai_data_science_team/_version.py +1 -1
  2. ai_data_science_team/agents/__init__.py +1 -0
  3. ai_data_science_team/agents/data_cleaning_agent.py +6 -6
  4. ai_data_science_team/agents/data_loader_tools_agent.py +272 -0
  5. ai_data_science_team/agents/data_visualization_agent.py +6 -7
  6. ai_data_science_team/agents/data_wrangling_agent.py +6 -6
  7. ai_data_science_team/agents/feature_engineering_agent.py +6 -6
  8. ai_data_science_team/agents/sql_database_agent.py +6 -6
  9. ai_data_science_team/ml_agents/__init__.py +1 -0
  10. ai_data_science_team/ml_agents/h2o_ml_agent.py +206 -385
  11. ai_data_science_team/ml_agents/h2o_ml_tools_agent.py +0 -0
  12. ai_data_science_team/ml_agents/mlflow_tools_agent.py +350 -0
  13. ai_data_science_team/multiagents/sql_data_analyst.py +3 -4
  14. ai_data_science_team/parsers/__init__.py +0 -0
  15. ai_data_science_team/{tools → parsers}/parsers.py +0 -1
  16. ai_data_science_team/templates/agent_templates.py +6 -6
  17. ai_data_science_team/tools/data_loader.py +448 -0
  18. ai_data_science_team/tools/dataframe.py +139 -0
  19. ai_data_science_team/tools/h2o.py +643 -0
  20. ai_data_science_team/tools/mlflow.py +961 -0
  21. ai_data_science_team/tools/{metadata.py → sql.py} +1 -137
  22. {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/METADATA +40 -19
  23. ai_data_science_team-0.0.0.9011.dist-info/RECORD +36 -0
  24. ai_data_science_team-0.0.0.9009.dist-info/RECORD +0 -28
  25. /ai_data_science_team/{tools → utils}/logging.py +0 -0
  26. /ai_data_science_team/{tools → utils}/regex.py +0 -0
  27. {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/LICENSE +0 -0
  28. {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/WHEEL +0 -0
  29. {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/top_level.txt +0 -0
@@ -1,143 +1,7 @@
1
- import io
1
+
2
2
  import pandas as pd
3
3
  import sqlalchemy as sql
4
4
  from sqlalchemy import inspect
5
- from typing import Union, List, Dict
6
-
7
- def get_dataframe_summary(
8
- dataframes: Union[pd.DataFrame, List[pd.DataFrame], Dict[str, pd.DataFrame]],
9
- n_sample: int = 30,
10
- skip_stats: bool = False,
11
- ) -> List[str]:
12
- """
13
- Generate a summary for one or more DataFrames. Accepts a single DataFrame, a list of DataFrames,
14
- or a dictionary mapping names to DataFrames.
15
-
16
- Parameters
17
- ----------
18
- dataframes : pandas.DataFrame or list of pandas.DataFrame or dict of (str -> pandas.DataFrame)
19
- - Single DataFrame: produce a single summary (returned within a one-element list).
20
- - List of DataFrames: produce a summary for each DataFrame, using index-based names.
21
- - Dictionary of DataFrames: produce a summary for each DataFrame, using dictionary keys as names.
22
- n_sample : int, default 30
23
- Number of rows to display in the "Data (first 30 rows)" section.
24
- skip_stats : bool, default False
25
- If True, skip the descriptive statistics and DataFrame info sections.
26
-
27
- Example:
28
- --------
29
- ``` python
30
- import pandas as pd
31
- from sklearn.datasets import load_iris
32
- data = load_iris(as_frame=True)
33
- dataframes = {
34
- "iris": data.frame,
35
- "iris_target": data.target,
36
- }
37
- summaries = get_dataframe_summary(dataframes)
38
- print(summaries[0])
39
- ```
40
-
41
- Returns
42
- -------
43
- list of str
44
- A list of summaries, one for each provided DataFrame. Each summary includes:
45
- - Shape of the DataFrame (rows, columns)
46
- - Column data types
47
- - Missing value percentage
48
- - Unique value counts
49
- - First 30 rows
50
- - Descriptive statistics
51
- - DataFrame info output
52
- """
53
-
54
- summaries = []
55
-
56
- # --- Dictionary Case ---
57
- if isinstance(dataframes, dict):
58
- for dataset_name, df in dataframes.items():
59
- summaries.append(_summarize_dataframe(df, dataset_name, n_sample, skip_stats))
60
-
61
- # --- Single DataFrame Case ---
62
- elif isinstance(dataframes, pd.DataFrame):
63
- summaries.append(_summarize_dataframe(dataframes, "Single_Dataset", n_sample, skip_stats))
64
-
65
- # --- List of DataFrames Case ---
66
- elif isinstance(dataframes, list):
67
- for idx, df in enumerate(dataframes):
68
- dataset_name = f"Dataset_{idx}"
69
- summaries.append(_summarize_dataframe(df, dataset_name, n_sample, skip_stats))
70
-
71
- else:
72
- raise TypeError(
73
- "Input must be a single DataFrame, a list of DataFrames, or a dictionary of DataFrames."
74
- )
75
-
76
- return summaries
77
-
78
-
79
- def _summarize_dataframe(df: pd.DataFrame, dataset_name: str, n_sample=30, skip_stats=False) -> str:
80
- """Generate a summary string for a single DataFrame."""
81
- # 1. Convert dictionary-type cells to strings
82
- # This prevents unhashable dict errors during df.nunique().
83
- df = df.apply(lambda col: col.map(lambda x: str(x) if isinstance(x, dict) else x))
84
-
85
- # 2. Capture df.info() output
86
- buffer = io.StringIO()
87
- df.info(buf=buffer)
88
- info_text = buffer.getvalue()
89
-
90
- # 3. Calculate missing value stats
91
- missing_stats = (df.isna().sum() / len(df) * 100).sort_values(ascending=False)
92
- missing_summary = "\n".join([f"{col}: {val:.2f}%" for col, val in missing_stats.items()])
93
-
94
- # 4. Get column data types
95
- column_types = "\n".join([f"{col}: {dtype}" for col, dtype in df.dtypes.items()])
96
-
97
- # 5. Get unique value counts
98
- unique_counts = df.nunique() # Will no longer fail on unhashable dict
99
- unique_counts_summary = "\n".join([f"{col}: {count}" for col, count in unique_counts.items()])
100
-
101
- # 6. Generate the summary text
102
- if not skip_stats:
103
- summary_text = f"""
104
- Dataset Name: {dataset_name}
105
- ----------------------------
106
- Shape: {df.shape[0]} rows x {df.shape[1]} columns
107
-
108
- Column Data Types:
109
- {column_types}
110
-
111
- Missing Value Percentage:
112
- {missing_summary}
113
-
114
- Unique Value Counts:
115
- {unique_counts_summary}
116
-
117
- Data (first {n_sample} rows):
118
- {df.head(n_sample).to_string()}
119
-
120
- Data Description:
121
- {df.describe().to_string()}
122
-
123
- Data Info:
124
- {info_text}
125
- """
126
- else:
127
- summary_text = f"""
128
- Dataset Name: {dataset_name}
129
- ----------------------------
130
- Shape: {df.shape[0]} rows x {df.shape[1]} columns
131
-
132
- Column Data Types:
133
- {column_types}
134
-
135
- Data (first {n_sample} rows):
136
- {df.head(n_sample).to_string()}
137
- """
138
-
139
- return summary_text.strip()
140
-
141
5
 
142
6
 
143
7
  def get_database_metadata(connection, n_samples=10) -> dict:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ai-data-science-team
3
- Version: 0.0.0.9009
3
+ Version: 0.0.0.9011
4
4
  Summary: Build and run an AI-powered data science team.
5
5
  Home-page: https://github.com/business-science/ai-data-science-team
6
6
  Author: Matt Dancho
@@ -27,10 +27,13 @@ Requires-Dist: plotly
27
27
  Requires-Dist: streamlit
28
28
  Requires-Dist: scikit-learn
29
29
  Requires-Dist: xgboost
30
- Provides-Extra: machine-learning-agent
31
- Requires-Dist: h2o; extra == "machine-learning-agent"
30
+ Requires-Dist: psutil
31
+ Provides-Extra: machine-learning
32
+ Requires-Dist: h2o; extra == "machine-learning"
33
+ Requires-Dist: mlflow; extra == "machine-learning"
32
34
  Provides-Extra: all
33
35
  Requires-Dist: h2o; extra == "all"
36
+ Requires-Dist: mlflow; extra == "all"
34
37
  Dynamic: author
35
38
  Dynamic: author-email
36
39
  Dynamic: classifier
@@ -45,7 +48,7 @@ Dynamic: summary
45
48
  <div align="center">
46
49
  <a href="https://github.com/business-science/ai-data-science-team">
47
50
  <picture>
48
- <img src="/img/ai_data_science_team_logo.jpg" alt="AI Data Science Team" width="400">
51
+ <img src="/img/ai_data_science_team_logo_small.jpg" alt="AI Data Science Team" width="400">
49
52
  </picture>
50
53
  </a>
51
54
  </div>
@@ -86,9 +89,12 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
86
89
  - [Generative AI for Data Scientists Workshop](#generative-ai-for-data-scientists-workshop)
87
90
  - [Data Science Agents](#data-science-agents)
88
91
  - [NEW: Multi-Agents](#new-multi-agents)
89
- - [Coming Soon: Data Science Apps](#coming-soon-data-science-apps)
92
+ - [Data Science Apps](#data-science-apps)
93
+ - [Apps Available Now](#apps-available-now)
94
+ - [🔥 Agentic Applications](#-agentic-applications)
90
95
  - [Agents Available Now](#agents-available-now)
91
- - [Data Science Agents](#data-science-agents-1)
96
+ - [Agents](#agents)
97
+ - [🔥🔥 NEW! Machine Learning Agents](#-new-machine-learning-agents)
92
98
  - [Multi-Agents](#multi-agents)
93
99
  - [Agents Coming Soon](#agents-coming-soon)
94
100
  - [Disclaimer](#disclaimer)
@@ -116,7 +122,7 @@ If you're an aspiring data scientist who wants to learn how to build AI Agents a
116
122
 
117
123
  This project is a work in progress. New data science agents will be released soon.
118
124
 
119
- ![Data Science Team](/img/ai_data_science_team.jpg)
125
+ ![AI Data Science Team](/img/ai_data_science_team_.jpg)
120
126
 
121
127
  ### NEW: Multi-Agents
122
128
 
@@ -124,32 +130,47 @@ This is the internals of the SQL Data Analyst Agent that connects to SQL databas
124
130
 
125
131
  ![Business Intelligence SQL Agent](/img/multi_agent_sql_data_visualization.jpg)
126
132
 
127
- ### Coming Soon: Data Science Apps
133
+ ### Data Science Apps
128
134
 
129
135
  This is a top secret project I'm working on. It's a multi-agent data science app that performs time series forecasting.
130
136
 
131
- ![Multi-Agent Data Science App](/img/ai_powered_apps.jpg)
137
+ ![Multi-Agent Data Science App](/img/ai_powered_apps.jpg)
138
+
139
+ ### Apps Available Now
140
+
141
+ [See all available apps here](/apps)
142
+
143
+ #### 🔥 Agentic Applications
144
+
145
+ 1. **SQL Database Agent App:** Connects any SQL Database, generates SQL queries from natural language, and returns data as a downloadable table. [See Application](/apps/sql-database-agent-app/)
132
146
 
133
147
  ### Agents Available Now
134
148
 
135
- #### Data Science Agents
149
+ #### Agents
150
+
151
+ 1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_wrangling_agent.ipynb)
152
+ 2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_visualization_agent.ipynb)
153
+ 3. **🔥 Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_cleaning_agent.ipynb)
154
+ 4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/feature_engineering_agent.ipynb)
155
+ 5. **🔥 SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/sql_database_agent.ipynb)
156
+ 6. **Data Loader Tools Agent:** Loads data from various sources including CSV, Excel, Parquet, and Pickle files. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_loader_tools_agent.ipynb)
157
+
158
+
159
+ #### 🔥🔥 NEW! Machine Learning Agents
160
+
161
+ 1. **🔥 H2O Machine Learning Agent:** Builds and logs 100's of high-performance machine learning models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
162
+ 2. **🔥 MLflow Tools Agent (MLOps):** This agent has 11+ tools for managing models, ML projects, and making production ML predictions with MLflow. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/mlflow_tools_agent.ipynb)
136
163
 
137
- 1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis.
138
- 2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations.
139
- 3. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions.
140
- 4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models.
141
- 5. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations.
142
164
 
143
165
  #### Multi-Agents
144
166
 
145
- 1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data.
167
+ 1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
146
168
 
147
169
  ### Agents Coming Soon
148
170
 
149
171
  1. **Data Analyst:** Analyzes data structure, creates exploratory visualizations, and performs correlation analysis to identify relationships.
150
- 2. **Machine Learning Agent:** Builds and logs the machine learning models.
151
- 3. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
152
- 4. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
172
+ 2. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
173
+ 3. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
153
174
 
154
175
  ## Disclaimer
155
176
 
@@ -0,0 +1,36 @@
1
+ ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ ai_data_science_team/_version.py,sha256=2kHKuNhTDtlOUMah-41rNdTSBWrq3Lr4KsZbtsfHvPE,26
3
+ ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
4
+ ai_data_science_team/agents/__init__.py,sha256=Gnotza9SKr_0IxuaX8k1nsZK48wXkkeZcGcrR1EqNks,668
5
+ ai_data_science_team/agents/data_cleaning_agent.py,sha256=V5tJMwGJK0JwrF_H-7r3S0E8UkAY6ci4BGxqjhZiGBI,27352
6
+ ai_data_science_team/agents/data_loader_tools_agent.py,sha256=fnkOvmrXzvTTt1mnAyTlsF_7ZGrkp3P97YU_LgeffMg,8445
7
+ ai_data_science_team/agents/data_visualization_agent.py,sha256=tJy9Ehnh9mvAu6H--TXI8esSHmK1RW_L1RDAdn7Xek4,28821
8
+ ai_data_science_team/agents/data_wrangling_agent.py,sha256=LxzphH-TmrFG0GjejGOjulhPq4SsWFo5Y9tk4WEuN4M,32347
9
+ ai_data_science_team/agents/feature_engineering_agent.py,sha256=KmPBkj7WUBz6LFUlDDfQHMi7ujXwsH5P9LWRS-F4tdM,31026
10
+ ai_data_science_team/agents/sql_database_agent.py,sha256=1K2o3NiuKgGKdbMz_Tq9IeQ8xhXjpfGOxx9lArZh1yE,31173
11
+ ai_data_science_team/ml_agents/__init__.py,sha256=qq3UlDCRV_z4FHQ1jj3YR6zPbA6kuCvYCisj_bHYfO4,190
12
+ ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=DamR72agrTKfdcdhablmP2mpbj0CqtMonP-QU8p7o9w,33394
13
+ ai_data_science_team/ml_agents/h2o_ml_tools_agent.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ ai_data_science_team/ml_agents/mlflow_tools_agent.py,sha256=zbT0KIsmQp_sEyxzXRguhqx5913Q2yPYyKGU6TUWEM8,11067
15
+ ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
16
+ ai_data_science_team/multiagents/sql_data_analyst.py,sha256=kmmED3gLf5STWWY6ZVJYd7_Pt8NMl6SHyBocuQzRDGk,14193
17
+ ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
18
+ ai_data_science_team/parsers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
+ ai_data_science_team/parsers/parsers.py,sha256=hIsMZXRHz9hqs8R1ebymKA7D6NxOf5UVMpDAr_gGhE8,2027
20
+ ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
21
+ ai_data_science_team/templates/agent_templates.py,sha256=Lezp0ugtIP3m5WUOmjLwghNnjjyQVQecysONeIHWwi0,29133
22
+ ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ ai_data_science_team/tools/data_loader.py,sha256=ITs_6UAJ0m9h68R9_LruiaJSElv9l7SxTQYryI7YZPY,14702
24
+ ai_data_science_team/tools/dataframe.py,sha256=qSflGDByqqCXv4TjuvOFvGPZmegzeOesb0Y4i4Y0gdQ,4551
25
+ ai_data_science_team/tools/h2o.py,sha256=gSK0f2FULfAfipFTTjDMUS6DjHwFFvvl4jxshr6QpS0,38997
26
+ ai_data_science_team/tools/mlflow.py,sha256=8NTkSOvbTk01GOmwFaMkLBRse80w9Kk7Ypi6Fv4kTII,29475
27
+ ai_data_science_team/tools/sql.py,sha256=vvz_CiOg6GqXo2_mlF4kq5IS6if79dpaizAgLR9sRyg,4784
28
+ ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
+ ai_data_science_team/utils/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
30
+ ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
31
+ ai_data_science_team/utils/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
32
+ ai_data_science_team-0.0.0.9011.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
33
+ ai_data_science_team-0.0.0.9011.dist-info/METADATA,sha256=LxSjuOR2ArtBi-jauFoWQx7TGakHg7TJ8leKQIi7fmk,11854
34
+ ai_data_science_team-0.0.0.9011.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
35
+ ai_data_science_team-0.0.0.9011.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
36
+ ai_data_science_team-0.0.0.9011.dist-info/RECORD,,
@@ -1,28 +0,0 @@
1
- ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ai_data_science_team/_version.py,sha256=IEp7uHd_8RlLYvLFCpp_wJCutdvJI7cJ73IN0GzK3ts,26
3
- ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
4
- ai_data_science_team/agents/__init__.py,sha256=KSwxfciazWyaDG-xM93SadiIyT6X4d3uJLTdvHvVKq0,553
5
- ai_data_science_team/agents/data_cleaning_agent.py,sha256=OWJ3tEA5cy2fo92bTmKS8CDA48ZRRqmWg2kH7cacjDM,27337
6
- ai_data_science_team/agents/data_visualization_agent.py,sha256=pm7yln3GI91mOAjwDveenWwYXtJqh990oFvsoFhX3aA,28864
7
- ai_data_science_team/agents/data_wrangling_agent.py,sha256=UUoejYBmVFdM4At_CKQjYUyFHkaloowdd6yAElfeV9Q,32332
8
- ai_data_science_team/agents/feature_engineering_agent.py,sha256=bngc0COOYa8AolJwQrNuO1aDRgwBCp6LCN9_otIscWk,31011
9
- ai_data_science_team/agents/sql_database_agent.py,sha256=M_7IBOu7ISZZEtDAC9KGQIE7FPaXSyQ5IdD8vu91_DM,31164
10
- ai_data_science_team/ml_agents/__init__.py,sha256=fA5uX6dSVMAf2ApmBJXEArbnKNmsmuE0nbBsCeNAksk,86
11
- ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=h6kz8ZPw7ApCdfrKBqggHfBnwBJ3kDSzLMwxMxz_2tM,55181
12
- ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
13
- ai_data_science_team/multiagents/sql_data_analyst.py,sha256=2gETU9O5t9R5Ut1kEW1T3H-6Sh8xDzDfQmFV3i5lMKs,14233
14
- ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
15
- ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
16
- ai_data_science_team/templates/agent_templates.py,sha256=pphuitXUVv21ljr_H-aof6Xq78KvDY0adF3K6lXGEz4,29107
17
- ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
- ai_data_science_team/tools/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
19
- ai_data_science_team/tools/metadata.py,sha256=3lPxLEUr3I9AF6wIKx5en-GV6JVkpUHDSLQxKj1N5Gs,9313
20
- ai_data_science_team/tools/parsers.py,sha256=BAi-fJT7BBt9nRS3w5n9LDTsu7JAJsH8CAI9-Qf7jCs,2086
21
- ai_data_science_team/tools/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
22
- ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
- ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
24
- ai_data_science_team-0.0.0.9009.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
25
- ai_data_science_team-0.0.0.9009.dist-info/METADATA,sha256=iMIyksmkPmuj9TI_oIa1lXGJYKVspxhWvflBJ1zlW0o,9875
26
- ai_data_science_team-0.0.0.9009.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
27
- ai_data_science_team-0.0.0.9009.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
28
- ai_data_science_team-0.0.0.9009.dist-info/RECORD,,
File without changes
File without changes