agentic-threat-hunting-framework 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/METADATA +1 -1
  2. agentic_threat_hunting_framework-0.2.4.dist-info/RECORD +47 -0
  3. athf/__version__.py +1 -1
  4. athf/cli.py +1 -1
  5. athf/commands/hunt.py +1 -3
  6. athf/commands/init.py +45 -0
  7. athf/commands/similar.py +2 -2
  8. athf/data/__init__.py +14 -0
  9. athf/data/docs/CHANGELOG.md +147 -0
  10. athf/data/docs/CLI_REFERENCE.md +1797 -0
  11. athf/data/docs/INSTALL.md +594 -0
  12. athf/data/docs/README.md +31 -0
  13. athf/data/docs/environment.md +256 -0
  14. athf/data/docs/getting-started.md +419 -0
  15. athf/data/docs/level4-agentic-workflows.md +480 -0
  16. athf/data/docs/lock-pattern.md +149 -0
  17. athf/data/docs/maturity-model.md +400 -0
  18. athf/data/docs/why-athf.md +44 -0
  19. athf/data/hunts/FORMAT_GUIDELINES.md +507 -0
  20. athf/data/hunts/H-0001.md +453 -0
  21. athf/data/hunts/H-0002.md +436 -0
  22. athf/data/hunts/H-0003.md +546 -0
  23. athf/data/hunts/README.md +231 -0
  24. athf/data/integrations/MCP_CATALOG.md +45 -0
  25. athf/data/integrations/README.md +129 -0
  26. athf/data/integrations/quickstart/splunk.md +162 -0
  27. athf/data/knowledge/hunting-knowledge.md +2375 -0
  28. athf/data/prompts/README.md +172 -0
  29. athf/data/prompts/ai-workflow.md +581 -0
  30. athf/data/prompts/basic-prompts.md +316 -0
  31. athf/data/templates/HUNT_LOCK.md +228 -0
  32. agentic_threat_hunting_framework-0.2.3.dist-info/RECORD +0 -23
  33. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/WHEEL +0 -0
  34. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/entry_points.txt +0 -0
  35. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/licenses/LICENSE +0 -0
  36. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,316 @@
1
+ # Basic Hunt Prompts
2
+
3
+ **Level:** 0-1 (Manual/Documented)
4
+ **Purpose:** Copy-paste prompts for ChatGPT, Claude, or other AI assistants
5
+
6
+ Use these prompts when you're working outside of an AI-enabled IDE and need quick assistance with hypothesis generation, query building, or documentation.
7
+
8
+ ---
9
+
10
+ ## Section 1: Generate Hypothesis
11
+
12
+ Use this when you have context (CTI, alerts, anomalies) but need help forming a testable hypothesis.
13
+
14
+ ### Prompt Template
15
+
16
+ ```
17
+ You are a threat hunting expert helping generate behavior-based hunt hypotheses.
18
+
19
+ CONTEXT:
20
+ [Paste your context here - CTI snippet, alert, baseline drift, or gap]
21
+
22
+ RULES:
23
+ 1. Generate 1-3 tightly scoped hypotheses
24
+ 2. Each hypothesis must follow this pattern: "Adversaries use [behavior] to [goal] on [target]"
25
+ 3. Focus on observable behaviors in data, not indicators
26
+ 4. Include relevant ATT&CK technique (T####)
27
+ 5. Keep hypotheses specific and testable
28
+
29
+ OUTPUT FORMAT:
30
+ For each hypothesis provide:
31
+ - Hypothesis statement
32
+ - ATT&CK Technique
33
+ - Tactic
34
+ - Data sources needed (e.g., "Windows Event Logs, Sysmon")
35
+ - Why this is worth hunting now
36
+
37
+ EXAMPLE OUTPUT:
38
+ Hypothesis: "Adversaries use base64-encoded PowerShell commands to establish persistence on Windows servers"
39
+ ATT&CK: T1059.001 (PowerShell)
40
+ Tactic: TA0003 (Persistence)
41
+ Data Needed: Sysmon Event ID 1, PowerShell logs
42
+ Why Now: Recent CTI shows APT29 using this technique; baseline shows low historical usage on servers
43
+
44
+ Generate hypothesis now:
45
+ ```
46
+
47
+ ### Tips
48
+
49
+ - **Be specific with context** - More details = better hypotheses
50
+ - **Ask for alternatives** - "Give me 3 different approaches"
51
+ - **Iterate** - Refine based on what data you actually have
52
+ - **Test for specificity** - Can you write a query from this hypothesis?
53
+
54
+ ### Refining Hypotheses
55
+
56
+ If too broad:
57
+
58
+ - Add "on [specific target]" (e.g., "on domain controllers")
59
+ - Add time constraints (e.g., "during business hours")
60
+ - Add environmental context (e.g., "in production network")
61
+
62
+ If too narrow:
63
+
64
+ - Remove overly specific indicators
65
+ - Focus on behavior pattern, not single event
66
+ - Generalize target or timeframe
67
+
68
+ ---
69
+
70
+ ## Section 2: Build Query
71
+
72
+ Use this when you have a hypothesis and need help drafting a safe, bounded query.
73
+
74
+ ### Prompt Template
75
+
76
+ ```
77
+ You are a threat hunting query expert. Help me write a safe, bounded query to test a hunt hypothesis.
78
+
79
+ HYPOTHESIS:
80
+ [Your hypothesis here]
81
+
82
+ PLATFORM: [Splunk / KQL (Sentinel/Defender) / Elastic]
83
+
84
+ DATA AVAILABLE:
85
+ - Index/Table: [name]
86
+ - Sourcetype/DataSource: [name]
87
+ - Key fields: [list]
88
+
89
+ CONSTRAINTS:
90
+ 1. Time range: earliest=-24h latest=now (adjust as needed)
91
+ 2. Result cap: head 1000 (or | take 1000 for KQL)
92
+ 3. Use tstats (Splunk) or summarize (KQL) when possible for performance
93
+ 4. Include metadata comments with hunt ID and ATT&CK technique
94
+ 5. Return only essential fields
95
+ 6. Add eval/extend to tag results with hunt_id and attack_technique
96
+
97
+ OUTPUT FORMAT:
98
+ Provide:
99
+ 1. The complete query
100
+ 2. Brief explanation of what it does
101
+ 3. Expected runtime estimate
102
+ 4. Suggestions for tuning if results are too noisy
103
+
104
+ Generate query now:
105
+ ```
106
+
107
+ ### Query Templates
108
+
109
+ **Splunk SPL:**
110
+
111
+ ```spl
112
+ /* H-#### | ATT&CK: T#### | Purpose: [description]
113
+ Earliest: -24h | Latest: now | Cap: 1000 | Owner: [name] */
114
+
115
+ | tstats count from datamodel=YourDataModel where
116
+ [your conditions]
117
+ by _time, host, [key_fields] span=5m
118
+ | head 1000
119
+ | eval hunt_id="H-####", attack_technique="T####"
120
+ | fields _time, host, [relevant_fields], hunt_id, attack_technique
121
+ ```
122
+
123
+ **KQL:**
124
+
125
+ ```kql
126
+ // H-#### | ATT&CK: T#### | Purpose: [description]
127
+ // TimeRange: ago(24h) | Cap: 1000 | Owner: [name]
128
+
129
+ YourTable
130
+ | where TimeGenerated >= ago(24h)
131
+ | where [your conditions]
132
+ | summarize Count=count() by bin(TimeGenerated, 5m), Computer, [key_fields]
133
+ | take 1000
134
+ | extend HuntId="H-####", AttackTechnique="T####"
135
+ ```
136
+
137
+ ### Query Best Practices
138
+
139
+ **Performance:**
140
+
141
+ - Use data models (Splunk) or summarize (KQL) when possible
142
+ - Filter early - most restrictive conditions first
143
+ - Limit fields - only return what you need
144
+ - Set sensible time ranges - start with 24h, expand if needed
145
+
146
+ **Safety:**
147
+
148
+ - Always bound time - never open-ended searches
149
+ - Always cap results - protect your SIEM
150
+ - Test on small timeframes first - 1 hour before 24 hours
151
+ - Use lookups for enrichment - don't join large datasets inline
152
+
153
+ **Signal Quality:**
154
+
155
+ - Filter known good - baseline automation, admin tools
156
+ - Add context - enrich with asset inventory, user roles
157
+ - Look for anomalies - rare processes, unusual times, unexpected hosts
158
+ - Use stats wisely - count, distinct count, rare events
159
+
160
+ ### Troubleshooting
161
+
162
+ **Too many results?**
163
+
164
+ - Add more specific filters
165
+ - Shorten time range
166
+ - Filter out known benign activity
167
+ - Use rare() or unusual patterns
168
+
169
+ **Too few results?**
170
+
171
+ - Broaden conditions
172
+ - Check field names and values
173
+ - Verify data is actually indexed
174
+ - Expand time range
175
+
176
+ **Query too slow?**
177
+
178
+ - Use data models/accelerated searches
179
+ - Reduce time range
180
+ - Remove expensive operations (regex, complex joins)
181
+ - Add index= constraints
182
+
183
+ ---
184
+
185
+ ## Section 3: Document Results
186
+
187
+ Use this after executing a hunt to help write concise findings in LOCK format.
188
+
189
+ ### Prompt Template
190
+
191
+ ```
192
+ You are a threat hunting analyst helping document hunt results following the LOCK pattern.
193
+
194
+ HYPOTHESIS:
195
+ [Your hypothesis]
196
+
197
+ QUERY EXECUTED:
198
+ [Paste query]
199
+
200
+ RESULTS SUMMARY:
201
+ - Time range: [earliest to latest]
202
+ - Rows examined: [count]
203
+ - Rows returned: [count]
204
+ - Runtime: [seconds]
205
+ - Key findings: [brief description of what you found]
206
+
207
+ RAW OBSERVATIONS:
208
+ [Paste sample results or describe what you saw]
209
+
210
+ TASK:
211
+ Write a concise summary for the KEEP section of my hunt file.
212
+ Focus on:
213
+ - What we found (2-4 sentences)
214
+ - Decision (accept/reject/needs_changes) with reason
215
+ - Next steps (one concrete action)
216
+ - Lessons learned (one key takeaway)
217
+
218
+ Keep it to 5-8 sentences total.
219
+
220
+ Generate summary now:
221
+ ```
222
+
223
+ ### What Makes Good Documentation
224
+
225
+ **Be Concise:**
226
+
227
+ - 5-8 sentences total for findings
228
+ - 3 bullet points max per section
229
+ - Focus on signal, not every detail
230
+
231
+ **Be Honest:**
232
+
233
+ - Accept = Found useful signal or suspicious activity
234
+ - Reject = Benign, false positive, or baseline noise
235
+ - Needs Changes = Interesting but query needs refinement
236
+
237
+ Don't be afraid to reject! Useful negatives teach us what's normal.
238
+
239
+ **Be Specific:**
240
+
241
+ - ❌ "Found some suspicious stuff, need to investigate"
242
+ - ✅ "Found 3 hosts with encoded PowerShell outside business hours; 2 match known deployment patterns, 1 requires IR escalation"
243
+
244
+ **Capture Lessons:**
245
+ This is the most important part - it's what makes the system smarter.
246
+
247
+ Good lessons:
248
+
249
+ - "Baseline automation reduced signal-to-noise by 80%"
250
+ - "Time-of-day filtering eliminated weekend maintenance jobs"
251
+ - "Parent process context critical for distinguishing admin vs adversary"
252
+
253
+ Avoid vague lessons:
254
+
255
+ - "Queries should be better"
256
+ - "Need more data"
257
+ - "This was hard"
258
+
259
+ ---
260
+
261
+ ## Usage Notes
262
+
263
+ ### Workflow
264
+
265
+ 1. **Generate Hypothesis** - Use Section 1 with your context
266
+ 2. **Build Query** - Use Section 2 with your hypothesis
267
+ 3. **Execute Hunt** - Run query in your SIEM (test small timeframes first!)
268
+ 4. **Document Results** - Use Section 3 to capture findings
269
+
270
+ ### Safety Reminders
271
+
272
+ - **Always review** AI-generated hypotheses for feasibility
273
+ - **Always test** AI-generated queries on small timeframes first
274
+ - **Always validate** that queries are safe and bounded
275
+ - **Use your judgment** - You know your environment better than AI
276
+
277
+ ### Platform-Specific Tips
278
+
279
+ **Splunk:**
280
+
281
+ - Mention "Splunk SPL" in your prompt
282
+ - Specify data models when available
283
+ - AI knows common Splunk patterns
284
+
285
+ **KQL (Sentinel/Defender):**
286
+
287
+ - Mention "KQL for Sentinel" or "KQL for Defender"
288
+ - Specify table names (SecurityEvent, DeviceProcessEvents, etc.)
289
+ - AI understands Sentinel-specific syntax
290
+
291
+ **Elastic:**
292
+
293
+ - Mention "Elastic EQL" or "Lucene query"
294
+ - Specify index patterns
295
+ - Note which Elastic stack version
296
+
297
+ ---
298
+
299
+ ## Next Steps
300
+
301
+ Once you're comfortable with these basic prompts:
302
+
303
+ 1. **Build your hunt repository** - Document hunts using [templates/HUNT_LOCK.md](../templates/HUNT_LOCK.md)
304
+ 2. **Progress to Level 2** - Use [ai-workflow.md](ai-workflow.md) for AI tools with repository access
305
+ 3. **See real examples** - Review [H-0001.md](../hunts/H-0001.md) and [H-0002.md](../hunts/H-0002.md)
306
+
307
+ ---
308
+
309
+ ## Customizing for Your Environment
310
+
311
+ Feel free to modify these prompts:
312
+
313
+ - Add your organization's specific data sources
314
+ - Include your ATT&CK coverage gaps
315
+ - Reference your baseline automation
316
+ - Add your threat model priorities
@@ -0,0 +1,228 @@
1
+ ---
2
+ hunt_id: H-XXXX
3
+ title: [Hunt Title]
4
+ status: planning # Options: planning, in-progress, completed
5
+ date: YYYY-MM-DD
6
+ hunter: [Your Name]
7
+ platform: [Windows, macOS, Linux, Cloud, Network] # Array - can include multiple platforms
8
+ tactics: [initial-access, persistence, privilege-escalation, defense-evasion, credential-access, discovery, lateral-movement, collection, command-and-control, exfiltration, impact]
9
+ techniques: [T1003.001, T1059.001] # MITRE ATT&CK technique IDs
10
+ data_sources: [Splunk, ClickHouse, Sentinel, etc.] # SIEM/log platforms used
11
+ related_hunts: [] # Hunt IDs that relate to this hunt (e.g., [H-0001, H-0005])
12
+ findings_count: 0 # Total findings discovered (optional - can update post-execution)
13
+ true_positives: 0 # Count of confirmed malicious activity (optional)
14
+ false_positives: 0 # Count of benign activity flagged (optional)
15
+ customer_deliverables: [] # For managed service providers tracking client reports (optional)
16
+ tags: [supply-chain, credential-theft, living-off-the-land] # Freeform tags for categorization
17
+ ---
18
+
19
+ # H-XXXX: [Hunt Title]
20
+
21
+ > **Note:** YAML frontmatter above enables AI filtering and automation (Level 2+). It's optional at Level 0-1, recommended at Level 2+, required at Level 3+. The markdown metadata section below provides human-readable context.
22
+
23
+ **Hunt Metadata**
24
+
25
+ - **Date:** YYYY-MM-DD
26
+ - **Hunter:** [Your Name]
27
+ - **Status:** [Planning|In Progress|Completed]
28
+ - **MITRE ATT&CK:** [T####.### - Technique Name]
29
+
30
+ ---
31
+
32
+ ## LEARN: Prepare the Hunt
33
+
34
+ ### Hypothesis Statement
35
+
36
+ [Clear statement of what you're hunting for and why. Example: "Detect credential dumping attempts via mimikatz on corporate Windows servers based on recent APT29 activity patterns."]
37
+
38
+ ### ABLE Scoping
39
+
40
+ Define your hunt scope using the ABLE framework:
41
+
42
+ | **Field** | **Your Input** |
43
+ |-------------|----------------|
44
+ | **Actor** *(Optional)* | [Threat actor or "N/A" - Focus on behavior first unless actor context adds value] |
45
+ | **Behavior** | [Describe the actions, TTPs, methods, or tools involved] |
46
+ | **Location** | [Where: endpoint, network segment, cloud environment, etc.] |
47
+ | **Evidence** | **Source:** [Log source]<br>**Key Fields:** [field1, field2, field3]<br>**Example:** [What malicious activity looks like]<br><br>**Source:** [Additional source]<br>**Key Fields:** [field1, field2, field3]<br>**Example:** [What malicious activity looks like] |
48
+
49
+ **ABLE Example:**
50
+
51
+ | **Field** | **Example** |
52
+ |-----------|-------------|
53
+ | **Actor** | `APT29 (Cozy Bear)` |
54
+ | **Behavior** | `Credential dumping via mimikatz.exe (T1003)` |
55
+ | **Location** | `Corporate Windows Servers` |
56
+ | **Evidence** | **Source:** Sysmon Event ID 1 (Process Creation)<br>**Key Fields:** process_name, command_line, parent_process, user, hash<br>**Example:** Execution of mimikatz.exe with "privilege::debug sekurlsa::logonpasswords"<br><br>**Source:** Windows Security Events 4624/4625<br>**Key Fields:** user, source_ip, event_id, timestamp<br>**Example:** Successful logon followed by high-privilege process launches |
57
+
58
+ ### Threat Intel & Research
59
+
60
+ - **MITRE ATT&CK Techniques:**
61
+ - `T#### - Tactic Name`
62
+ - `T####.### - Technique Name`
63
+ - **CTI Sources & References:**
64
+ - [Link to threat report, blog, or intel source]
65
+ - [Additional reference]
66
+ - **Historical Context:**
67
+ - Has this been observed before in your environment?
68
+ - Are there existing detections or mitigations?
69
+ - What makes this hunt relevant now?
70
+
71
+ ### Related Tickets
72
+
73
+ | **Team** | **Ticket/Details** |
74
+ |----------|-------------------|
75
+ | **SOC/IR** | [Incident ticket or "N/A"] |
76
+ | **Threat Intel** | [TI ticket or "N/A"] |
77
+ | **Detection Engineering** | [Detection ticket or "N/A"] |
78
+ | **Other** | [Related context or "N/A"] |
79
+
80
+ ---
81
+
82
+ ## OBSERVE: Expected Behaviors
83
+
84
+ ### What Normal Looks Like
85
+
86
+ [Describe legitimate activity that might trigger false positives]
87
+
88
+ - [Example: System administrators running privileged commands]
89
+ - [Example: Automated maintenance scripts]
90
+
91
+ ### What Suspicious Looks Like
92
+
93
+ [Describe the anomalous behavior you're hunting for]
94
+
95
+ - [Example: Mimikatz execution outside maintenance windows]
96
+ - [Example: Credential access from non-admin users]
97
+
98
+ ### Expected Observables
99
+
100
+ - **Processes:** [process_name, command_line patterns]
101
+ - **Network:** [connections, destinations, protocols]
102
+ - **Files:** [paths, names, hashes]
103
+ - **Registry:** [keys, values modified]
104
+ - **Authentication:** [logon types, privilege escalations]
105
+
106
+ ---
107
+
108
+ ## CHECK: Execute & Analyze
109
+
110
+ ### Data Source Information
111
+
112
+ - **Index/Data Source:** [e.g., index=windows, Sysmon logs, CloudTrail]
113
+ - **Time Range:** [Start datetime] to [End datetime]
114
+ - **Events Analyzed:** [Number or "TBD"]
115
+ - **Data Quality:** [Good|Fair|Poor - note any telemetry gaps]
116
+
117
+ ### Hunting Queries
118
+
119
+ #### Initial Query
120
+
121
+ ```[language: spl, kql, sigma, etc.]
122
+ [Your initial hunt query]
123
+ ```
124
+
125
+ **Query Notes:**
126
+
127
+ - Did this return expected results?
128
+ - False positives encountered?
129
+ - Gaps identified?
130
+
131
+ #### Refined Query
132
+
133
+ ```[language]
134
+ [Refined query after initial analysis]
135
+ ```
136
+
137
+ **Refinement Rationale:**
138
+
139
+ - What changed and why?
140
+ - What improvements did this bring?
141
+
142
+ ### Visualization & Analytics
143
+
144
+ - [Describe any time-series, heatmaps, or anomaly detection used]
145
+ - [Note patterns observed in visualizations]
146
+ - [Add screenshots to support findings]
147
+
148
+ ### Query Performance
149
+
150
+ - **What Worked Well:** [Effective detection logic, good data sources]
151
+ - **What Didn't Work:** [Query issues, detection gaps, data limitations]
152
+ - **Iterations Made:** [Summary of query refinements]
153
+
154
+ ---
155
+
156
+ ## KEEP: Findings & Response
157
+
158
+ ### Executive Summary
159
+
160
+ [3-5 sentences summarizing the investigation. State whether hypothesis was proved/disproved and key findings.]
161
+
162
+ ### Findings
163
+
164
+ | **Finding** | **Ticket** | **Description** |
165
+ |-------------|-----------|-----------------|
166
+ | [True Positive / False Positive / Suspicious] | [INC-####] | [Brief description of finding and impact] |
167
+ | [Finding type] | [Ticket] | [Description] |
168
+ | [Finding type] | [Ticket] | [Description] |
169
+
170
+ **True Positives:** [Count and summary]
171
+ **False Positives:** [Count and common patterns]
172
+ **Suspicious Events:** [Count requiring further investigation]
173
+
174
+ ### Detection Logic
175
+
176
+ **Automation Opportunity:**
177
+
178
+ - Could this hunt become an automated detection?
179
+ - What thresholds or conditions would trigger alerts?
180
+ - Tuning considerations to reduce false positives?
181
+
182
+ **Proposed Detection:**
183
+
184
+ ```[language]
185
+ [Draft detection rule if applicable]
186
+ ```
187
+
188
+ ### Lessons Learned
189
+
190
+ **What Worked Well:**
191
+
192
+ - [Successful query strategies]
193
+ - [Effective data sources]
194
+ - [Useful analysis techniques]
195
+
196
+ **What Could Be Improved:**
197
+
198
+ - [Query refinements needed]
199
+ - [Data gaps to address]
200
+ - [Tooling or process improvements]
201
+
202
+ **Telemetry Gaps Identified:**
203
+
204
+ - [Missing log sources]
205
+ - [Insufficient field visibility]
206
+ - [Collection improvements needed]
207
+
208
+ ### Follow-up Actions
209
+
210
+ - [ ] [Escalate true positives to incident response]
211
+ - [ ] [Create detection rule from hunt logic]
212
+ - [ ] [Update hypothesis with learnings]
213
+ - [ ] [Address telemetry gaps with engineering team]
214
+ - [ ] [Schedule recurring hunt execution]
215
+ - [ ] [Document findings in knowledge base]
216
+ - [ ] [Share insights with SOC/IR/TI teams]
217
+
218
+ ### Follow-up Hunts
219
+
220
+ [New hunt ideas spawned from this investigation]
221
+
222
+ - H-XXXX: [New hunt based on findings]
223
+ - H-XXXX: [Pivot hunt to explore related TTPs]
224
+
225
+ ---
226
+
227
+ **Hunt Completed:** [Date]
228
+ **Next Review:** [Date for recurring hunt or "N/A"]
@@ -1,23 +0,0 @@
1
- agentic_threat_hunting_framework-0.2.3.dist-info/licenses/LICENSE,sha256=_KObErRfiKoolznt-DF0nJnr3U9Rdh7Z4Ba7G5qqckk,1071
2
- athf/__init__.py,sha256=OrjZe8P97_BTEkscapnwSsqKSjwXNP9d8-HtGr19Ni0,241
3
- athf/__version__.py,sha256=p9cAuZ-dTEMpo-qoeYkFo2166r8LvKpa5qHBZihGq3w,59
4
- athf/cli.py,sha256=XLNRXEs9kHPH6utJ7_SnzLFcldbGAnACPMTe0xMOkhQ,4492
5
- athf/commands/__init__.py,sha256=uDyr0bz-agpGO8fraXQl24wuQCxqbeCevZsJ2bDK29s,25
6
- athf/commands/context.py,sha256=WvOf0OuttAsEk_h4QDtdfqYI4CulDg2UCtq_5r5iJAA,12686
7
- athf/commands/env.py,sha256=AisRllJXbyCjK_2ii21qBBmCz9raxhBUemwM7BxqIYg,11859
8
- athf/commands/hunt.py,sha256=2KORNWAqEvLY-Wc1q-a894g8kOpcqw_iJfnenKJeTDI,23019
9
- athf/commands/init.py,sha256=L_29fvZF8SZ1BKh2D6NyDuacCC5JXOTezIxdBnnK88E,10941
10
- athf/commands/investigate.py,sha256=mK_id5vjfN_ukqB_-fyia0FNa0pBmtn0Xv6CKHQI1Qo,24663
11
- athf/commands/similar.py,sha256=ROoMs4NP1otCaXwM1XzpLWxmANknoeASlBT7zuMDqas,11793
12
- athf/core/__init__.py,sha256=yG7C8ljx3UW4QZoYvDjUxsWHlbS8M-GLGB7Je7rRfqo,31
13
- athf/core/attack_matrix.py,sha256=QZKKmxckQ6-U7lqVdGUJoj2jEAhP3Juvr3sqaNx2oTw,3238
14
- athf/core/hunt_manager.py,sha256=PFsg8Ecg94NCpuFZpApo82lyORkgK5IfOIih-7-XsmM,11580
15
- athf/core/hunt_parser.py,sha256=FUj0yyBIcZnaS9aItMImeBDhegQwpkewIwUMNXW_ZWU,5122
16
- athf/core/investigation_parser.py,sha256=wbfjnq4gFgIc0a4bHIAnidVNPhbHDpIXWY1SGLk0Xls,6804
17
- athf/core/template_engine.py,sha256=vNTVhlxIXZpxU7VmQyrqCSt6ORS0IVjAV54TOmUDMTE,5636
18
- athf/utils/__init__.py,sha256=aEAPI1xnAsowOtc036cCb9ZOek5nrrfevu8PElhbNgk,30
19
- agentic_threat_hunting_framework-0.2.3.dist-info/METADATA,sha256=I3x8s2Rff1A7BjYz-lfy_M6I_qw0-nDBC2Ypc0DcxTA,15472
20
- agentic_threat_hunting_framework-0.2.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
21
- agentic_threat_hunting_framework-0.2.3.dist-info/entry_points.txt,sha256=GopR2iTiBs-yNMWiUZ2DaFIFglXxWJx1XPjTa3ePtfE,39
22
- agentic_threat_hunting_framework-0.2.3.dist-info/top_level.txt,sha256=Cxxg6SMLfawDJWBITsciRzq27XV8fiaAor23o9Byoes,5
23
- agentic_threat_hunting_framework-0.2.3.dist-info/RECORD,,