ai-data-science-team 0.0.0.9009__py3-none-any.whl → 0.0.0.9011__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +1 -0
- ai_data_science_team/agents/data_cleaning_agent.py +6 -6
- ai_data_science_team/agents/data_loader_tools_agent.py +272 -0
- ai_data_science_team/agents/data_visualization_agent.py +6 -7
- ai_data_science_team/agents/data_wrangling_agent.py +6 -6
- ai_data_science_team/agents/feature_engineering_agent.py +6 -6
- ai_data_science_team/agents/sql_database_agent.py +6 -6
- ai_data_science_team/ml_agents/__init__.py +1 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +206 -385
- ai_data_science_team/ml_agents/h2o_ml_tools_agent.py +0 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +350 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +3 -4
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/agent_templates.py +6 -6
- ai_data_science_team/tools/data_loader.py +448 -0
- ai_data_science_team/tools/dataframe.py +139 -0
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/{metadata.py → sql.py} +1 -137
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/METADATA +40 -19
- ai_data_science_team-0.0.0.9011.dist-info/RECORD +36 -0
- ai_data_science_team-0.0.0.9009.dist-info/RECORD +0 -28
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- /ai_data_science_team/{tools → utils}/regex.py +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/top_level.txt +0 -0
@@ -1,143 +1,7 @@
|
|
1
|
-
|
1
|
+
|
2
2
|
import pandas as pd
|
3
3
|
import sqlalchemy as sql
|
4
4
|
from sqlalchemy import inspect
|
5
|
-
from typing import Union, List, Dict
|
6
|
-
|
7
|
-
def get_dataframe_summary(
|
8
|
-
dataframes: Union[pd.DataFrame, List[pd.DataFrame], Dict[str, pd.DataFrame]],
|
9
|
-
n_sample: int = 30,
|
10
|
-
skip_stats: bool = False,
|
11
|
-
) -> List[str]:
|
12
|
-
"""
|
13
|
-
Generate a summary for one or more DataFrames. Accepts a single DataFrame, a list of DataFrames,
|
14
|
-
or a dictionary mapping names to DataFrames.
|
15
|
-
|
16
|
-
Parameters
|
17
|
-
----------
|
18
|
-
dataframes : pandas.DataFrame or list of pandas.DataFrame or dict of (str -> pandas.DataFrame)
|
19
|
-
- Single DataFrame: produce a single summary (returned within a one-element list).
|
20
|
-
- List of DataFrames: produce a summary for each DataFrame, using index-based names.
|
21
|
-
- Dictionary of DataFrames: produce a summary for each DataFrame, using dictionary keys as names.
|
22
|
-
n_sample : int, default 30
|
23
|
-
Number of rows to display in the "Data (first 30 rows)" section.
|
24
|
-
skip_stats : bool, default False
|
25
|
-
If True, skip the descriptive statistics and DataFrame info sections.
|
26
|
-
|
27
|
-
Example:
|
28
|
-
--------
|
29
|
-
``` python
|
30
|
-
import pandas as pd
|
31
|
-
from sklearn.datasets import load_iris
|
32
|
-
data = load_iris(as_frame=True)
|
33
|
-
dataframes = {
|
34
|
-
"iris": data.frame,
|
35
|
-
"iris_target": data.target,
|
36
|
-
}
|
37
|
-
summaries = get_dataframe_summary(dataframes)
|
38
|
-
print(summaries[0])
|
39
|
-
```
|
40
|
-
|
41
|
-
Returns
|
42
|
-
-------
|
43
|
-
list of str
|
44
|
-
A list of summaries, one for each provided DataFrame. Each summary includes:
|
45
|
-
- Shape of the DataFrame (rows, columns)
|
46
|
-
- Column data types
|
47
|
-
- Missing value percentage
|
48
|
-
- Unique value counts
|
49
|
-
- First 30 rows
|
50
|
-
- Descriptive statistics
|
51
|
-
- DataFrame info output
|
52
|
-
"""
|
53
|
-
|
54
|
-
summaries = []
|
55
|
-
|
56
|
-
# --- Dictionary Case ---
|
57
|
-
if isinstance(dataframes, dict):
|
58
|
-
for dataset_name, df in dataframes.items():
|
59
|
-
summaries.append(_summarize_dataframe(df, dataset_name, n_sample, skip_stats))
|
60
|
-
|
61
|
-
# --- Single DataFrame Case ---
|
62
|
-
elif isinstance(dataframes, pd.DataFrame):
|
63
|
-
summaries.append(_summarize_dataframe(dataframes, "Single_Dataset", n_sample, skip_stats))
|
64
|
-
|
65
|
-
# --- List of DataFrames Case ---
|
66
|
-
elif isinstance(dataframes, list):
|
67
|
-
for idx, df in enumerate(dataframes):
|
68
|
-
dataset_name = f"Dataset_{idx}"
|
69
|
-
summaries.append(_summarize_dataframe(df, dataset_name, n_sample, skip_stats))
|
70
|
-
|
71
|
-
else:
|
72
|
-
raise TypeError(
|
73
|
-
"Input must be a single DataFrame, a list of DataFrames, or a dictionary of DataFrames."
|
74
|
-
)
|
75
|
-
|
76
|
-
return summaries
|
77
|
-
|
78
|
-
|
79
|
-
def _summarize_dataframe(df: pd.DataFrame, dataset_name: str, n_sample=30, skip_stats=False) -> str:
|
80
|
-
"""Generate a summary string for a single DataFrame."""
|
81
|
-
# 1. Convert dictionary-type cells to strings
|
82
|
-
# This prevents unhashable dict errors during df.nunique().
|
83
|
-
df = df.apply(lambda col: col.map(lambda x: str(x) if isinstance(x, dict) else x))
|
84
|
-
|
85
|
-
# 2. Capture df.info() output
|
86
|
-
buffer = io.StringIO()
|
87
|
-
df.info(buf=buffer)
|
88
|
-
info_text = buffer.getvalue()
|
89
|
-
|
90
|
-
# 3. Calculate missing value stats
|
91
|
-
missing_stats = (df.isna().sum() / len(df) * 100).sort_values(ascending=False)
|
92
|
-
missing_summary = "\n".join([f"{col}: {val:.2f}%" for col, val in missing_stats.items()])
|
93
|
-
|
94
|
-
# 4. Get column data types
|
95
|
-
column_types = "\n".join([f"{col}: {dtype}" for col, dtype in df.dtypes.items()])
|
96
|
-
|
97
|
-
# 5. Get unique value counts
|
98
|
-
unique_counts = df.nunique() # Will no longer fail on unhashable dict
|
99
|
-
unique_counts_summary = "\n".join([f"{col}: {count}" for col, count in unique_counts.items()])
|
100
|
-
|
101
|
-
# 6. Generate the summary text
|
102
|
-
if not skip_stats:
|
103
|
-
summary_text = f"""
|
104
|
-
Dataset Name: {dataset_name}
|
105
|
-
----------------------------
|
106
|
-
Shape: {df.shape[0]} rows x {df.shape[1]} columns
|
107
|
-
|
108
|
-
Column Data Types:
|
109
|
-
{column_types}
|
110
|
-
|
111
|
-
Missing Value Percentage:
|
112
|
-
{missing_summary}
|
113
|
-
|
114
|
-
Unique Value Counts:
|
115
|
-
{unique_counts_summary}
|
116
|
-
|
117
|
-
Data (first {n_sample} rows):
|
118
|
-
{df.head(n_sample).to_string()}
|
119
|
-
|
120
|
-
Data Description:
|
121
|
-
{df.describe().to_string()}
|
122
|
-
|
123
|
-
Data Info:
|
124
|
-
{info_text}
|
125
|
-
"""
|
126
|
-
else:
|
127
|
-
summary_text = f"""
|
128
|
-
Dataset Name: {dataset_name}
|
129
|
-
----------------------------
|
130
|
-
Shape: {df.shape[0]} rows x {df.shape[1]} columns
|
131
|
-
|
132
|
-
Column Data Types:
|
133
|
-
{column_types}
|
134
|
-
|
135
|
-
Data (first {n_sample} rows):
|
136
|
-
{df.head(n_sample).to_string()}
|
137
|
-
"""
|
138
|
-
|
139
|
-
return summary_text.strip()
|
140
|
-
|
141
5
|
|
142
6
|
|
143
7
|
def get_database_metadata(connection, n_samples=10) -> dict:
|
{ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: ai-data-science-team
|
3
|
-
Version: 0.0.0.
|
3
|
+
Version: 0.0.0.9011
|
4
4
|
Summary: Build and run an AI-powered data science team.
|
5
5
|
Home-page: https://github.com/business-science/ai-data-science-team
|
6
6
|
Author: Matt Dancho
|
@@ -27,10 +27,13 @@ Requires-Dist: plotly
|
|
27
27
|
Requires-Dist: streamlit
|
28
28
|
Requires-Dist: scikit-learn
|
29
29
|
Requires-Dist: xgboost
|
30
|
-
|
31
|
-
|
30
|
+
Requires-Dist: psutil
|
31
|
+
Provides-Extra: machine-learning
|
32
|
+
Requires-Dist: h2o; extra == "machine-learning"
|
33
|
+
Requires-Dist: mlflow; extra == "machine-learning"
|
32
34
|
Provides-Extra: all
|
33
35
|
Requires-Dist: h2o; extra == "all"
|
36
|
+
Requires-Dist: mlflow; extra == "all"
|
34
37
|
Dynamic: author
|
35
38
|
Dynamic: author-email
|
36
39
|
Dynamic: classifier
|
@@ -45,7 +48,7 @@ Dynamic: summary
|
|
45
48
|
<div align="center">
|
46
49
|
<a href="https://github.com/business-science/ai-data-science-team">
|
47
50
|
<picture>
|
48
|
-
<img src="/img/
|
51
|
+
<img src="/img/ai_data_science_team_logo_small.jpg" alt="AI Data Science Team" width="400">
|
49
52
|
</picture>
|
50
53
|
</a>
|
51
54
|
</div>
|
@@ -86,9 +89,12 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
86
89
|
- [Generative AI for Data Scientists Workshop](#generative-ai-for-data-scientists-workshop)
|
87
90
|
- [Data Science Agents](#data-science-agents)
|
88
91
|
- [NEW: Multi-Agents](#new-multi-agents)
|
89
|
-
- [
|
92
|
+
- [Data Science Apps](#data-science-apps)
|
93
|
+
- [Apps Available Now](#apps-available-now)
|
94
|
+
- [🔥 Agentic Applications](#-agentic-applications)
|
90
95
|
- [Agents Available Now](#agents-available-now)
|
91
|
-
- [
|
96
|
+
- [Agents](#agents)
|
97
|
+
- [🔥🔥 NEW! Machine Learning Agents](#-new-machine-learning-agents)
|
92
98
|
- [Multi-Agents](#multi-agents)
|
93
99
|
- [Agents Coming Soon](#agents-coming-soon)
|
94
100
|
- [Disclaimer](#disclaimer)
|
@@ -116,7 +122,7 @@ If you're an aspiring data scientist who wants to learn how to build AI Agents a
|
|
116
122
|
|
117
123
|
This project is a work in progress. New data science agents will be released soon.
|
118
124
|
|
119
|
-

|
120
126
|
|
121
127
|
### NEW: Multi-Agents
|
122
128
|
|
@@ -124,32 +130,47 @@ This is the internals of the SQL Data Analyst Agent that connects to SQL databas
|
|
124
130
|
|
125
131
|

|
126
132
|
|
127
|
-
###
|
133
|
+
### Data Science Apps
|
128
134
|
|
129
135
|
This is a top secret project I'm working on. It's a multi-agent data science app that performs time series forecasting.
|
130
136
|
|
131
|
-

|
137
|
+

|
138
|
+
|
139
|
+
### Apps Available Now
|
140
|
+
|
141
|
+
[See all available apps here](/apps)
|
142
|
+
|
143
|
+
#### 🔥 Agentic Applications
|
144
|
+
|
145
|
+
1. **SQL Database Agent App:** Connects any SQL Database, generates SQL queries from natural language, and returns data as a downloadable table. [See Application](/apps/sql-database-agent-app/)
|
132
146
|
|
133
147
|
### Agents Available Now
|
134
148
|
|
135
|
-
####
|
149
|
+
#### Agents
|
150
|
+
|
151
|
+
1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_wrangling_agent.ipynb)
|
152
|
+
2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_visualization_agent.ipynb)
|
153
|
+
3. **🔥 Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_cleaning_agent.ipynb)
|
154
|
+
4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/feature_engineering_agent.ipynb)
|
155
|
+
5. **🔥 SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/sql_database_agent.ipynb)
|
156
|
+
6. **Data Loader Tools Agent:** Loads data from various sources including CSV, Excel, Parquet, and Pickle files. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/data_loader_tools_agent.ipynb)
|
157
|
+
|
158
|
+
|
159
|
+
#### 🔥🔥 NEW! Machine Learning Agents
|
160
|
+
|
161
|
+
1. **🔥 H2O Machine Learning Agent:** Builds and logs 100's of high-performance machine learning models. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
|
162
|
+
2. **🔥 MLflow Tools Agent (MLOps):** This agent has 11+ tools for managing models, ML projects, and making production ML predictions with MLflow. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/mlflow_tools_agent.ipynb)
|
136
163
|
|
137
|
-
1. **Data Wrangling Agent:** Merges, Joins, Preps and Wrangles data into a format that is ready for data analysis.
|
138
|
-
2. **Data Visualization Agent:** Creates visualizations to help you understand your data. Returns JSON serializable plotly visualizations.
|
139
|
-
3. **Data Cleaning Agent:** Performs Data Preparation steps including handling missing values, outliers, and data type conversions.
|
140
|
-
4. **Feature Engineering Agent:** Converts the prepared data into ML-ready data. Adds features to increase predictive accuracy of ML models.
|
141
|
-
5. **SQL Database Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations.
|
142
164
|
|
143
165
|
#### Multi-Agents
|
144
166
|
|
145
|
-
1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data.
|
167
|
+
1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
|
146
168
|
|
147
169
|
### Agents Coming Soon
|
148
170
|
|
149
171
|
1. **Data Analyst:** Analyzes data structure, creates exploratory visualizations, and performs correlation analysis to identify relationships.
|
150
|
-
2. **
|
151
|
-
3. **
|
152
|
-
4. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
|
172
|
+
2. **Interpretability Agent:** Performs Interpretable ML to explain why the model returned predictions including which features were the most important to the model.
|
173
|
+
3. **Supervisor:** Forms task list. Moderates sub-agents. Returns completed assignment.
|
153
174
|
|
154
175
|
## Disclaimer
|
155
176
|
|
@@ -0,0 +1,36 @@
|
|
1
|
+
ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
ai_data_science_team/_version.py,sha256=2kHKuNhTDtlOUMah-41rNdTSBWrq3Lr4KsZbtsfHvPE,26
|
3
|
+
ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
|
4
|
+
ai_data_science_team/agents/__init__.py,sha256=Gnotza9SKr_0IxuaX8k1nsZK48wXkkeZcGcrR1EqNks,668
|
5
|
+
ai_data_science_team/agents/data_cleaning_agent.py,sha256=V5tJMwGJK0JwrF_H-7r3S0E8UkAY6ci4BGxqjhZiGBI,27352
|
6
|
+
ai_data_science_team/agents/data_loader_tools_agent.py,sha256=fnkOvmrXzvTTt1mnAyTlsF_7ZGrkp3P97YU_LgeffMg,8445
|
7
|
+
ai_data_science_team/agents/data_visualization_agent.py,sha256=tJy9Ehnh9mvAu6H--TXI8esSHmK1RW_L1RDAdn7Xek4,28821
|
8
|
+
ai_data_science_team/agents/data_wrangling_agent.py,sha256=LxzphH-TmrFG0GjejGOjulhPq4SsWFo5Y9tk4WEuN4M,32347
|
9
|
+
ai_data_science_team/agents/feature_engineering_agent.py,sha256=KmPBkj7WUBz6LFUlDDfQHMi7ujXwsH5P9LWRS-F4tdM,31026
|
10
|
+
ai_data_science_team/agents/sql_database_agent.py,sha256=1K2o3NiuKgGKdbMz_Tq9IeQ8xhXjpfGOxx9lArZh1yE,31173
|
11
|
+
ai_data_science_team/ml_agents/__init__.py,sha256=qq3UlDCRV_z4FHQ1jj3YR6zPbA6kuCvYCisj_bHYfO4,190
|
12
|
+
ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=DamR72agrTKfdcdhablmP2mpbj0CqtMonP-QU8p7o9w,33394
|
13
|
+
ai_data_science_team/ml_agents/h2o_ml_tools_agent.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
|
+
ai_data_science_team/ml_agents/mlflow_tools_agent.py,sha256=zbT0KIsmQp_sEyxzXRguhqx5913Q2yPYyKGU6TUWEM8,11067
|
15
|
+
ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
|
16
|
+
ai_data_science_team/multiagents/sql_data_analyst.py,sha256=kmmED3gLf5STWWY6ZVJYd7_Pt8NMl6SHyBocuQzRDGk,14193
|
17
|
+
ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
|
18
|
+
ai_data_science_team/parsers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
19
|
+
ai_data_science_team/parsers/parsers.py,sha256=hIsMZXRHz9hqs8R1ebymKA7D6NxOf5UVMpDAr_gGhE8,2027
|
20
|
+
ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
|
21
|
+
ai_data_science_team/templates/agent_templates.py,sha256=Lezp0ugtIP3m5WUOmjLwghNnjjyQVQecysONeIHWwi0,29133
|
22
|
+
ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
|
+
ai_data_science_team/tools/data_loader.py,sha256=ITs_6UAJ0m9h68R9_LruiaJSElv9l7SxTQYryI7YZPY,14702
|
24
|
+
ai_data_science_team/tools/dataframe.py,sha256=qSflGDByqqCXv4TjuvOFvGPZmegzeOesb0Y4i4Y0gdQ,4551
|
25
|
+
ai_data_science_team/tools/h2o.py,sha256=gSK0f2FULfAfipFTTjDMUS6DjHwFFvvl4jxshr6QpS0,38997
|
26
|
+
ai_data_science_team/tools/mlflow.py,sha256=8NTkSOvbTk01GOmwFaMkLBRse80w9Kk7Ypi6Fv4kTII,29475
|
27
|
+
ai_data_science_team/tools/sql.py,sha256=vvz_CiOg6GqXo2_mlF4kq5IS6if79dpaizAgLR9sRyg,4784
|
28
|
+
ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
29
|
+
ai_data_science_team/utils/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
|
30
|
+
ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
|
31
|
+
ai_data_science_team/utils/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
|
32
|
+
ai_data_science_team-0.0.0.9011.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
|
33
|
+
ai_data_science_team-0.0.0.9011.dist-info/METADATA,sha256=LxSjuOR2ArtBi-jauFoWQx7TGakHg7TJ8leKQIi7fmk,11854
|
34
|
+
ai_data_science_team-0.0.0.9011.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
35
|
+
ai_data_science_team-0.0.0.9011.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
|
36
|
+
ai_data_science_team-0.0.0.9011.dist-info/RECORD,,
|
@@ -1,28 +0,0 @@
|
|
1
|
-
ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
ai_data_science_team/_version.py,sha256=IEp7uHd_8RlLYvLFCpp_wJCutdvJI7cJ73IN0GzK3ts,26
|
3
|
-
ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
|
4
|
-
ai_data_science_team/agents/__init__.py,sha256=KSwxfciazWyaDG-xM93SadiIyT6X4d3uJLTdvHvVKq0,553
|
5
|
-
ai_data_science_team/agents/data_cleaning_agent.py,sha256=OWJ3tEA5cy2fo92bTmKS8CDA48ZRRqmWg2kH7cacjDM,27337
|
6
|
-
ai_data_science_team/agents/data_visualization_agent.py,sha256=pm7yln3GI91mOAjwDveenWwYXtJqh990oFvsoFhX3aA,28864
|
7
|
-
ai_data_science_team/agents/data_wrangling_agent.py,sha256=UUoejYBmVFdM4At_CKQjYUyFHkaloowdd6yAElfeV9Q,32332
|
8
|
-
ai_data_science_team/agents/feature_engineering_agent.py,sha256=bngc0COOYa8AolJwQrNuO1aDRgwBCp6LCN9_otIscWk,31011
|
9
|
-
ai_data_science_team/agents/sql_database_agent.py,sha256=M_7IBOu7ISZZEtDAC9KGQIE7FPaXSyQ5IdD8vu91_DM,31164
|
10
|
-
ai_data_science_team/ml_agents/__init__.py,sha256=fA5uX6dSVMAf2ApmBJXEArbnKNmsmuE0nbBsCeNAksk,86
|
11
|
-
ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=h6kz8ZPw7ApCdfrKBqggHfBnwBJ3kDSzLMwxMxz_2tM,55181
|
12
|
-
ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
|
13
|
-
ai_data_science_team/multiagents/sql_data_analyst.py,sha256=2gETU9O5t9R5Ut1kEW1T3H-6Sh8xDzDfQmFV3i5lMKs,14233
|
14
|
-
ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
|
15
|
-
ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
|
16
|
-
ai_data_science_team/templates/agent_templates.py,sha256=pphuitXUVv21ljr_H-aof6Xq78KvDY0adF3K6lXGEz4,29107
|
17
|
-
ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
18
|
-
ai_data_science_team/tools/logging.py,sha256=7wFOv6GGhXR_RPbh-8p0GyrS608XOnZtiaGK2IbDl_s,2081
|
19
|
-
ai_data_science_team/tools/metadata.py,sha256=3lPxLEUr3I9AF6wIKx5en-GV6JVkpUHDSLQxKj1N5Gs,9313
|
20
|
-
ai_data_science_team/tools/parsers.py,sha256=BAi-fJT7BBt9nRS3w5n9LDTsu7JAJsH8CAI9-Qf7jCs,2086
|
21
|
-
ai_data_science_team/tools/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
|
22
|
-
ai_data_science_team/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
|
-
ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
|
24
|
-
ai_data_science_team-0.0.0.9009.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
|
25
|
-
ai_data_science_team-0.0.0.9009.dist-info/METADATA,sha256=iMIyksmkPmuj9TI_oIa1lXGJYKVspxhWvflBJ1zlW0o,9875
|
26
|
-
ai_data_science_team-0.0.0.9009.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
27
|
-
ai_data_science_team-0.0.0.9009.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
|
28
|
-
ai_data_science_team-0.0.0.9009.dist-info/RECORD,,
|
File without changes
|
File without changes
|
{ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/LICENSE
RENAMED
File without changes
|
{ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|