ai-data-science-team 0.0.0.9009__py3-none-any.whl → 0.0.0.9011__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +1 -0
- ai_data_science_team/agents/data_cleaning_agent.py +6 -6
- ai_data_science_team/agents/data_loader_tools_agent.py +272 -0
- ai_data_science_team/agents/data_visualization_agent.py +6 -7
- ai_data_science_team/agents/data_wrangling_agent.py +6 -6
- ai_data_science_team/agents/feature_engineering_agent.py +6 -6
- ai_data_science_team/agents/sql_database_agent.py +6 -6
- ai_data_science_team/ml_agents/__init__.py +1 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +206 -385
- ai_data_science_team/ml_agents/h2o_ml_tools_agent.py +0 -0
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +350 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +3 -4
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/agent_templates.py +6 -6
- ai_data_science_team/tools/data_loader.py +448 -0
- ai_data_science_team/tools/dataframe.py +139 -0
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/{metadata.py → sql.py} +1 -137
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/METADATA +40 -19
- ai_data_science_team-0.0.0.9011.dist-info/RECORD +36 -0
- ai_data_science_team-0.0.0.9009.dist-info/RECORD +0 -28
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- /ai_data_science_team/{tools → utils}/regex.py +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9011.dist-info}/top_level.txt +0 -0
ai_data_science_team/_version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.0.0.
|
1
|
+
__version__ = "0.0.0.9011"
|
@@ -3,3 +3,4 @@ from ai_data_science_team.agents.feature_engineering_agent import make_feature_e
|
|
3
3
|
from ai_data_science_team.agents.data_wrangling_agent import make_data_wrangling_agent, DataWranglingAgent
|
4
4
|
from ai_data_science_team.agents.sql_database_agent import make_sql_database_agent, SQLDatabaseAgent
|
5
5
|
from ai_data_science_team.agents.data_visualization_agent import make_data_visualization_agent, DataVisualizationAgent
|
6
|
+
from ai_data_science_team.agents.data_loader_tools_agent import make_data_loader_tools_agent, DataLoaderToolsAgent
|
@@ -27,16 +27,16 @@ from ai_data_science_team.templates import(
|
|
27
27
|
create_coding_agent_graph,
|
28
28
|
BaseAgent,
|
29
29
|
)
|
30
|
-
from ai_data_science_team.
|
31
|
-
from ai_data_science_team.
|
30
|
+
from ai_data_science_team.parsers.parsers import PythonOutputParser
|
31
|
+
from ai_data_science_team.utils.regex import (
|
32
32
|
relocate_imports_inside_function,
|
33
33
|
add_comments_to_top,
|
34
34
|
format_agent_name,
|
35
35
|
format_recommended_steps,
|
36
36
|
get_generic_summary,
|
37
37
|
)
|
38
|
-
from ai_data_science_team.tools.
|
39
|
-
from ai_data_science_team.
|
38
|
+
from ai_data_science_team.tools.dataframe import get_dataframe_summary
|
39
|
+
from ai_data_science_team.utils.logging import log_ai_function
|
40
40
|
|
41
41
|
# Setup
|
42
42
|
AGENT_NAME = "data_cleaning_agent"
|
@@ -183,7 +183,7 @@ class DataCleaningAgent(BaseAgent):
|
|
183
183
|
self.response=None
|
184
184
|
return make_data_cleaning_agent(**self._params)
|
185
185
|
|
186
|
-
def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
186
|
+
async def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
187
187
|
"""
|
188
188
|
Asynchronously invokes the agent. The response is stored in the response attribute.
|
189
189
|
|
@@ -204,7 +204,7 @@ class DataCleaningAgent(BaseAgent):
|
|
204
204
|
--------
|
205
205
|
None. The response is stored in the response attribute.
|
206
206
|
"""
|
207
|
-
response = self._compiled_graph.ainvoke({
|
207
|
+
response = await self._compiled_graph.ainvoke({
|
208
208
|
"user_instructions": user_instructions,
|
209
209
|
"data_raw": data_raw.to_dict(),
|
210
210
|
"max_retries": max_retries,
|
@@ -0,0 +1,272 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
|
4
|
+
from typing import Any, Optional, Annotated, Sequence, List, Dict
|
5
|
+
import operator
|
6
|
+
|
7
|
+
import pandas as pd
|
8
|
+
import os
|
9
|
+
|
10
|
+
from IPython.display import Markdown
|
11
|
+
|
12
|
+
from langchain_core.messages import BaseMessage, AIMessage
|
13
|
+
|
14
|
+
from langgraph.prebuilt import create_react_agent, ToolNode
|
15
|
+
from langgraph.prebuilt.chat_agent_executor import AgentState
|
16
|
+
from langgraph.graph import START, END, StateGraph
|
17
|
+
|
18
|
+
from ai_data_science_team.templates import BaseAgent
|
19
|
+
from ai_data_science_team.utils.regex import format_agent_name
|
20
|
+
from ai_data_science_team.tools.data_loader import (
|
21
|
+
load_directory,
|
22
|
+
load_file,
|
23
|
+
list_directory_contents,
|
24
|
+
list_directory_recursive,
|
25
|
+
get_file_info,
|
26
|
+
search_files_by_pattern,
|
27
|
+
)
|
28
|
+
|
29
|
+
AGENT_NAME = "data_loader_tools_agent"
|
30
|
+
|
31
|
+
tools = [
|
32
|
+
load_directory,
|
33
|
+
load_file,
|
34
|
+
list_directory_contents,
|
35
|
+
list_directory_recursive,
|
36
|
+
get_file_info,
|
37
|
+
search_files_by_pattern,
|
38
|
+
]
|
39
|
+
|
40
|
+
class DataLoaderToolsAgent(BaseAgent):
|
41
|
+
"""
|
42
|
+
A Data Loader Agent that can interact with data loading tools and search for files in your file system.
|
43
|
+
|
44
|
+
Parameters:
|
45
|
+
----------
|
46
|
+
model : langchain.llms.base.LLM
|
47
|
+
The language model used to generate the tool calling agent.
|
48
|
+
react_agent_kwargs : dict
|
49
|
+
Additional keyword arguments to pass to the create_react_agent function.
|
50
|
+
invoke_react_agent_kwargs : dict
|
51
|
+
Additional keyword arguments to pass to the invoke method of the react agent.
|
52
|
+
|
53
|
+
Methods:
|
54
|
+
--------
|
55
|
+
update_params(**kwargs)
|
56
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
57
|
+
ainvoke_agent(user_instructions: str=None, **kwargs)
|
58
|
+
Runs the agent with the given user instructions asynchronously.
|
59
|
+
invoke_agent(user_instructions: str=None, **kwargs)
|
60
|
+
Runs the agent with the given user instructions.
|
61
|
+
get_internal_messages(markdown: bool=False)
|
62
|
+
Returns the internal messages from the agent's response.
|
63
|
+
get_artifacts(as_dataframe: bool=False)
|
64
|
+
Returns the MLflow artifacts from the agent's response.
|
65
|
+
get_ai_message(markdown: bool=False)
|
66
|
+
Returns the AI message from the agent's response.
|
67
|
+
|
68
|
+
"""
|
69
|
+
|
70
|
+
def __init__(
|
71
|
+
self,
|
72
|
+
model: Any,
|
73
|
+
create_react_agent_kwargs: Optional[Dict]={},
|
74
|
+
invoke_react_agent_kwargs: Optional[Dict]={},
|
75
|
+
):
|
76
|
+
self._params = {
|
77
|
+
"model": model,
|
78
|
+
"create_react_agent_kwargs": create_react_agent_kwargs,
|
79
|
+
"invoke_react_agent_kwargs": invoke_react_agent_kwargs,
|
80
|
+
}
|
81
|
+
self._compiled_graph = self._make_compiled_graph()
|
82
|
+
self.response = None
|
83
|
+
|
84
|
+
def _make_compiled_graph(self):
|
85
|
+
"""
|
86
|
+
Creates the compiled graph for the agent.
|
87
|
+
"""
|
88
|
+
self.response = None
|
89
|
+
return make_data_loader_tools_agent(**self._params)
|
90
|
+
|
91
|
+
|
92
|
+
def update_params(self, **kwargs):
|
93
|
+
"""
|
94
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
95
|
+
"""
|
96
|
+
for k, v in kwargs.items():
|
97
|
+
self._params[k] = v
|
98
|
+
self._compiled_graph = self._make_compiled_graph()
|
99
|
+
|
100
|
+
async def ainvoke_agent(
|
101
|
+
self,
|
102
|
+
user_instructions: str=None,
|
103
|
+
**kwargs
|
104
|
+
):
|
105
|
+
"""
|
106
|
+
Runs the agent with the given user instructions.
|
107
|
+
|
108
|
+
Parameters:
|
109
|
+
----------
|
110
|
+
user_instructions : str, optional
|
111
|
+
The user instructions to pass to the agent.
|
112
|
+
kwargs : dict, optional
|
113
|
+
Additional keyword arguments to pass to the agents ainvoke method.
|
114
|
+
|
115
|
+
"""
|
116
|
+
response = await self._compiled_graph.ainvoke(
|
117
|
+
{
|
118
|
+
"user_instructions": user_instructions,
|
119
|
+
},
|
120
|
+
**kwargs
|
121
|
+
)
|
122
|
+
self.response = response
|
123
|
+
return None
|
124
|
+
|
125
|
+
def invoke_agent(
|
126
|
+
self,
|
127
|
+
user_instructions: str=None,
|
128
|
+
**kwargs
|
129
|
+
):
|
130
|
+
"""
|
131
|
+
Runs the agent with the given user instructions.
|
132
|
+
|
133
|
+
Parameters:
|
134
|
+
----------
|
135
|
+
user_instructions : str, optional
|
136
|
+
The user instructions to pass to the agent.
|
137
|
+
kwargs : dict, optional
|
138
|
+
Additional keyword arguments to pass to the agents invoke method.
|
139
|
+
|
140
|
+
"""
|
141
|
+
response = self._compiled_graph.invoke(
|
142
|
+
{
|
143
|
+
"user_instructions": user_instructions,
|
144
|
+
},
|
145
|
+
**kwargs
|
146
|
+
)
|
147
|
+
self.response = response
|
148
|
+
return None
|
149
|
+
|
150
|
+
def get_internal_messages(self, markdown: bool=False):
|
151
|
+
"""
|
152
|
+
Returns the internal messages from the agent's response.
|
153
|
+
"""
|
154
|
+
pretty_print = "\n\n".join([f"### {msg.type.upper()}\n\nID: {msg.id}\n\nContent:\n\n{msg.content}" for msg in self.response["internal_messages"]])
|
155
|
+
if markdown:
|
156
|
+
return Markdown(pretty_print)
|
157
|
+
else:
|
158
|
+
return self.response["internal_messages"]
|
159
|
+
|
160
|
+
def get_artifacts(self, as_dataframe: bool=False):
|
161
|
+
"""
|
162
|
+
Returns the MLflow artifacts from the agent's response.
|
163
|
+
"""
|
164
|
+
if as_dataframe:
|
165
|
+
return pd.DataFrame(self.response["data_loader_artifacts"])
|
166
|
+
else:
|
167
|
+
return self.response["data_loader_artifacts"]
|
168
|
+
|
169
|
+
def get_ai_message(self, markdown: bool=False):
|
170
|
+
"""
|
171
|
+
Returns the AI message from the agent's response.
|
172
|
+
"""
|
173
|
+
if markdown:
|
174
|
+
return Markdown(self.response["messages"][0].content)
|
175
|
+
else:
|
176
|
+
return self.response["messages"][0].content
|
177
|
+
|
178
|
+
|
179
|
+
|
180
|
+
def make_data_loader_tools_agent(
|
181
|
+
model: Any,
|
182
|
+
create_react_agent_kwargs: Optional[Dict]={},
|
183
|
+
invoke_react_agent_kwargs: Optional[Dict]={},
|
184
|
+
):
|
185
|
+
"""
|
186
|
+
Creates a Data Loader Agent that can interact with data loading tools.
|
187
|
+
|
188
|
+
Parameters:
|
189
|
+
----------
|
190
|
+
model : langchain.llms.base.LLM
|
191
|
+
The language model used to generate the tool calling agent.
|
192
|
+
react_agent_kwargs : dict
|
193
|
+
Additional keyword arguments to pass to the create_react_agent function.
|
194
|
+
invoke_react_agent_kwargs : dict
|
195
|
+
Additional keyword arguments to pass to the invoke method of the react agent.
|
196
|
+
|
197
|
+
Returns:
|
198
|
+
--------
|
199
|
+
app : langchain.graphs.CompiledStateGraph
|
200
|
+
An agent that can interact with data loading tools.
|
201
|
+
"""
|
202
|
+
|
203
|
+
class GraphState(AgentState):
|
204
|
+
internal_messages: Annotated[Sequence[BaseMessage], operator.add]
|
205
|
+
user_instructions: str
|
206
|
+
data_loader_artifacts: dict
|
207
|
+
|
208
|
+
def data_loader_agent(state):
|
209
|
+
|
210
|
+
print(format_agent_name(AGENT_NAME))
|
211
|
+
print(" ")
|
212
|
+
|
213
|
+
print(" * RUN REACT TOOL-CALLING AGENT")
|
214
|
+
|
215
|
+
tool_node = ToolNode(
|
216
|
+
tools=tools
|
217
|
+
)
|
218
|
+
|
219
|
+
data_loader_agent = create_react_agent(
|
220
|
+
model,
|
221
|
+
tools=tool_node,
|
222
|
+
state_schema=GraphState,
|
223
|
+
**create_react_agent_kwargs,
|
224
|
+
)
|
225
|
+
|
226
|
+
response = data_loader_agent.invoke(
|
227
|
+
{
|
228
|
+
"messages": [("user", state["user_instructions"])],
|
229
|
+
},
|
230
|
+
invoke_react_agent_kwargs,
|
231
|
+
)
|
232
|
+
|
233
|
+
print(" * POST-PROCESS RESULTS")
|
234
|
+
|
235
|
+
internal_messages = response['messages']
|
236
|
+
|
237
|
+
# Ensure there is at least one AI message
|
238
|
+
if not internal_messages:
|
239
|
+
return {
|
240
|
+
"internal_messages": [],
|
241
|
+
"mlflow_artifacts": None,
|
242
|
+
}
|
243
|
+
|
244
|
+
# Get the last AI message
|
245
|
+
last_ai_message = AIMessage(internal_messages[-1].content, role = AGENT_NAME)
|
246
|
+
|
247
|
+
# Get the last tool artifact safely
|
248
|
+
last_tool_artifact = None
|
249
|
+
if len(internal_messages) > 1:
|
250
|
+
last_message = internal_messages[-2] # Get second-to-last message
|
251
|
+
if hasattr(last_message, "artifact"): # Check if it has an "artifact"
|
252
|
+
last_tool_artifact = last_message.artifact
|
253
|
+
elif isinstance(last_message, dict) and "artifact" in last_message:
|
254
|
+
last_tool_artifact = last_message["artifact"]
|
255
|
+
|
256
|
+
return {
|
257
|
+
"messages": [last_ai_message],
|
258
|
+
"internal_messages": internal_messages,
|
259
|
+
"data_loader_artifacts": last_tool_artifact,
|
260
|
+
}
|
261
|
+
|
262
|
+
workflow = StateGraph(GraphState)
|
263
|
+
|
264
|
+
workflow.add_node("data_loader_agent", data_loader_agent)
|
265
|
+
|
266
|
+
workflow.add_edge(START, "data_loader_agent")
|
267
|
+
workflow.add_edge("data_loader_agent", END)
|
268
|
+
|
269
|
+
app = workflow.compile()
|
270
|
+
|
271
|
+
return app
|
272
|
+
|
@@ -10,7 +10,6 @@ from typing import TypedDict, Annotated, Sequence, Literal
|
|
10
10
|
import operator
|
11
11
|
|
12
12
|
from langchain.prompts import PromptTemplate
|
13
|
-
from langchain_core.output_parsers import StrOutputParser
|
14
13
|
from langchain_core.messages import BaseMessage
|
15
14
|
|
16
15
|
from langgraph.types import Command
|
@@ -30,16 +29,16 @@ from ai_data_science_team.templates import(
|
|
30
29
|
create_coding_agent_graph,
|
31
30
|
BaseAgent,
|
32
31
|
)
|
33
|
-
from ai_data_science_team.
|
34
|
-
from ai_data_science_team.
|
32
|
+
from ai_data_science_team.parsers.parsers import PythonOutputParser
|
33
|
+
from ai_data_science_team.utils.regex import (
|
35
34
|
relocate_imports_inside_function,
|
36
35
|
add_comments_to_top,
|
37
36
|
format_agent_name,
|
38
37
|
format_recommended_steps,
|
39
38
|
get_generic_summary,
|
40
39
|
)
|
41
|
-
from ai_data_science_team.tools.
|
42
|
-
from ai_data_science_team.
|
40
|
+
from ai_data_science_team.tools.dataframe import get_dataframe_summary
|
41
|
+
from ai_data_science_team.utils.logging import log_ai_function
|
43
42
|
from ai_data_science_team.utils.plotly import plotly_from_dict
|
44
43
|
|
45
44
|
# Setup
|
@@ -197,7 +196,7 @@ class DataVisualizationAgent(BaseAgent):
|
|
197
196
|
# Rebuild the compiled graph
|
198
197
|
self._compiled_graph = self._make_compiled_graph()
|
199
198
|
|
200
|
-
def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
199
|
+
async def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
201
200
|
"""
|
202
201
|
Asynchronously invokes the agent to generate a visualization.
|
203
202
|
The response is stored in the 'response' attribute.
|
@@ -219,7 +218,7 @@ class DataVisualizationAgent(BaseAgent):
|
|
219
218
|
-------
|
220
219
|
None
|
221
220
|
"""
|
222
|
-
response = self._compiled_graph.ainvoke({
|
221
|
+
response = await self._compiled_graph.ainvoke({
|
223
222
|
"user_instructions": user_instructions,
|
224
223
|
"data_raw": data_raw.to_dict(),
|
225
224
|
"max_retries": max_retries,
|
@@ -24,16 +24,16 @@ from ai_data_science_team.templates import(
|
|
24
24
|
create_coding_agent_graph,
|
25
25
|
BaseAgent,
|
26
26
|
)
|
27
|
-
from ai_data_science_team.
|
28
|
-
from ai_data_science_team.
|
27
|
+
from ai_data_science_team.parsers.parsers import PythonOutputParser
|
28
|
+
from ai_data_science_team.utils.regex import (
|
29
29
|
relocate_imports_inside_function,
|
30
30
|
add_comments_to_top,
|
31
31
|
format_agent_name,
|
32
32
|
format_recommended_steps,
|
33
33
|
get_generic_summary,
|
34
34
|
)
|
35
|
-
from ai_data_science_team.tools.
|
36
|
-
from ai_data_science_team.
|
35
|
+
from ai_data_science_team.tools.dataframe import get_dataframe_summary
|
36
|
+
from ai_data_science_team.utils.logging import log_ai_function
|
37
37
|
|
38
38
|
# Setup Logging Path
|
39
39
|
AGENT_NAME = "data_wrangling_agent"
|
@@ -213,7 +213,7 @@ class DataWranglingAgent(BaseAgent):
|
|
213
213
|
self._params[k] = v
|
214
214
|
self._compiled_graph = self._make_compiled_graph()
|
215
215
|
|
216
|
-
def ainvoke_agent(
|
216
|
+
async def ainvoke_agent(
|
217
217
|
self,
|
218
218
|
data_raw: Union[pd.DataFrame, dict, list],
|
219
219
|
user_instructions: str=None,
|
@@ -245,7 +245,7 @@ class DataWranglingAgent(BaseAgent):
|
|
245
245
|
None
|
246
246
|
"""
|
247
247
|
data_input = self._convert_data_input(data_raw)
|
248
|
-
response = self._compiled_graph.ainvoke({
|
248
|
+
response = await self._compiled_graph.ainvoke({
|
249
249
|
"user_instructions": user_instructions,
|
250
250
|
"data_raw": data_input,
|
251
251
|
"max_retries": max_retries,
|
@@ -27,16 +27,16 @@ from ai_data_science_team.templates import(
|
|
27
27
|
create_coding_agent_graph,
|
28
28
|
BaseAgent,
|
29
29
|
)
|
30
|
-
from ai_data_science_team.
|
31
|
-
from ai_data_science_team.
|
30
|
+
from ai_data_science_team.parsers.parsers import PythonOutputParser
|
31
|
+
from ai_data_science_team.utils.regex import (
|
32
32
|
relocate_imports_inside_function,
|
33
33
|
add_comments_to_top,
|
34
34
|
format_agent_name,
|
35
35
|
format_recommended_steps,
|
36
36
|
get_generic_summary,
|
37
37
|
)
|
38
|
-
from ai_data_science_team.tools.
|
39
|
-
from ai_data_science_team.
|
38
|
+
from ai_data_science_team.tools.dataframe import get_dataframe_summary
|
39
|
+
from ai_data_science_team.utils.logging import log_ai_function
|
40
40
|
|
41
41
|
# Setup
|
42
42
|
AGENT_NAME = "feature_engineering_agent"
|
@@ -203,7 +203,7 @@ class FeatureEngineeringAgent(BaseAgent):
|
|
203
203
|
self._params[k] = v
|
204
204
|
self._compiled_graph = self._make_compiled_graph()
|
205
205
|
|
206
|
-
def ainvoke_agent(
|
206
|
+
async def ainvoke_agent(
|
207
207
|
self,
|
208
208
|
data_raw: pd.DataFrame,
|
209
209
|
user_instructions: str=None,
|
@@ -235,7 +235,7 @@ class FeatureEngineeringAgent(BaseAgent):
|
|
235
235
|
-------
|
236
236
|
None
|
237
237
|
"""
|
238
|
-
response = self._compiled_graph.ainvoke({
|
238
|
+
response = await self._compiled_graph.ainvoke({
|
239
239
|
"user_instructions": user_instructions,
|
240
240
|
"data_raw": data_raw.to_dict(),
|
241
241
|
"target_variable": target_variable,
|
@@ -25,15 +25,15 @@ from ai_data_science_team.templates import(
|
|
25
25
|
create_coding_agent_graph,
|
26
26
|
BaseAgent,
|
27
27
|
)
|
28
|
-
from ai_data_science_team.
|
29
|
-
from ai_data_science_team.
|
28
|
+
from ai_data_science_team.parsers.parsers import SQLOutputParser
|
29
|
+
from ai_data_science_team.utils.regex import (
|
30
30
|
add_comments_to_top,
|
31
31
|
format_agent_name,
|
32
32
|
format_recommended_steps,
|
33
33
|
get_generic_summary,
|
34
34
|
)
|
35
|
-
from ai_data_science_team.tools.
|
36
|
-
from ai_data_science_team.
|
35
|
+
from ai_data_science_team.tools.sql import get_database_metadata
|
36
|
+
from ai_data_science_team.utils.logging import log_ai_function
|
37
37
|
|
38
38
|
# Setup
|
39
39
|
AGENT_NAME = "sql_database_agent"
|
@@ -193,7 +193,7 @@ class SQLDatabaseAgent(BaseAgent):
|
|
193
193
|
self._params[k] = v
|
194
194
|
self._compiled_graph = self._make_compiled_graph()
|
195
195
|
|
196
|
-
def ainvoke_agent(self, user_instructions: str=None, max_retries=3, retry_count=0, **kwargs):
|
196
|
+
async def ainvoke_agent(self, user_instructions: str=None, max_retries=3, retry_count=0, **kwargs):
|
197
197
|
"""
|
198
198
|
Asynchronously runs the SQL Database Agent based on user instructions.
|
199
199
|
|
@@ -212,7 +212,7 @@ class SQLDatabaseAgent(BaseAgent):
|
|
212
212
|
-------
|
213
213
|
None
|
214
214
|
"""
|
215
|
-
response = self._compiled_graph.ainvoke({
|
215
|
+
response = await self._compiled_graph.ainvoke({
|
216
216
|
"user_instructions": user_instructions,
|
217
217
|
"max_retries": max_retries,
|
218
218
|
"retry_count": retry_count
|