ai-data-science-team 0.0.0.9007__py3-none-any.whl → 0.0.0.9008__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +4 -4
- ai_data_science_team/agents/data_cleaning_agent.py +225 -84
- ai_data_science_team/agents/data_visualization_agent.py +460 -27
- ai_data_science_team/agents/data_wrangling_agent.py +455 -16
- ai_data_science_team/agents/feature_engineering_agent.py +429 -25
- ai_data_science_team/agents/sql_database_agent.py +367 -21
- ai_data_science_team/multiagents/__init__.py +1 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +286 -0
- ai_data_science_team/multiagents/supervised_data_analyst.py +2 -0
- ai_data_science_team/templates/__init__.py +2 -1
- ai_data_science_team/templates/agent_templates.py +247 -42
- ai_data_science_team/tools/regex.py +28 -1
- ai_data_science_team/utils/__init__.py +0 -0
- ai_data_science_team/utils/plotly.py +24 -0
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/METADATA +76 -28
- ai_data_science_team-0.0.0.9008.dist-info/RECORD +26 -0
- ai_data_science_team-0.0.0.9007.dist-info/RECORD +0 -21
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9007.dist-info → ai_data_science_team-0.0.0.9008.dist-info}/top_level.txt +0 -0
ai_data_science_team/_version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.0.0.
|
1
|
+
__version__ = "0.0.0.9008"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from ai_data_science_team.agents.data_cleaning_agent import make_data_cleaning_agent, DataCleaningAgent
|
2
|
-
from ai_data_science_team.agents.feature_engineering_agent import make_feature_engineering_agent
|
3
|
-
from ai_data_science_team.agents.data_wrangling_agent import make_data_wrangling_agent
|
4
|
-
from ai_data_science_team.agents.sql_database_agent import make_sql_database_agent
|
5
|
-
from ai_data_science_team.agents.data_visualization_agent import make_data_visualization_agent
|
2
|
+
from ai_data_science_team.agents.feature_engineering_agent import make_feature_engineering_agent, FeatureEngineeringAgent
|
3
|
+
from ai_data_science_team.agents.data_wrangling_agent import make_data_wrangling_agent, DataWranglingAgent
|
4
|
+
from ai_data_science_team.agents.sql_database_agent import make_sql_database_agent, SQLDatabaseAgent
|
5
|
+
from ai_data_science_team.agents.data_visualization_agent import make_data_visualization_agent, DataVisualizationAgent
|
6
6
|
|
@@ -13,21 +13,22 @@ from langchain_core.messages import BaseMessage
|
|
13
13
|
from langgraph.types import Command
|
14
14
|
from langgraph.checkpoint.memory import MemorySaver
|
15
15
|
|
16
|
-
from langgraph.graph.state import CompiledStateGraph
|
17
|
-
|
18
16
|
import os
|
19
17
|
import io
|
20
18
|
import pandas as pd
|
21
19
|
|
20
|
+
from IPython.display import Markdown
|
21
|
+
|
22
22
|
from ai_data_science_team.templates import(
|
23
23
|
node_func_execute_agent_code_on_data,
|
24
24
|
node_func_human_review,
|
25
25
|
node_func_fix_agent_code,
|
26
26
|
node_func_explain_agent_code,
|
27
|
-
create_coding_agent_graph
|
27
|
+
create_coding_agent_graph,
|
28
|
+
BaseAgent,
|
28
29
|
)
|
29
30
|
from ai_data_science_team.tools.parsers import PythonOutputParser
|
30
|
-
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name
|
31
|
+
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name, format_recommended_steps
|
31
32
|
from ai_data_science_team.tools.metadata import get_dataframe_summary
|
32
33
|
from ai_data_science_team.tools.logging import log_ai_function
|
33
34
|
|
@@ -38,7 +39,109 @@ LOG_PATH = os.path.join(os.getcwd(), "logs/")
|
|
38
39
|
|
39
40
|
|
40
41
|
# Class
|
41
|
-
class DataCleaningAgent(
|
42
|
+
class DataCleaningAgent(BaseAgent):
|
43
|
+
"""
|
44
|
+
Creates a data cleaning agent that can process datasets based on user-defined instructions or default cleaning steps.
|
45
|
+
The agent generates a Python function to clean the dataset, performs the cleaning, and logs the process, including code
|
46
|
+
and errors. It is designed to facilitate reproducible and customizable data cleaning workflows.
|
47
|
+
|
48
|
+
The agent performs the following default cleaning steps unless instructed otherwise:
|
49
|
+
|
50
|
+
- Removing columns with more than 40% missing values.
|
51
|
+
- Imputing missing values with the mean for numeric columns.
|
52
|
+
- Imputing missing values with the mode for categorical columns.
|
53
|
+
- Converting columns to appropriate data types.
|
54
|
+
- Removing duplicate rows.
|
55
|
+
- Removing rows with missing values.
|
56
|
+
- Removing rows with extreme outliers (values 3x the interquartile range).
|
57
|
+
|
58
|
+
User instructions can modify, add, or remove any of these steps to tailor the cleaning process.
|
59
|
+
|
60
|
+
Parameters
|
61
|
+
----------
|
62
|
+
model : langchain.llms.base.LLM
|
63
|
+
The language model used to generate the data cleaning function.
|
64
|
+
n_samples : int, optional
|
65
|
+
Number of samples used when summarizing the dataset. Defaults to 30. Reducing this number can help
|
66
|
+
avoid exceeding the model's token limits.
|
67
|
+
log : bool, optional
|
68
|
+
Whether to log the generated code and errors. Defaults to False.
|
69
|
+
log_path : str, optional
|
70
|
+
Directory path for storing log files. Defaults to None.
|
71
|
+
file_name : str, optional
|
72
|
+
Name of the file for saving the generated response. Defaults to "data_cleaner.py".
|
73
|
+
function_name : str, optional
|
74
|
+
Name of the generated data cleaning function. Defaults to "data_cleaner".
|
75
|
+
overwrite : bool, optional
|
76
|
+
Whether to overwrite the log file if it exists. If False, a unique file name is created. Defaults to True.
|
77
|
+
human_in_the_loop : bool, optional
|
78
|
+
Enables user review of data cleaning instructions. Defaults to False.
|
79
|
+
bypass_recommended_steps : bool, optional
|
80
|
+
If True, skips the default recommended cleaning steps. Defaults to False.
|
81
|
+
bypass_explain_code : bool, optional
|
82
|
+
If True, skips the step that provides code explanations. Defaults to False.
|
83
|
+
|
84
|
+
Methods
|
85
|
+
-------
|
86
|
+
update_params(**kwargs)
|
87
|
+
Updates the agent's parameters and rebuilds the compiled state graph.
|
88
|
+
ainvoke_agent(user_instructions: str, data_raw: pd.DataFrame, max_retries=3, retry_count=0)
|
89
|
+
Cleans the provided dataset asynchronously based on user instructions.
|
90
|
+
invoke_agent(user_instructions: str, data_raw: pd.DataFrame, max_retries=3, retry_count=0)
|
91
|
+
Cleans the provided dataset synchronously based on user instructions.
|
92
|
+
explain_cleaning_steps()
|
93
|
+
Returns an explanation of the cleaning steps performed by the agent.
|
94
|
+
get_log_summary()
|
95
|
+
Retrieves a summary of logged operations if logging is enabled.
|
96
|
+
get_state_keys()
|
97
|
+
Returns a list of keys from the state graph response.
|
98
|
+
get_state_properties()
|
99
|
+
Returns detailed properties of the state graph response.
|
100
|
+
get_data_cleaned()
|
101
|
+
Retrieves the cleaned dataset as a pandas DataFrame.
|
102
|
+
get_data_raw()
|
103
|
+
Retrieves the raw dataset as a pandas DataFrame.
|
104
|
+
get_data_cleaner_function()
|
105
|
+
Retrieves the generated Python function used for cleaning the data.
|
106
|
+
get_recommended_cleaning_steps()
|
107
|
+
Retrieves the agent's recommended cleaning steps.
|
108
|
+
get_response()
|
109
|
+
Returns the response from the agent as a dictionary.
|
110
|
+
show()
|
111
|
+
Displays the agent's mermaid diagram.
|
112
|
+
|
113
|
+
Examples
|
114
|
+
--------
|
115
|
+
```python
|
116
|
+
import pandas as pd
|
117
|
+
from langchain_openai import ChatOpenAI
|
118
|
+
from ai_data_science_team.agents import DataCleaningAgent
|
119
|
+
|
120
|
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
121
|
+
|
122
|
+
data_cleaning_agent = DataCleaningAgent(
|
123
|
+
model=llm, n_samples=50, log=True, log_path="logs", human_in_the_loop=True
|
124
|
+
)
|
125
|
+
|
126
|
+
df = pd.read_csv("https://raw.githubusercontent.com/business-science/ai-data-science-team/refs/heads/master/data/churn_data.csv")
|
127
|
+
|
128
|
+
data_cleaning_agent.invoke_agent(
|
129
|
+
user_instructions="Don't remove outliers when cleaning the data.",
|
130
|
+
data_raw=df,
|
131
|
+
max_retries=3,
|
132
|
+
retry_count=0
|
133
|
+
)
|
134
|
+
|
135
|
+
cleaned_data = data_cleaning_agent.get_data_cleaned()
|
136
|
+
|
137
|
+
response = data_cleaning_agent.response
|
138
|
+
```
|
139
|
+
|
140
|
+
Returns
|
141
|
+
--------
|
142
|
+
DataCleaningAgent : langchain.graphs.CompiledStateGraph
|
143
|
+
A data cleaning agent implemented as a compiled state graph.
|
144
|
+
"""
|
42
145
|
|
43
146
|
def __init__(
|
44
147
|
self,
|
@@ -47,6 +150,7 @@ class DataCleaningAgent(CompiledStateGraph):
|
|
47
150
|
log=False,
|
48
151
|
log_path=None,
|
49
152
|
file_name="data_cleaner.py",
|
153
|
+
function_name="data_cleaner",
|
50
154
|
overwrite=True,
|
51
155
|
human_in_the_loop=False,
|
52
156
|
bypass_recommended_steps=False,
|
@@ -58,6 +162,7 @@ class DataCleaningAgent(CompiledStateGraph):
|
|
58
162
|
"log": log,
|
59
163
|
"log_path": log_path,
|
60
164
|
"file_name": file_name,
|
165
|
+
"function_name": function_name,
|
61
166
|
"overwrite": overwrite,
|
62
167
|
"human_in_the_loop": human_in_the_loop,
|
63
168
|
"bypass_recommended_steps": bypass_recommended_steps,
|
@@ -67,65 +172,70 @@ class DataCleaningAgent(CompiledStateGraph):
|
|
67
172
|
self.response = None
|
68
173
|
|
69
174
|
def _make_compiled_graph(self):
|
70
|
-
self.response = None
|
71
|
-
return make_data_cleaning_agent(**self._params)
|
72
|
-
|
73
|
-
def update_params(self, **kwargs):
|
74
175
|
"""
|
75
|
-
|
76
|
-
e.g. agent.update_params(model=new_llm, n_samples=100)
|
176
|
+
Create the compiled graph for the data cleaning agent. Running this method will reset the response to None.
|
77
177
|
"""
|
78
|
-
self.
|
79
|
-
|
178
|
+
self.response=None
|
179
|
+
return make_data_cleaning_agent(**self._params)
|
80
180
|
|
81
|
-
def __getattr__(self, name: str):
|
82
|
-
"""
|
83
|
-
Delegate attribute access to `_compiled_graph` if `name` is not
|
84
|
-
found in this instance. This 'inherits' methods from the compiled graph.
|
85
|
-
"""
|
86
|
-
return getattr(self._compiled_graph, name)
|
87
181
|
|
88
|
-
def
|
182
|
+
def ainvoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
89
183
|
"""
|
90
|
-
|
184
|
+
Asynchronously invokes the agent. The response is stored in the response attribute.
|
91
185
|
|
92
186
|
Parameters:
|
93
|
-
|
94
|
-
data_raw (pd.DataFrame):
|
95
|
-
|
96
|
-
|
187
|
+
----------
|
188
|
+
data_raw (pd.DataFrame):
|
189
|
+
The raw dataset to be cleaned.
|
190
|
+
user_instructions (str):
|
191
|
+
Instructions for data cleaning agent.
|
192
|
+
max_retries (int):
|
193
|
+
Maximum retry attempts for cleaning.
|
194
|
+
retry_count (int):
|
195
|
+
Current retry attempt.
|
196
|
+
**kwargs
|
197
|
+
Additional keyword arguments to pass to ainvoke().
|
97
198
|
|
98
199
|
Returns:
|
200
|
+
--------
|
99
201
|
None. The response is stored in the response attribute.
|
100
202
|
"""
|
101
|
-
response = self.ainvoke({
|
203
|
+
response = self._compiled_graph.ainvoke({
|
102
204
|
"user_instructions": user_instructions,
|
103
205
|
"data_raw": data_raw.to_dict(),
|
104
206
|
"max_retries": max_retries,
|
105
207
|
"retry_count": retry_count,
|
106
|
-
})
|
208
|
+
}, **kwargs)
|
107
209
|
self.response = response
|
108
210
|
return None
|
109
211
|
|
110
|
-
def
|
212
|
+
def invoke_agent(self, data_raw: pd.DataFrame, user_instructions: str=None, max_retries:int=3, retry_count:int=0, **kwargs):
|
111
213
|
"""
|
112
|
-
|
214
|
+
Invokes the agent. The response is stored in the response attribute.
|
113
215
|
|
114
216
|
Parameters:
|
115
|
-
|
116
|
-
data_raw (pd.DataFrame):
|
117
|
-
|
118
|
-
|
217
|
+
----------
|
218
|
+
data_raw (pd.DataFrame):
|
219
|
+
The raw dataset to be cleaned.
|
220
|
+
user_instructions (str):
|
221
|
+
Instructions for data cleaning agent.
|
222
|
+
max_retries (int):
|
223
|
+
Maximum retry attempts for cleaning.
|
224
|
+
retry_count (int):
|
225
|
+
Current retry attempt.
|
226
|
+
**kwargs
|
227
|
+
Additional keyword arguments to pass to invoke().
|
119
228
|
|
120
229
|
Returns:
|
230
|
+
--------
|
121
231
|
None. The response is stored in the response attribute.
|
122
232
|
"""
|
123
|
-
response = self.invoke({
|
233
|
+
response = self._compiled_graph.invoke({
|
124
234
|
"user_instructions": user_instructions,
|
125
235
|
"data_raw": data_raw.to_dict(),
|
126
236
|
"max_retries": max_retries,
|
127
237
|
"retry_count": retry_count,
|
128
|
-
})
|
238
|
+
},**kwargs)
|
129
239
|
self.response = response
|
130
240
|
return None
|
131
241
|
|
@@ -139,30 +249,21 @@ class DataCleaningAgent(CompiledStateGraph):
|
|
139
249
|
messages = self.response.get("messages", [])
|
140
250
|
return messages
|
141
251
|
|
142
|
-
def get_log_summary(self):
|
252
|
+
def get_log_summary(self, markdown=False):
|
143
253
|
"""
|
144
254
|
Logs a summary of the agent's operations, if logging is enabled.
|
145
255
|
"""
|
146
256
|
if self.response:
|
147
|
-
if self.
|
257
|
+
if self.response.get('data_cleaner_function_path'):
|
148
258
|
log_details = f"Log Path: {self.response.get('data_cleaner_function_path')}"
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
Returns a list of keys that the state graph returns in a response.
|
154
|
-
"""
|
155
|
-
return list(self.get_output_jsonschema()['properties'].keys())
|
156
|
-
|
157
|
-
def get_state_properties(self):
|
158
|
-
"""
|
159
|
-
Returns a list of keys that the state graph returns in a response.
|
160
|
-
"""
|
161
|
-
return self.get_output_jsonschema()['properties']
|
259
|
+
if markdown:
|
260
|
+
return Markdown(log_details)
|
261
|
+
else:
|
262
|
+
return log_details
|
162
263
|
|
163
264
|
def get_data_cleaned(self):
|
164
265
|
"""
|
165
|
-
Retrieves the cleaned data stored after running
|
266
|
+
Retrieves the cleaned data stored after running invoke_agent or clean_data methods.
|
166
267
|
"""
|
167
268
|
if self.response:
|
168
269
|
return pd.DataFrame(self.response.get("data_cleaned"))
|
@@ -174,15 +275,25 @@ class DataCleaningAgent(CompiledStateGraph):
|
|
174
275
|
if self.response:
|
175
276
|
return pd.DataFrame(self.response.get("data_raw"))
|
176
277
|
|
177
|
-
def get_data_cleaner_function(self):
|
278
|
+
def get_data_cleaner_function(self, markdown=False):
|
178
279
|
"""
|
179
280
|
Retrieves the agent's pipeline function.
|
180
281
|
"""
|
181
282
|
if self.response:
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
283
|
+
if markdown:
|
284
|
+
return Markdown(f"```python\n{self.response.get('data_cleaner_function')}\n```")
|
285
|
+
else:
|
286
|
+
return self.response.get("data_cleaner_function")
|
287
|
+
|
288
|
+
def get_recommended_cleaning_steps(self, markdown=False):
|
289
|
+
"""
|
290
|
+
Retrieves the agent's recommended cleaning steps
|
291
|
+
"""
|
292
|
+
if self.response:
|
293
|
+
if markdown:
|
294
|
+
return Markdown(self.response.get('recommended_steps'))
|
295
|
+
else:
|
296
|
+
return self.response.get('recommended_steps')
|
186
297
|
|
187
298
|
|
188
299
|
|
@@ -194,6 +305,7 @@ def make_data_cleaning_agent(
|
|
194
305
|
log=False,
|
195
306
|
log_path=None,
|
196
307
|
file_name="data_cleaner.py",
|
308
|
+
function_name="data_cleaner",
|
197
309
|
overwrite = True,
|
198
310
|
human_in_the_loop=False,
|
199
311
|
bypass_recommended_steps=False,
|
@@ -235,6 +347,8 @@ def make_data_cleaning_agent(
|
|
235
347
|
"logs/".
|
236
348
|
file_name : str, optional
|
237
349
|
The name of the file to save the response to. Defaults to "data_cleaner.py".
|
350
|
+
function_name : str, optional
|
351
|
+
The name of the function that will be generated to clean the data. Defaults to "data_cleaner".
|
238
352
|
overwrite : bool, optional
|
239
353
|
Whether or not to overwrite the log file if it already exists. If False, a unique file name will be created.
|
240
354
|
Defaults to True.
|
@@ -275,6 +389,11 @@ def make_data_cleaning_agent(
|
|
275
389
|
"""
|
276
390
|
llm = model
|
277
391
|
|
392
|
+
# Human in th loop requires recommended steps
|
393
|
+
if bypass_recommended_steps and human_in_the_loop:
|
394
|
+
bypass_recommended_steps = False
|
395
|
+
print("Bypass recommended steps set to False to enable human in the loop.")
|
396
|
+
|
278
397
|
# Setup Log Directory
|
279
398
|
if log:
|
280
399
|
if log_path is None:
|
@@ -292,6 +411,7 @@ def make_data_cleaning_agent(
|
|
292
411
|
all_datasets_summary: str
|
293
412
|
data_cleaner_function: str
|
294
413
|
data_cleaner_function_path: str
|
414
|
+
data_cleaner_file_name: str
|
295
415
|
data_cleaner_function_name: str
|
296
416
|
data_cleaner_error: str
|
297
417
|
max_retries: int
|
@@ -366,7 +486,7 @@ def make_data_cleaning_agent(
|
|
366
486
|
})
|
367
487
|
|
368
488
|
return {
|
369
|
-
"recommended_steps": "
|
489
|
+
"recommended_steps": format_recommended_steps(recommended_steps.content.strip(), heading="# Recommended Data Cleaning Steps:"),
|
370
490
|
"all_datasets_summary": all_datasets_summary_str
|
371
491
|
}
|
372
492
|
|
@@ -386,42 +506,44 @@ def make_data_cleaning_agent(
|
|
386
506
|
else:
|
387
507
|
all_datasets_summary_str = state.get("all_datasets_summary")
|
388
508
|
|
509
|
+
|
389
510
|
data_cleaning_prompt = PromptTemplate(
|
390
511
|
template="""
|
391
|
-
You are a Data Cleaning Agent. Your job is to create a
|
392
|
-
|
512
|
+
You are a Data Cleaning Agent. Your job is to create a {function_name}() function that can be run on the data provided using the following recommended steps.
|
513
|
+
|
393
514
|
Recommended Steps:
|
394
515
|
{recommended_steps}
|
395
|
-
|
516
|
+
|
396
517
|
You can use Pandas, Numpy, and Scikit Learn libraries to clean the data.
|
397
|
-
|
518
|
+
|
398
519
|
Below are summaries of all datasets provided. Use this information about the data to help determine how to clean the data:
|
399
520
|
|
400
521
|
{all_datasets_summary}
|
401
|
-
|
402
|
-
Return Python code in ```python
|
403
|
-
|
522
|
+
|
523
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
524
|
+
|
404
525
|
Return code to provide the data cleaning function:
|
405
|
-
|
406
|
-
def
|
526
|
+
|
527
|
+
def {function_name}(data_raw):
|
407
528
|
import pandas as pd
|
408
529
|
import numpy as np
|
409
530
|
...
|
410
531
|
return data_cleaned
|
411
|
-
|
532
|
+
|
412
533
|
Best Practices and Error Preventions:
|
413
|
-
|
534
|
+
|
414
535
|
Always ensure that when assigning the output of fit_transform() from SimpleImputer to a Pandas DataFrame column, you call .ravel() or flatten the array, because fit_transform() returns a 2D array while a DataFrame column is 1D.
|
415
536
|
|
416
537
|
""",
|
417
|
-
input_variables=["recommended_steps", "all_datasets_summary"]
|
538
|
+
input_variables=["recommended_steps", "all_datasets_summary", "function_name"]
|
418
539
|
)
|
419
540
|
|
420
541
|
data_cleaning_agent = data_cleaning_prompt | llm | PythonOutputParser()
|
421
542
|
|
422
543
|
response = data_cleaning_agent.invoke({
|
423
544
|
"recommended_steps": state.get("recommended_steps"),
|
424
|
-
"all_datasets_summary": all_datasets_summary_str
|
545
|
+
"all_datasets_summary": all_datasets_summary_str,
|
546
|
+
"function_name": function_name
|
425
547
|
})
|
426
548
|
|
427
549
|
response = relocate_imports_inside_function(response)
|
@@ -439,19 +561,37 @@ def make_data_cleaning_agent(
|
|
439
561
|
return {
|
440
562
|
"data_cleaner_function" : response,
|
441
563
|
"data_cleaner_function_path": file_path,
|
442
|
-
"
|
564
|
+
"data_cleaner_file_name": file_name_2,
|
565
|
+
"data_cleaner_function_name": function_name,
|
443
566
|
"all_datasets_summary": all_datasets_summary_str
|
444
567
|
}
|
568
|
+
|
569
|
+
# Human Review
|
570
|
+
|
571
|
+
prompt_text_human_review = "Are the following data cleaning instructions correct? (Answer 'yes' or provide modifications)\n{steps}"
|
445
572
|
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
573
|
+
if not bypass_explain_code:
|
574
|
+
def human_review(state: GraphState) -> Command[Literal["recommend_cleaning_steps", "explain_data_cleaner_code"]]:
|
575
|
+
return node_func_human_review(
|
576
|
+
state=state,
|
577
|
+
prompt_text=prompt_text_human_review,
|
578
|
+
yes_goto= 'explain_data_cleaner_code',
|
579
|
+
no_goto="recommend_cleaning_steps",
|
580
|
+
user_instructions_key="user_instructions",
|
581
|
+
recommended_steps_key="recommended_steps",
|
582
|
+
code_snippet_key="data_cleaner_function",
|
583
|
+
)
|
584
|
+
else:
|
585
|
+
def human_review(state: GraphState) -> Command[Literal["recommend_cleaning_steps", "__end__"]]:
|
586
|
+
return node_func_human_review(
|
587
|
+
state=state,
|
588
|
+
prompt_text=prompt_text_human_review,
|
589
|
+
yes_goto= '__end__',
|
590
|
+
no_goto="recommend_cleaning_steps",
|
591
|
+
user_instructions_key="user_instructions",
|
592
|
+
recommended_steps_key="recommended_steps",
|
593
|
+
code_snippet_key="data_cleaner_function",
|
594
|
+
)
|
455
595
|
|
456
596
|
def execute_data_cleaner_code(state):
|
457
597
|
return node_func_execute_agent_code_on_data(
|
@@ -460,7 +600,7 @@ def make_data_cleaning_agent(
|
|
460
600
|
result_key="data_cleaned",
|
461
601
|
error_key="data_cleaner_error",
|
462
602
|
code_snippet_key="data_cleaner_function",
|
463
|
-
agent_function_name="
|
603
|
+
agent_function_name=state.get("data_cleaner_function_name"),
|
464
604
|
pre_processing=lambda data: pd.DataFrame.from_dict(data),
|
465
605
|
post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
|
466
606
|
error_message_prefix="An error occurred during data cleaning: "
|
@@ -468,11 +608,11 @@ def make_data_cleaning_agent(
|
|
468
608
|
|
469
609
|
def fix_data_cleaner_code(state: GraphState):
|
470
610
|
data_cleaner_prompt = """
|
471
|
-
You are a Data Cleaning Agent. Your job is to create a
|
611
|
+
You are a Data Cleaning Agent. Your job is to create a {function_name}() function that can be run on the data provided. The function is currently broken and needs to be fixed.
|
472
612
|
|
473
|
-
Make sure to only return the function definition for
|
613
|
+
Make sure to only return the function definition for {function_name}().
|
474
614
|
|
475
|
-
Return Python code in ```python``` format with a single function definition,
|
615
|
+
Return Python code in ```python``` format with a single function definition, {function_name}(data_raw), that includes all imports inside the function.
|
476
616
|
|
477
617
|
This is the broken code (please fix):
|
478
618
|
{code_snippet}
|
@@ -490,6 +630,7 @@ def make_data_cleaning_agent(
|
|
490
630
|
agent_name=AGENT_NAME,
|
491
631
|
log=log,
|
492
632
|
file_path=state.get("data_cleaner_function_path"),
|
633
|
+
function_name=state.get("data_cleaner_function_name"),
|
493
634
|
)
|
494
635
|
|
495
636
|
def explain_data_cleaner_code(state: GraphState):
|