agentic-threat-hunting-framework 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/METADATA +1 -1
  2. agentic_threat_hunting_framework-0.2.4.dist-info/RECORD +47 -0
  3. athf/__version__.py +1 -1
  4. athf/cli.py +1 -1
  5. athf/commands/hunt.py +1 -3
  6. athf/commands/init.py +45 -0
  7. athf/commands/similar.py +2 -2
  8. athf/data/__init__.py +14 -0
  9. athf/data/docs/CHANGELOG.md +147 -0
  10. athf/data/docs/CLI_REFERENCE.md +1797 -0
  11. athf/data/docs/INSTALL.md +594 -0
  12. athf/data/docs/README.md +31 -0
  13. athf/data/docs/environment.md +256 -0
  14. athf/data/docs/getting-started.md +419 -0
  15. athf/data/docs/level4-agentic-workflows.md +480 -0
  16. athf/data/docs/lock-pattern.md +149 -0
  17. athf/data/docs/maturity-model.md +400 -0
  18. athf/data/docs/why-athf.md +44 -0
  19. athf/data/hunts/FORMAT_GUIDELINES.md +507 -0
  20. athf/data/hunts/H-0001.md +453 -0
  21. athf/data/hunts/H-0002.md +436 -0
  22. athf/data/hunts/H-0003.md +546 -0
  23. athf/data/hunts/README.md +231 -0
  24. athf/data/integrations/MCP_CATALOG.md +45 -0
  25. athf/data/integrations/README.md +129 -0
  26. athf/data/integrations/quickstart/splunk.md +162 -0
  27. athf/data/knowledge/hunting-knowledge.md +2375 -0
  28. athf/data/prompts/README.md +172 -0
  29. athf/data/prompts/ai-workflow.md +581 -0
  30. athf/data/prompts/basic-prompts.md +316 -0
  31. athf/data/templates/HUNT_LOCK.md +228 -0
  32. agentic_threat_hunting_framework-0.2.3.dist-info/RECORD +0 -23
  33. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/WHEEL +0 -0
  34. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/entry_points.txt +0 -0
  35. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/licenses/LICENSE +0 -0
  36. {agentic_threat_hunting_framework-0.2.3.dist-info → agentic_threat_hunting_framework-0.2.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,581 @@
1
+ # AI-Assisted Threat Hunting Workflow
2
+
3
+ **Level:** 2 (Searchable) - AI with Memory
4
+ **Audience:** Threat hunters using Claude Code, GitHub Copilot, Cursor, or similar AI tools
5
+ **Prerequisites:** Hunt repository with AGENTS.md, documented past hunts in hunts/
6
+
7
+ This guide provides workflows for using AI tools that can read your hunt repository, search past hunts, and leverage organizational memory to accelerate threat hunting.
8
+
9
+ **Expected Time Savings:** 70-80% reduction in documentation and research time
10
+
11
+ ---
12
+
13
+ ## Setup (One-Time)
14
+
15
+ ### Choose Your AI Tool
16
+
17
+ | Tool | Best For | Cost |
18
+ |------|----------|------|
19
+ | **Claude Code** | Deep analysis, long context | ~$20/mo |
20
+ | **GitHub Copilot** | GitHub integration, inline suggestions | ~$10/mo |
21
+ | **Cursor** | Full IDE experience, chat + completions | ~$20/mo |
22
+
23
+ **Recommendation:** Start with whatever your organization already licenses.
24
+
25
+ ### Verify AI Can Read Files
26
+
27
+ Test AI access:
28
+
29
+ ```
30
+ You: "Read AGENTS.md and summarize what data sources we have"
31
+ AI: [Should list your SIEM, EDR, and other sources]
32
+ ```
33
+
34
+ If AI can't read files, check file permissions and AI tool settings.
35
+
36
+ ---
37
+
38
+ ## System Prompt for AI Tools
39
+
40
+ When starting a hunting session, provide this context to your AI assistant:
41
+
42
+ ```
43
+ You are an expert threat hunter helping generate testable hunt hypotheses using the LOCK pattern.
44
+
45
+ BEFORE generating anything new, you MUST:
46
+
47
+ 0. Load hunting brain knowledge:
48
+ - Read knowledge/hunting-knowledge.md for expert hunting knowledge
49
+ - Internalize Section 1 (Hypothesis Generation) and Section 5 (Pyramid of Pain)
50
+ - Apply behavioral models from Section 2 (ATT&CK TTP → Observables)
51
+ - All hunts MUST focus on behaviors/TTPs (top of Pyramid of Pain), never just hashes/IPs
52
+
53
+ TOOLS AVAILABLE:
54
+ - If athf CLI installed: Use `athf hunt` commands for search, create, list, stats
55
+ - If CLI unavailable: Use grep across hunts/ folder
56
+ - Check availability: `athf --version`
57
+ - Never fail workflow if CLI unavailable - always have fallback
58
+
59
+ 1. Search past hunts to avoid duplicates:
60
+ - Search hunts/ folder for similar TTPs or behaviors
61
+ - Reference lessons learned from past similar hunts
62
+ - Apply false positive filters from past work
63
+
64
+ 2. Validate environment relevance:
65
+ - Read environment.md to confirm affected technology exists
66
+ - Verify data sources are available for the proposed hunt
67
+ - Identify any telemetry gaps
68
+
69
+ 3. Follow repository guidelines:
70
+ - Read AGENTS.md for repository context and guardrails
71
+ - Understand data sources and query languages available
72
+ - Apply safety checks and validation rules
73
+
74
+ HYPOTHESIS GENERATION REQUIREMENTS:
75
+
76
+ Output Format: LOCK-structured markdown matching templates/HUNT_LOCK.md
77
+
78
+ Required Sections:
79
+ - Hypothesis: One sentence, testable statement
80
+ Format: "Adversaries use [behavior] to [goal] on [target system]"
81
+ - Context: Why now? What triggered this hunt?
82
+ - ATT&CK: Technique ID and tactic
83
+ - Data Needed: Specific indexes/tables from environment.md
84
+ - Time Range: Bounded, justified lookback period
85
+ - Query Approach: High-level steps
86
+
87
+ Quality Standards (from hunting-knowledge.md Section 1):
88
+ ✓ Hypothesis is specific and testable (not vague)
89
+ ✓ Falsifiable - Can be proven true or false with data
90
+ ✓ Scoped - Bounded by target, timeframe, or behavior
91
+ ✓ Observable - Tied to specific log sources and fields
92
+ ✓ Actionable - Can inform detection or response
93
+ ✓ Contextual - References environment, threat landscape, or business risk
94
+ ✓ Focuses on BEHAVIOR/TTP (top of Pyramid of Pain), not indicators
95
+ ✓ References actual data sources from environment.md
96
+ ✓ Includes lessons from past hunts if available
97
+ ✓ Has realistic time bounds (no "all time" searches)
98
+ ✓ Considers false positive rate
99
+ ✓ Builds on past work rather than duplicating
100
+
101
+ Safety Checks:
102
+ ✓ Queries must have time bounds
103
+ ✓ Result sets must be limited
104
+ ✓ Test on small windows before expanding
105
+
106
+ WORKFLOW:
107
+ 1. Consult hunting brain (knowledge/hunting-knowledge.md) - Load relevant sections
108
+ 2. Acknowledge the threat intel or context provided
109
+ 3. Search memory (hunts/ folder) for similar past work
110
+ 4. Validate environment (environment.md)
111
+ 5. Apply Pyramid of Pain - Ensure hypothesis targets behaviors/TTPs, not indicators
112
+ 6. Generate hypothesis following LOCK structure with quality criteria
113
+ 7. Apply analytical rigor - Check for biases, score confidence appropriately
114
+ 8. Suggest next steps
115
+
116
+ CONVERSATION STYLE:
117
+ - Be proactive but wait for confirmation before creating files
118
+ - Explain your reasoning
119
+ - Flag concerns (missing data sources, high FP rate potential)
120
+ - Reference specific past hunts by ID when building on lessons learned
121
+ ```
122
+
123
+ ---
124
+
125
+ ## Quick Start Workflows
126
+
127
+ ### Workflow 1: Threat Intel-Driven Hunt (Most Common)
128
+
129
+ **Scenario:** You receive threat intelligence about adversary TTPs
130
+ **Total Time:** 5-10 minutes
131
+
132
+ **Step 1: Check Memory (2 min)**
133
+
134
+ **With CLI:**
135
+ ```
136
+ You: "Check if we've hunted T1003.001 before:
137
+ athf hunt search 'T1003.001'
138
+ athf hunt list --technique T1003.001
139
+ Summarize lessons learned from results."
140
+ ```
141
+
142
+ **Without CLI:**
143
+ ```
144
+ You: "Check if we've hunted T1003.001 (LSASS credential dumping) before.
145
+ Search hunts/ folder for this TTP and any related credential dumping hunts.
146
+ Summarize lessons learned."
147
+ ```
148
+
149
+ **Step 2: Validate Environment (1 min)**
150
+
151
+ ```
152
+ You: "Read environment.md and tell me:
153
+ 1. Do we have visibility into this behavior?
154
+ 2. What data sources can we use?
155
+ 3. Any telemetry gaps?"
156
+ ```
157
+
158
+ **Step 3: Generate Hypothesis (2 min)**
159
+
160
+ ```
161
+ You: "Generate a LOCK-structured hypothesis for T1003.001.
162
+ Use the system prompt above. This is a proactive hunt."
163
+ ```
164
+
165
+ **Review checklist:**
166
+
167
+ - [ ] Hypothesis is testable and specific
168
+ - [ ] Data sources match environment.md
169
+ - [ ] Time range is reasonable
170
+ - [ ] ATT&CK mapping is correct
171
+
172
+ **Step 4: Create Hunt File (1 min)**
173
+
174
+ **With CLI:**
175
+ ```
176
+ You: "Create this hypothesis using:
177
+ athf hunt new --technique T1003.001 --title 'LSASS Credential Dumping Detection'
178
+ Then review and edit the generated file as needed."
179
+ ```
180
+
181
+ **Without CLI:**
182
+ ```
183
+ You: "Create this hypothesis as H-XXXX.md in hunts/ folder.
184
+ Use the next available hunt number."
185
+ ```
186
+
187
+ **Step 5: Generate Query (2-3 min)**
188
+
189
+ ```
190
+ You: "Generate a Splunk query with:
191
+ - Time bounds (last 14 days)
192
+ - Result limits (head 1000)
193
+ - False positive filters from past hunts
194
+ - Save as queries/H-XXXX.spl"
195
+ ```
196
+
197
+ ---
198
+
199
+ ### Workflow 2: Anomaly Investigation (Fast Response)
200
+
201
+ **Scenario:** SOC alerts you to unusual behavior
202
+ **Total Time:** 3-5 minutes
203
+
204
+ **Quick Response Steps:**
205
+
206
+ **1. Rapid Context (1 min)**
207
+
208
+ ```
209
+ You: "Search past hunts for [behavior/TTP].
210
+ What have we learned about false positives?"
211
+ ```
212
+
213
+ **2. Incident Hypothesis (2 min)**
214
+
215
+ ```
216
+ You: "Generate incident-response hypothesis for:
217
+ [paste anomaly description]
218
+ Mark as HIGH priority, active investigation."
219
+ ```
220
+
221
+ **3. Immediate Query (1 min)**
222
+
223
+ ```
224
+ You: "Draft query for last 24 hours with these IOCs:
225
+ [paste indicators]
226
+ This is incident response - make it fast."
227
+ ```
228
+
229
+ **4. Document As You Go**
230
+
231
+ ```
232
+ You: "Summarize these results in LOCK format for the KEEP section of H-XXXX.md"
233
+ ```
234
+
235
+ ---
236
+
237
+ ### Workflow 3: Proactive TTP Coverage
238
+
239
+ **Scenario:** Monthly hunt plan, covering MITRE ATT&CK techniques
240
+ **Total Time:** 10-15 minutes
241
+
242
+ **Step 1: Coverage Gap Analysis (3 min)**
243
+
244
+ ```
245
+ You: "Analyze past hunts and tell me:
246
+ 1. Which tactics have we hunted most/least?
247
+ 2. What high-priority TTPs have we never covered?
248
+ 3. Suggest 3 hunts to improve ATT&CK coverage
249
+ Consider our environment from environment.md."
250
+ ```
251
+
252
+ **Step 2: Select TTP and Research (2 min)**
253
+
254
+ ```
255
+ You: "I want to hunt T1003 (Credential Dumping).
256
+ Search past hunts for:
257
+ 1. What sub-techniques we've covered
258
+ 2. What we haven't covered
259
+ 3. Lessons about false positives"
260
+ ```
261
+
262
+ **Step 3: Generate and Review (5 min)**
263
+
264
+ Follow Workflow 1 steps 3-5, then:
265
+
266
+ ```
267
+ You: "Review this hypothesis and critique:
268
+ 1. Is it testable? Too vague?
269
+ 2. High false positive risk?
270
+ 3. Is the time range appropriate?
271
+ 4. What could go wrong?"
272
+ ```
273
+
274
+ Iterate based on feedback.
275
+
276
+ ---
277
+
278
+ ### Workflow 4: Post-Hunt Documentation
279
+
280
+ **Scenario:** You've executed a hunt and have results
281
+ **Total Time:** 5-7 minutes
282
+
283
+ **Step 1: Results Summarization (3 min)**
284
+
285
+ ```
286
+ You: "Analyze these query results from H-XXXX:
287
+ 1. Summary of findings (patterns, counts)
288
+ 2. True positives vs false positives
289
+ 3. Interesting anomalies worth investigating
290
+ 4. Recommended next actions
291
+
292
+ [paste query output - first 100 rows if large]"
293
+ ```
294
+
295
+ **Step 2: Update Hunt File (2 min)**
296
+
297
+ ```
298
+ You: "Update H-XXXX.md KEEP section with:
299
+ - Query details (runtime, rows returned)
300
+ - Findings summary
301
+ - Status: [Completed|Needs Changes]
302
+ - Lessons learned"
303
+ ```
304
+
305
+ **Step 3: Apply Lessons (1 min)**
306
+
307
+ ```
308
+ You: "Based on these results, what changes would improve this hunt?
309
+ Should we update the hypothesis or query filters?"
310
+ ```
311
+
312
+ ---
313
+
314
+ ## Example: Complete Hunt Conversation
315
+
316
+ This example shows how AI searches memory, validates environment, and generates a hypothesis.
317
+
318
+ **User:**
319
+
320
+ ```
321
+ Using the system prompt, generate a hypothesis for T1003.001
322
+ (LSASS Memory credential dumping). This is a proactive hunt.
323
+ ```
324
+
325
+ **AI Response:**
326
+
327
+ ```
328
+ I'll help generate a hypothesis for T1003.001. Let me first consult the hunting brain and check our repository.
329
+
330
+ [Reads .claude/hunting-knowledge.md Section 1 and Section 2]
331
+
332
+ From hunting brain - Key principle: Focus on BEHAVIOR (LSASS process access pattern),
333
+ not indicators. T1003.001 maps to observable: Sysmon Event 10 ProcessAccess to lsass.exe
334
+ with specific GrantedAccess values (0x1010, 0x1038, 0x1410, 0x1fffff). This is top of
335
+ Pyramid of Pain (TTP level) - adversary can't easily change this behavior.
336
+
337
+ [Searches hunts/ folder]
338
+
339
+ Found H-0022 which hunted LSASS access 6 months ago. That hunt focused on
340
+ Sysmon Event ID 10 with a threshold of >3 access attempts. They discovered
341
+ false positives from monitoring tools and AV scanners - I'll incorporate those lessons.
342
+
343
+ [Reads environment.md]
344
+
345
+ I see you have Windows endpoints with Sysmon Event ID 10 (ProcessAccess) logging
346
+ to Splunk (index=winlogs) and CrowdStrike EDR. Good visibility for this hunt.
347
+
348
+ Here's the LOCK-structured hypothesis:
349
+
350
+ # H-XXXX | LSASS Memory Credential Dumping Detection
351
+
352
+ **Status:** Planning
353
+
354
+ ## LEARN: Prepare the Hunt
355
+
356
+ ### Hypothesis Statement
357
+ Adversaries access the LSASS process memory to extract plaintext credentials,
358
+ password hashes, and Kerberos tickets for lateral movement and privilege escalation.
359
+
360
+ ### Context
361
+ **Why Now:**
362
+ - Proactive TTP coverage for T1003.001 (high-priority credential access technique)
363
+ - Re-running hunt from H-0022 with improved false positive filters
364
+ - 6 months since last hunt - baseline may have changed
365
+
366
+ **ATT&CK:** T1003.001 (OS Credential Dumping: LSASS Memory)
367
+ **Tactic:** Credential Access
368
+
369
+ **Related Past Hunts:**
370
+ - H-0022: LSASS access detection (found 2 suspicious events, 47 false positives from monitoring tools)
371
+
372
+ ### ABLE Scoping
373
+ | Field | Your Input |
374
+ |-------|-----------|
375
+ | **Behavior** | Process access to lsass.exe with read/write permissions (GrantedAccess: 0x1010, 0x1038, 0x1410, 0x1fffff) |
376
+ | **Location** | Windows endpoints, focus on servers |
377
+ | **Evidence** | **Source:** Sysmon Event ID 10 (ProcessAccess), CrowdStrike EDR<br>**Key Fields:** SourceImage, TargetImage, GrantedAccess, CallTrace<br>**Example:** Unsigned process from temp directory accessing lsass.exe with 0x1010 permissions |
378
+
379
+ ## OBSERVE: Expected Behaviors
380
+ Legitimate LSASS access occurs from:
381
+ - AV/EDR tools (CrowdStrike, Windows Defender)
382
+ - System monitoring (SCOM agents)
383
+ - Signed Microsoft processes
384
+
385
+ Suspicious indicators:
386
+ - Access from user temp/download directories
387
+ - Missing or invalid digital signatures
388
+ - Unusual parent process (Office apps, browsers)
389
+ - Outside business hours
390
+
391
+ ## CHECK: Execute & Analyze
392
+
393
+ ### Hunting Queries
394
+ ```spl
395
+ /* H-XXXX | T1003.001 | LSASS Memory Access Detection */
396
+
397
+ index=winlogs sourcetype=sysmon EventCode=10
398
+ TargetImage="*\\lsass.exe"
399
+ (GrantedAccess=0x1010 OR GrantedAccess=0x1038 OR GrantedAccess=0x1410 OR GrantedAccess=0x1fffff)
400
+ | search NOT [| inputlookup known_good_lsass_access.csv | fields SourceImage]
401
+ | eval suspicious_path=if(match(SourceImage, "(?i)(temp|download|appdata\\\\local)"), "Yes", "No")
402
+ | stats count by SourceImage, TargetImage, GrantedAccess, suspicious_path
403
+ | where suspicious_path="Yes" OR count > 10
404
+ | head 1000
405
+ ```
406
+
407
+ **Time Range:** Last 14 days
408
+ **Rationale:** H-0022 used 30 days and returned excessive noise - starting smaller.
409
+
410
+ **Known False Positives (from H-0022):**
411
+
412
+ - CrowdStrike Falcon sensor (CSFalconService.exe)
413
+ - System Center Operations Manager (HealthService.exe)
414
+ - Windows Defender (MsMpEng.exe)
415
+
416
+ ## KEEP: Findings & Response
417
+
418
+ [To be completed after execution]
419
+
420
+ ---
421
+
422
+ Would you like me to:
423
+
424
+ - Create this as H-XXXX.md?
425
+ - Draft the Splunk query with safety bounds?
426
+ - Create a CSV lookup for known-good processes?
427
+
428
+ ```
429
+
430
+ **Key Observations:**
431
+ - AI searched past hunts first (H-0022)
432
+ - Applied lessons learned (FP filters)
433
+ - Validated environment (Sysmon, CrowdStrike)
434
+ - Referenced specific data sources from environment.md
435
+ - Used HUNT_LOCK.md template structure
436
+ - Included bounded query with time limits
437
+
438
+ ---
439
+
440
+ ## Tool-Specific Tips
441
+
442
+ ### Claude Code
443
+ **Strengths:** Long context, deep analysis, explains reasoning
444
+
445
+ **Best Practices:**
446
+ - Ask for explanations: "Explain why you chose this approach"
447
+ - Use multi-step requests: "First search, then analyze, then generate"
448
+ - Reference specific files: "Based on H-0015.md, generate similar hypothesis"
449
+
450
+ ### GitHub Copilot
451
+ **Strengths:** Inline suggestions, GitHub integration, fast
452
+
453
+ **Best Practices:**
454
+ - Use Copilot Chat for complex requests
455
+ - Type hypothesis outline, let Copilot complete
456
+ - Use inline suggestions for query writing
457
+
458
+ ### Cursor
459
+ **Strengths:** Full IDE, can edit multiple files, code-aware
460
+
461
+ **Best Practices:**
462
+ - Use Cmd+K for inline edits
463
+ - Use chat for analysis, inline for writing
464
+ - Multi-file editing for creating hunt + query simultaneously
465
+
466
+ ---
467
+
468
+ ## Common Pitfalls and Solutions
469
+
470
+ **Pitfall: AI Doesn't Remember Past Hunts**
471
+
472
+ *Symptom:* AI suggests hunts you've already done
473
+
474
+ *Solution:*
475
+ - Explicitly ask to search first: "Search hunts/ before suggesting"
476
+ - Reference AGENTS.md: "Follow the workflow in AGENTS.md"
477
+ - Use AI tools with file access (not just chat-based)
478
+
479
+ ---
480
+
481
+ **Pitfall: AI Suggests Unrealistic Hunts**
482
+
483
+ *Symptom:* Hypotheses for data sources you don't have
484
+
485
+ *Solution:*
486
+ - Keep environment.md updated
487
+ - Remind AI: "Only use data sources from environment.md"
488
+ - Review generated hypotheses against actual capabilities
489
+
490
+ ---
491
+
492
+ **Pitfall: Generic, Non-Testable Hypotheses**
493
+
494
+ *Symptom:* "Adversaries may use PowerShell maliciously"
495
+
496
+ *Solution:*
497
+ - Ask for specificity: "Make this more specific and testable"
498
+ - Provide more context: "Focus on [specific behavior]"
499
+ - Use the system prompt above
500
+
501
+ ---
502
+
503
+ **Pitfall: Blindly Trusting AI Output**
504
+
505
+ *Symptom:* Running queries without review
506
+
507
+ *Solution:*
508
+ - ALWAYS review queries before running
509
+ - Validate data sources against environment.md
510
+ - Check ATT&CK mappings
511
+ - Test on small time windows first
512
+
513
+ ---
514
+
515
+ ## Quality Checklist
516
+
517
+ Before finalizing any AI-generated content:
518
+
519
+ **Hypothesis Quality:**
520
+ - [ ] Specific and testable (not vague)
521
+ - [ ] References actual data sources from environment.md
522
+ - [ ] Has bounded time range
523
+ - [ ] Correct ATT&CK technique mapping
524
+ - [ ] Considers false positive rate
525
+ - [ ] Builds on past work (if applicable)
526
+
527
+ **Query Safety:**
528
+ - [ ] Has time bounds (`earliest=-Xd`)
529
+ - [ ] Has result limits (`| head N`)
530
+ - [ ] No expensive operations without justification
531
+ - [ ] Tested for syntax errors
532
+ - [ ] Includes comments explaining logic
533
+
534
+ **Documentation Completeness:**
535
+ - [ ] Hunt file (H-XXXX.md) created with HUNT_LOCK.md template
536
+ - [ ] Status field properly set (Planning/In Progress/Completed)
537
+ - [ ] Lessons learned captured in KEEP section
538
+
539
+ ---
540
+
541
+ ## Measuring Success
542
+
543
+ **Time Savings:**
544
+ - Hypothesis generation: Manual (15-20 min) → AI (3-5 min)
545
+ - Documentation: Manual (20-30 min) → AI (5-7 min)
546
+ - Total workflow: Manual (45+ min) → AI (10-15 min)
547
+
548
+ **Quality Improvements:**
549
+ - Consistency: All hunts following LOCK format?
550
+ - Completeness: Lessons learned captured every time?
551
+ - Learning: New hunts referencing past hunts?
552
+
553
+ ---
554
+
555
+ ## Next Steps
556
+
557
+ **Just Starting (Week 1-2):**
558
+ 1. Use Workflow 1 for your next threat intelligence report
559
+ 2. Compare time vs. manual process
560
+ 3. Refine environment.md based on what AI asks for
561
+
562
+ **Getting Comfortable (Month 1):**
563
+ 1. Try all core workflows
564
+ 2. Experiment with different AI tools
565
+ 3. Train team members on workflows
566
+
567
+ **Advanced Usage (Month 2+):**
568
+ 1. Build custom prompts for your specific environment
569
+ 2. Consider Level 3 automation for repetitive tasks
570
+ 3. Share successful patterns with the ATHF community
571
+
572
+ ---
573
+
574
+ ## Resources
575
+
576
+ - **Basic Prompts:** [basic-prompts.md](basic-prompts.md) for Level 0-1
577
+ - **Hunt Template:** [../templates/HUNT_LOCK.md](../templates/HUNT_LOCK.md)
578
+ - **Real Examples:** [../hunts/H-0001.md](../hunts/H-0001.md), [../hunts/H-0002.md](../hunts/H-0002.md)
579
+ - **Repository Context:** [AGENTS.md](../../../AGENTS.md)
580
+
581
+ **Remember: AI augments, doesn't replace. Always validate, always learn, always improve.**