ai-data-science-team 0.0.0.9007__py3-none-any.whl → 0.0.0.9008__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +4 -4
- ai_data_science_team/agents/data_cleaning_agent.py +225 -84
- ai_data_science_team/agents/data_visualization_agent.py +460 -27
- ai_data_science_team/agents/data_wrangling_agent.py +455 -16
- ai_data_science_team/agents/feature_engineering_agent.py +429 -25
- ai_data_science_team/agents/sql_database_agent.py +367 -21
- ai_data_science_team/multiagents/__init__.py +1 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +286 -0
- ai_data_science_team/multiagents/supervised_data_analyst.py +2 -0
- ai_data_science_team/templates/__init__.py +2 -1
- ai_data_science_team/templates/agent_templates.py +247 -42
- ai_data_science_team/tools/regex.py +28 -1
- ai_data_science_team/utils/__init__.py +0 -0
- ai_data_science_team/utils/plotly.py +24 -0
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/METADATA +76 -28
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +26 -0
- ai_data_science_team-0.0.0.9007.dist-info/RECORD +0 -21
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/top_level.txt +0 -0
@@ -17,25 +17,367 @@ from langgraph.types import Command
|
|
17
17
|
from langgraph.checkpoint.memory import MemorySaver
|
18
18
|
|
19
19
|
import os
|
20
|
-
import io
|
21
20
|
import pandas as pd
|
22
21
|
|
22
|
+
from IPython.display import Markdown
|
23
|
+
|
23
24
|
from ai_data_science_team.templates import(
|
24
25
|
node_func_execute_agent_code_on_data,
|
25
26
|
node_func_human_review,
|
26
27
|
node_func_fix_agent_code,
|
27
28
|
node_func_explain_agent_code,
|
28
|
-
create_coding_agent_graph
|
29
|
+
create_coding_agent_graph,
|
30
|
+
BaseAgent,
|
29
31
|
)
|
30
32
|
from ai_data_science_team.tools.parsers import PythonOutputParser
|
31
|
-
from ai_data_science_team.tools.regex import
|
33
|
+
from ai_data_science_team.tools.regex import (
|
34
|
+
relocate_imports_inside_function,
|
35
|
+
add_comments_to_top,
|
36
|
+
format_agent_name,
|
37
|
+
format_recommended_steps
|
38
|
+
)
|
32
39
|
from ai_data_science_team.tools.metadata import get_dataframe_summary
|
33
40
|
from ai_data_science_team.tools.logging import log_ai_function
|
41
|
+
from ai_data_science_team.utils.plotly import plotly_from_dict
|
34
42
|
|
35
43
|
# Setup
|
36
44
|
AGENT_NAME = "data_visualization_agent"
|
37
45
|
LOG_PATH = os.path.join(os.getcwd(), "logs/")
|
38
46
|
|
47
|
+
# Class
|
48
|
+
|
49
|
+
class DataVisualizationAgent(BaseAgent):
|
50
|
+
"""
|
51
|
+
Creates a data visualization agent that can generate Plotly charts based on user-defined instructions or
|
52
|
+
default visualization steps (if any). The agent generates a Python function to produce the visualization,
|
53
|
+
executes it, and logs the process, including code and errors. It is designed to facilitate reproducible
|
54
|
+
and customizable data visualization workflows.
|
55
|
+
|
56
|
+
The agent may use default instructions for creating charts unless instructed otherwise, such as:
|
57
|
+
- Generating a recommended chart type (bar, scatter, line, etc.)
|
58
|
+
- Creating user-friendly titles and axis labels
|
59
|
+
- Applying consistent styling (template, font sizes, color themes)
|
60
|
+
- Handling theme details (white background, base font size, line size, etc.)
|
61
|
+
|
62
|
+
User instructions can modify, add, or remove any of these steps to tailor the visualization process.
|
63
|
+
|
64
|
+
Parameters
|
65
|
+
----------
|
66
|
+
model : langchain.llms.base.LLM
|
67
|
+
The language model used to generate the data visualization function.
|
68
|
+
n_samples : int, optional
|
69
|
+
Number of samples used when summarizing the dataset for chart instructions. Defaults to 30.
|
70
|
+
Reducing this number can help avoid exceeding the model's token limits.
|
71
|
+
log : bool, optional
|
72
|
+
Whether to log the generated code and errors. Defaults to False.
|
73
|
+
log_path : str, optional
|
74
|
+
Directory path for storing log files. Defaults to None.
|
75
|
+
file_name : str, optional
|
76
|
+
Name of the file for saving the generated response. Defaults to "data_visualization.py".
|
77
|
+
function_name : str, optional
|
78
|
+
Name of the function for data visualization. Defaults to "data_visualization".
|
79
|
+
overwrite : bool, optional
|
80
|
+
Whether to overwrite the log file if it exists. If False, a unique file name is created. Defaults to True.
|
81
|
+
human_in_the_loop : bool, optional
|
82
|
+
Enables user review of data visualization instructions. Defaults to False.
|
83
|
+
bypass_recommended_steps : bool, optional
|
84
|
+
If True, skips the default recommended visualization steps. Defaults to False.
|
85
|
+
bypass_explain_code : bool, optional
|
86
|
+
If True, skips the step that provides code explanations. Defaults to False.
|
87
|
+
|
88
|
+
Methods
|
89
|
+
-------
|
90
|
+
update_params(**kwargs)
|
91
|
+
Updates the agent's parameters and rebuilds the compiled state graph.
|
92
|
+
ainvoke_agent(user_instructions: str, data_raw: pd.DataFrame, max_retries=3, retry_count=0)
|
93
|
+
Asynchronously generates a visualization based on user instructions.
|
94
|
+
invoke_agent(user_instructions: str, data_raw: pd.DataFrame, max_retries=3, retry_count=0)
|
95
|
+
Synchronously generates a visualization based on user instructions.
|
96
|
+
explain_visualization_steps()
|
97
|
+
Returns an explanation of the visualization steps performed by the agent.
|
98
|
+
get_log_summary()
|
99
|
+
Retrieves a summary of logged operations if logging is enabled.
|
100
|
+
get_plotly_graph()
|
101
|
+
Retrieves the Plotly graph (as a dictionary) produced by the agent.
|
102
|
+
get_data_raw()
|
103
|
+
Retrieves the raw dataset as a pandas DataFrame (based on the last response).
|
104
|
+
get_data_visualization_function()
|
105
|
+
Retrieves the generated Python function used for data visualization.
|
106
|
+
get_recommended_visualization_steps()
|
107
|
+
Retrieves the agent's recommended visualization steps.
|
108
|
+
get_response()
|
109
|
+
Returns the response from the agent as a dictionary.
|
110
|
+
show()
|
111
|
+
Displays the agent's mermaid diagram.
|
112
|
+
|
113
|
+
Examples
|
114
|
+
--------
|
115
|
+
```python
|
116
|
+
import pandas as pd
|
117
|
+
from langchain_openai import ChatOpenAI
|
118
|
+
from ai_data_science_team.agents import DataVisualizationAgent
|
119
|
+
|
120
|
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
121
|
+
|
122
|
+
data_visualization_agent = DataVisualizationAgent(
|
123
|
+
model=llm,
|
124
|
+
n_samples=30,
|
125
|
+
log=True,
|
126
|
+
log_path="logs",
|
127
|
+
human_in_the_loop=True
|
128
|
+
)
|
129
|
+
|
130
|
+
df = pd.read_csv("https://raw.githubusercontent.com/business-science/ai-data-science-team/refs/heads/master/data/churn_data.csv")
|
131
|
+
|
132
|
+
data_visualization_agent.invoke_agent(
|
133
|
+
user_instructions="Generate a scatter plot of age vs. total charges with a trend line.",
|
134
|
+
data_raw=df,
|
135
|
+
max_retries=3,
|
136
|
+
retry_count=0
|
137
|
+
)
|
138
|
+
|
139
|
+
plotly_graph_dict = data_visualization_agent.get_plotly_graph()
|
140
|
+
# You can render plotly_graph_dict with plotly.io.from_json or
|
141
|
+
# something similar in a Jupyter Notebook.
|
142
|
+
|
143
|
+
response = data_visualization_agent.get_response()
|
144
|
+
```
|
145
|
+
|
146
|
+
Returns
|
147
|
+
--------
|
148
|
+
DataVisualizationAgent : langchain.graphs.CompiledStateGraph
|
149
|
+
A data visualization agent implemented as a compiled state graph.
|
150
|
+
"""
|
151
|
+
|
152
|
+
def __init__(
|
153
|
+
self,
|
154
|
+
model,
|
155
|
+
n_samples=30,
|
156
|
+
log=False,
|
157
|
+
log_path=None,
|
158
|
+
file_name="data_visualization.py",
|
159
|
+
function_name="data_visualization",
|
160
|
+
overwrite=True,
|
161
|
+
human_in_the_loop=False,
|
162
|
+
bypass_recommended_steps=False,
|
163
|
+
bypass_explain_code=False
|
164
|
+
):
|
165
|
+
self._params = {
|
166
|
+
"model": model,
|
167
|
+
"n_samples": n_samples,
|
168
|
+
"log": log,
|
169
|
+
"log_path": log_path,
|
170
|
+
"file_name": file_name,
|
171
|
+
"function_name": function_name,
|
172
|
+
"overwrite": overwrite,
|
173
|
+
"human_in_the_loop": human_in_the_loop,
|
174
|
+
"bypass_recommended_steps": bypass_recommended_steps,
|
175
|
+
"bypass_explain_code": bypass_explain_code,
|
176
|
+
}
|
177
|
+
self._compiled_graph = self._make_compiled_graph()
|
178
|
+
self.response = None
|
179
|
+
|
180
|
+
def _make_compiled_graph(self):
|
181
|
+
"""
|
182
|
+
Create the compiled graph for the data visualization agent.
|
183
|
+
Running this method will reset the response to None.
|
184
|
+
"""
|
185
|
+
self.response = None
|
186
|
+
return make_data_visualization_agent(**self._params)
|
187
|
+
|
188
|
+
def update_params(self, **kwargs):
|
189
|
+
"""
|
190
|
+
Updates the agent's parameters and rebuilds the compiled graph.
|
191
|
+
"""
|
192
|
+
# Update parameters
|
193
|
+
for k, v in kwargs.items():
|
194
|
+
self._params[k] = v
|
195
|
+
# Rebuild the compiled graph
|
196
|
+
self._compiled_graph = self._make_compiled_graph()
|
197
|
+
|
198
|
+
def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
199
|
+
"""
|
200
|
+
Asynchronously invokes the agent to generate a visualization.
|
201
|
+
The response is stored in the 'response' attribute.
|
202
|
+
|
203
|
+
Parameters
|
204
|
+
----------
|
205
|
+
data_raw : pd.DataFrame
|
206
|
+
The raw dataset to be visualized.
|
207
|
+
user_instructions : str
|
208
|
+
Instructions for data visualization.
|
209
|
+
max_retries : int
|
210
|
+
Maximum retry attempts.
|
211
|
+
retry_count : int
|
212
|
+
Current retry attempt count.
|
213
|
+
**kwargs : dict
|
214
|
+
Additional keyword arguments passed to ainvoke().
|
215
|
+
|
216
|
+
Returns
|
217
|
+
-------
|
218
|
+
None
|
219
|
+
"""
|
220
|
+
response = self._compiled_graph.ainvoke({
|
221
|
+
"user_instructions": user_instructions,
|
222
|
+
"data_raw": data_raw.to_dict(),
|
223
|
+
"max_retries": max_retries,
|
224
|
+
"retry_count": retry_count,
|
225
|
+
}, **kwargs)
|
226
|
+
self.response = response
|
227
|
+
return None
|
228
|
+
|
229
|
+
def invoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
230
|
+
"""
|
231
|
+
Synchronously invokes the agent to generate a visualization.
|
232
|
+
The response is stored in the 'response' attribute.
|
233
|
+
|
234
|
+
Parameters
|
235
|
+
----------
|
236
|
+
data_raw : pd.DataFrame
|
237
|
+
The raw dataset to be visualized.
|
238
|
+
user_instructions : str
|
239
|
+
Instructions for data visualization agent.
|
240
|
+
max_retries : int
|
241
|
+
Maximum retry attempts.
|
242
|
+
retry_count : int
|
243
|
+
Current retry attempt count.
|
244
|
+
**kwargs : dict
|
245
|
+
Additional keyword arguments passed to invoke().
|
246
|
+
|
247
|
+
Returns
|
248
|
+
-------
|
249
|
+
None
|
250
|
+
"""
|
251
|
+
response = self._compiled_graph.invoke({
|
252
|
+
"user_instructions": user_instructions,
|
253
|
+
"data_raw": data_raw.to_dict(),
|
254
|
+
"max_retries": max_retries,
|
255
|
+
"retry_count": retry_count,
|
256
|
+
}, **kwargs)
|
257
|
+
self.response = response
|
258
|
+
return None
|
259
|
+
|
260
|
+
def explain_visualization_steps(self):
|
261
|
+
"""
|
262
|
+
Provides an explanation of the visualization steps performed by the agent.
|
263
|
+
|
264
|
+
Returns
|
265
|
+
-------
|
266
|
+
str
|
267
|
+
Explanation of the visualization steps, if any are available.
|
268
|
+
"""
|
269
|
+
if self.response:
|
270
|
+
return self.response.get("messages", [])
|
271
|
+
return []
|
272
|
+
|
273
|
+
def get_log_summary(self, markdown=False):
|
274
|
+
"""
|
275
|
+
Logs a summary of the agent's operations, if logging is enabled.
|
276
|
+
|
277
|
+
Parameters
|
278
|
+
----------
|
279
|
+
markdown : bool, optional
|
280
|
+
If True, returns Markdown-formatted output.
|
281
|
+
|
282
|
+
Returns
|
283
|
+
-------
|
284
|
+
str or None
|
285
|
+
Summary of logs or None if no logs are available.
|
286
|
+
"""
|
287
|
+
if self.response and self.response.get('data_visualization_function_path'):
|
288
|
+
log_details = f"Log Path: {self.response.get('data_visualization_function_path')}"
|
289
|
+
if markdown:
|
290
|
+
return Markdown(log_details)
|
291
|
+
else:
|
292
|
+
return log_details
|
293
|
+
return None
|
294
|
+
|
295
|
+
def get_plotly_graph(self):
|
296
|
+
"""
|
297
|
+
Retrieves the Plotly graph (in dictionary form) produced by the agent.
|
298
|
+
|
299
|
+
Returns
|
300
|
+
-------
|
301
|
+
dict or None
|
302
|
+
The Plotly graph dictionary if available, otherwise None.
|
303
|
+
"""
|
304
|
+
if self.response:
|
305
|
+
return plotly_from_dict(self.response.get("plotly_graph", None))
|
306
|
+
return None
|
307
|
+
|
308
|
+
def get_data_raw(self):
|
309
|
+
"""
|
310
|
+
Retrieves the raw dataset used in the last invocation.
|
311
|
+
|
312
|
+
Returns
|
313
|
+
-------
|
314
|
+
pd.DataFrame or None
|
315
|
+
The raw dataset as a DataFrame if available, otherwise None.
|
316
|
+
"""
|
317
|
+
if self.response and self.response.get("data_raw"):
|
318
|
+
return pd.DataFrame(self.response.get("data_raw"))
|
319
|
+
return None
|
320
|
+
|
321
|
+
def get_data_visualization_function(self, markdown=False):
|
322
|
+
"""
|
323
|
+
Retrieves the generated Python function used for data visualization.
|
324
|
+
|
325
|
+
Parameters
|
326
|
+
----------
|
327
|
+
markdown : bool, optional
|
328
|
+
If True, returns the function in Markdown code block format.
|
329
|
+
|
330
|
+
Returns
|
331
|
+
-------
|
332
|
+
str or None
|
333
|
+
The Python function code as a string if available, otherwise None.
|
334
|
+
"""
|
335
|
+
if self.response:
|
336
|
+
func_code = self.response.get("data_visualization_function", "")
|
337
|
+
if markdown:
|
338
|
+
return Markdown(f"```python\n{func_code}\n```")
|
339
|
+
return func_code
|
340
|
+
return None
|
341
|
+
|
342
|
+
def get_recommended_visualization_steps(self, markdown=False):
|
343
|
+
"""
|
344
|
+
Retrieves the agent's recommended visualization steps.
|
345
|
+
|
346
|
+
Parameters
|
347
|
+
----------
|
348
|
+
markdown : bool, optional
|
349
|
+
If True, returns the steps in Markdown format.
|
350
|
+
|
351
|
+
Returns
|
352
|
+
-------
|
353
|
+
str or None
|
354
|
+
The recommended steps if available, otherwise None.
|
355
|
+
"""
|
356
|
+
if self.response:
|
357
|
+
steps = self.response.get("recommended_steps", "")
|
358
|
+
if markdown:
|
359
|
+
return Markdown(steps)
|
360
|
+
return steps
|
361
|
+
return None
|
362
|
+
|
363
|
+
def get_response(self):
|
364
|
+
"""
|
365
|
+
Returns the agent's full response dictionary.
|
366
|
+
|
367
|
+
Returns
|
368
|
+
-------
|
369
|
+
dict or None
|
370
|
+
The response dictionary if available, otherwise None.
|
371
|
+
"""
|
372
|
+
return self.response
|
373
|
+
|
374
|
+
def show(self):
|
375
|
+
"""
|
376
|
+
Displays the agent's mermaid diagram for visual inspection of the compiled graph.
|
377
|
+
"""
|
378
|
+
return self._compiled_graph.show()
|
379
|
+
|
380
|
+
|
39
381
|
# Agent
|
40
382
|
|
41
383
|
def make_data_visualization_agent(
|
@@ -44,14 +386,85 @@ def make_data_visualization_agent(
|
|
44
386
|
log=False,
|
45
387
|
log_path=None,
|
46
388
|
file_name="data_visualization.py",
|
47
|
-
|
389
|
+
function_name="data_visualization",
|
390
|
+
overwrite=True,
|
48
391
|
human_in_the_loop=False,
|
49
392
|
bypass_recommended_steps=False,
|
50
393
|
bypass_explain_code=False
|
51
394
|
):
|
395
|
+
"""
|
396
|
+
Creates a data visualization agent that can generate Plotly charts based on user-defined instructions or
|
397
|
+
default visualization steps. The agent generates a Python function to produce the visualization, executes it,
|
398
|
+
and logs the process, including code and errors. It is designed to facilitate reproducible and customizable
|
399
|
+
data visualization workflows.
|
400
|
+
|
401
|
+
The agent can perform the following default visualization steps unless instructed otherwise:
|
402
|
+
- Generating a recommended chart type (bar, scatter, line, etc.)
|
403
|
+
- Creating user-friendly titles and axis labels
|
404
|
+
- Applying consistent styling (template, font sizes, color themes)
|
405
|
+
- Handling theme details (white background, base font size, line size, etc.)
|
406
|
+
|
407
|
+
User instructions can modify, add, or remove any of these steps to tailor the visualization process.
|
408
|
+
|
409
|
+
Parameters
|
410
|
+
----------
|
411
|
+
model : langchain.llms.base.LLM
|
412
|
+
The language model used to generate the data visualization function.
|
413
|
+
n_samples : int, optional
|
414
|
+
Number of samples used when summarizing the dataset for chart instructions. Defaults to 30.
|
415
|
+
log : bool, optional
|
416
|
+
Whether to log the generated code and errors. Defaults to False.
|
417
|
+
log_path : str, optional
|
418
|
+
Directory path for storing log files. Defaults to None.
|
419
|
+
file_name : str, optional
|
420
|
+
Name of the file for saving the generated response. Defaults to "data_visualization.py".
|
421
|
+
function_name : str, optional
|
422
|
+
Name of the function for data visualization. Defaults to "data_visualization".
|
423
|
+
overwrite : bool, optional
|
424
|
+
Whether to overwrite the log file if it exists. If False, a unique file name is created. Defaults to True.
|
425
|
+
human_in_the_loop : bool, optional
|
426
|
+
Enables user review of data visualization instructions. Defaults to False.
|
427
|
+
bypass_recommended_steps : bool, optional
|
428
|
+
If True, skips the default recommended visualization steps. Defaults to False.
|
429
|
+
bypass_explain_code : bool, optional
|
430
|
+
If True, skips the step that provides code explanations. Defaults to False.
|
431
|
+
|
432
|
+
Examples
|
433
|
+
--------
|
434
|
+
``` python
|
435
|
+
import pandas as pd
|
436
|
+
from langchain_openai import ChatOpenAI
|
437
|
+
from ai_data_science_team.agents import data_visualization_agent
|
438
|
+
|
439
|
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
440
|
+
|
441
|
+
data_visualization_agent = make_data_visualization_agent(llm)
|
442
|
+
|
443
|
+
df = pd.read_csv("https://raw.githubusercontent.com/business-science/ai-data-science-team/refs/heads/master/data/churn_data.csv")
|
444
|
+
|
445
|
+
response = data_visualization_agent.invoke({
|
446
|
+
"user_instructions": "Generate a scatter plot of tenure vs. total charges with a trend line.",
|
447
|
+
"data_raw": df.to_dict(),
|
448
|
+
"max_retries": 3,
|
449
|
+
"retry_count": 0
|
450
|
+
})
|
451
|
+
|
452
|
+
pd.DataFrame(response['plotly_graph'])
|
453
|
+
```
|
454
|
+
|
455
|
+
Returns
|
456
|
+
-------
|
457
|
+
app : langchain.graphs.CompiledStateGraph
|
458
|
+
The data visualization agent as a state graph.
|
459
|
+
"""
|
52
460
|
|
53
461
|
llm = model
|
54
462
|
|
463
|
+
# Human in th loop requires recommended steps
|
464
|
+
if bypass_recommended_steps and human_in_the_loop:
|
465
|
+
bypass_recommended_steps = False
|
466
|
+
print("Bypass recommended steps set to False to enable human in the loop.")
|
467
|
+
|
55
468
|
# Setup Log Directory
|
56
469
|
if log:
|
57
470
|
if log_path is None:
|
@@ -70,6 +483,7 @@ def make_data_visualization_agent(
|
|
70
483
|
all_datasets_summary: str
|
71
484
|
data_visualization_function: str
|
72
485
|
data_visualization_function_path: str
|
486
|
+
data_visualization_function_file_name: str
|
73
487
|
data_visualization_function_name: str
|
74
488
|
data_visualization_error: str
|
75
489
|
max_retries: int
|
@@ -140,7 +554,7 @@ def make_data_visualization_agent(
|
|
140
554
|
})
|
141
555
|
|
142
556
|
return {
|
143
|
-
"recommended_steps": "
|
557
|
+
"recommended_steps": format_recommended_steps(recommended_steps.content.strip(), heading="# Recommended Data Cleaning Steps:"),
|
144
558
|
"all_datasets_summary": all_datasets_summary_str
|
145
559
|
}
|
146
560
|
|
@@ -169,7 +583,7 @@ def make_data_visualization_agent(
|
|
169
583
|
template="""
|
170
584
|
You are a chart generator agent that is an expert in generating plotly charts. You must use plotly or plotly.express to produce plots.
|
171
585
|
|
172
|
-
Your job is to produce python code to generate visualizations.
|
586
|
+
Your job is to produce python code to generate visualizations with a function named {function_name}.
|
173
587
|
|
174
588
|
You will take instructions from a Chart Instructor and generate a plotly chart from the data provided.
|
175
589
|
|
@@ -181,13 +595,13 @@ def make_data_visualization_agent(
|
|
181
595
|
|
182
596
|
RETURN:
|
183
597
|
|
184
|
-
Return Python code in ```python ``` format with a single function definition,
|
598
|
+
Return Python code in ```python ``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
185
599
|
|
186
600
|
Return the plotly chart as a dictionary.
|
187
601
|
|
188
602
|
Return code to provide the data visualization function:
|
189
603
|
|
190
|
-
def
|
604
|
+
def {function_name}(data_raw):
|
191
605
|
import pandas as pd
|
192
606
|
import numpy as np
|
193
607
|
import json
|
@@ -206,14 +620,15 @@ def make_data_visualization_agent(
|
|
206
620
|
2. Do not include unrelated user instructions that are not related to the chart generation.
|
207
621
|
|
208
622
|
""",
|
209
|
-
input_variables=["chart_generator_instructions", "all_datasets_summary"]
|
623
|
+
input_variables=["chart_generator_instructions", "all_datasets_summary", "function_name"]
|
210
624
|
)
|
211
|
-
|
625
|
+
|
212
626
|
data_visualization_agent = prompt_template | llm | PythonOutputParser()
|
213
627
|
|
214
628
|
response = data_visualization_agent.invoke({
|
215
629
|
"chart_generator_instructions": chart_generator_instructions,
|
216
|
-
"all_datasets_summary": all_datasets_summary_str
|
630
|
+
"all_datasets_summary": all_datasets_summary_str,
|
631
|
+
"function_name": function_name
|
217
632
|
})
|
218
633
|
|
219
634
|
response = relocate_imports_inside_function(response)
|
@@ -231,19 +646,37 @@ def make_data_visualization_agent(
|
|
231
646
|
return {
|
232
647
|
"data_visualization_function": response,
|
233
648
|
"data_visualization_function_path": file_path,
|
234
|
-
"
|
649
|
+
"data_visualization_function_file_name": file_name_2,
|
650
|
+
"data_visualization_function_name": function_name,
|
235
651
|
"all_datasets_summary": all_datasets_summary_str
|
236
652
|
}
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
653
|
+
|
654
|
+
# Human Review
|
655
|
+
|
656
|
+
prompt_text_human_review = "Are the following data visualization instructions correct? (Answer 'yes' or provide modifications)\n{steps}"
|
657
|
+
|
658
|
+
if not bypass_explain_code:
|
659
|
+
def human_review(state: GraphState) -> Command[Literal["chart_instructor", "explain_data_visualization_code"]]:
|
660
|
+
return node_func_human_review(
|
661
|
+
state=state,
|
662
|
+
prompt_text=prompt_text_human_review,
|
663
|
+
yes_goto= 'explain_data_visualization_code',
|
664
|
+
no_goto="chart_instructor",
|
665
|
+
user_instructions_key="user_instructions",
|
666
|
+
recommended_steps_key="recommended_steps",
|
667
|
+
code_snippet_key="data_visualization_function",
|
668
|
+
)
|
669
|
+
else:
|
670
|
+
def human_review(state: GraphState) -> Command[Literal["chart_instructor", "__end__"]]:
|
671
|
+
return node_func_human_review(
|
672
|
+
state=state,
|
673
|
+
prompt_text=prompt_text_human_review,
|
674
|
+
yes_goto= '__end__',
|
675
|
+
no_goto="chart_instructor",
|
676
|
+
user_instructions_key="user_instructions",
|
677
|
+
recommended_steps_key="recommended_steps",
|
678
|
+
code_snippet_key="data_visualization_function",
|
679
|
+
)
|
247
680
|
|
248
681
|
|
249
682
|
def execute_data_visualization_code(state):
|
@@ -253,7 +686,7 @@ def make_data_visualization_agent(
|
|
253
686
|
result_key="plotly_graph",
|
254
687
|
error_key="data_visualization_error",
|
255
688
|
code_snippet_key="data_visualization_function",
|
256
|
-
agent_function_name="
|
689
|
+
agent_function_name=state.get("data_visualization_function_name"),
|
257
690
|
pre_processing=lambda data: pd.DataFrame.from_dict(data),
|
258
691
|
# post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
|
259
692
|
error_message_prefix="An error occurred during data visualization: "
|
@@ -261,11 +694,11 @@ def make_data_visualization_agent(
|
|
261
694
|
|
262
695
|
def fix_data_visualization_code(state: GraphState):
|
263
696
|
prompt = """
|
264
|
-
You are a Data Visualization Agent. Your job is to create a
|
697
|
+
You are a Data Visualization Agent. Your job is to create a {function_name}() function that can be run on the data provided. The function is currently broken and needs to be fixed.
|
265
698
|
|
266
|
-
Make sure to only return the function definition for
|
699
|
+
Make sure to only return the function definition for {function_name}().
|
267
700
|
|
268
|
-
Return Python code in ```python``` format with a single function definition,
|
701
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
269
702
|
|
270
703
|
This is the broken code (please fix):
|
271
704
|
{code_snippet}
|
@@ -283,6 +716,7 @@ def make_data_visualization_agent(
|
|
283
716
|
agent_name=AGENT_NAME,
|
284
717
|
log=log,
|
285
718
|
file_path=state.get("data_visualization_function_path"),
|
719
|
+
function_name=state.get("data_visualization_function_name"),
|
286
720
|
)
|
287
721
|
|
288
722
|
def explain_data_visualization_code(state: GraphState):
|
@@ -328,4 +762,3 @@ def make_data_visualization_agent(
|
|
328
762
|
)
|
329
763
|
|
330
764
|
return app
|
331
|
-
|