agent-mcp 0.1.2__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agent_mcp/__init__.py +16 -0
- agent_mcp/camel_mcp_adapter.py +521 -0
- agent_mcp/cli.py +47 -0
- agent_mcp/crewai_mcp_adapter.py +281 -0
- agent_mcp/enhanced_mcp_agent.py +601 -0
- agent_mcp/heterogeneous_group_chat.py +798 -0
- agent_mcp/langchain_mcp_adapter.py +458 -0
- agent_mcp/langgraph_mcp_adapter.py +325 -0
- agent_mcp/mcp_agent.py +658 -0
- agent_mcp/mcp_decorator.py +257 -0
- agent_mcp/mcp_langgraph.py +733 -0
- agent_mcp/mcp_transaction.py +97 -0
- agent_mcp/mcp_transport.py +706 -0
- agent_mcp/mcp_transport_enhanced.py +46 -0
- agent_mcp/proxy_agent.py +24 -0
- agent_mcp-0.1.4.dist-info/METADATA +333 -0
- agent_mcp-0.1.4.dist-info/RECORD +49 -0
- {agent_mcp-0.1.2.dist-info → agent_mcp-0.1.4.dist-info}/WHEEL +1 -1
- agent_mcp-0.1.4.dist-info/entry_points.txt +2 -0
- agent_mcp-0.1.4.dist-info/top_level.txt +3 -0
- demos/__init__.py +1 -0
- demos/basic/__init__.py +1 -0
- demos/basic/framework_examples.py +108 -0
- demos/basic/langchain_camel_demo.py +272 -0
- demos/basic/simple_chat.py +355 -0
- demos/basic/simple_integration_example.py +51 -0
- demos/collaboration/collaborative_task_example.py +437 -0
- demos/collaboration/group_chat_example.py +130 -0
- demos/collaboration/simplified_crewai_example.py +39 -0
- demos/langgraph/autonomous_langgraph_network.py +808 -0
- demos/langgraph/langgraph_agent_network.py +415 -0
- demos/langgraph/langgraph_collaborative_task.py +619 -0
- demos/langgraph/langgraph_example.py +227 -0
- demos/langgraph/run_langgraph_examples.py +213 -0
- demos/network/agent_network_example.py +381 -0
- demos/network/email_agent.py +130 -0
- demos/network/email_agent_demo.py +46 -0
- demos/network/heterogeneous_network_example.py +216 -0
- demos/network/multi_framework_example.py +199 -0
- demos/utils/check_imports.py +49 -0
- demos/workflows/autonomous_agent_workflow.py +248 -0
- demos/workflows/mcp_features_demo.py +353 -0
- demos/workflows/run_agent_collaboration_demo.py +63 -0
- demos/workflows/run_agent_collaboration_with_logs.py +396 -0
- demos/workflows/show_agent_interactions.py +107 -0
- demos/workflows/simplified_autonomous_demo.py +74 -0
- functions/main.py +144 -0
- functions/mcp_network_server.py +513 -0
- functions/utils.py +47 -0
- agent_mcp-0.1.2.dist-info/METADATA +0 -475
- agent_mcp-0.1.2.dist-info/RECORD +0 -5
- agent_mcp-0.1.2.dist-info/entry_points.txt +0 -2
- agent_mcp-0.1.2.dist-info/top_level.txt +0 -1
|
@@ -0,0 +1,798 @@
|
|
|
1
|
+
"""
|
|
2
|
+
HeterogeneousGroupChat - A group chat implementation for heterogeneous agents.
|
|
3
|
+
|
|
4
|
+
This module provides a high-level abstraction for creating group chats with agents
|
|
5
|
+
from different frameworks (Autogen, Langchain, etc.) that can collaborate on tasks.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import asyncio
|
|
9
|
+
import json
|
|
10
|
+
from typing import List, Dict, Any, Optional, Union, Sequence
|
|
11
|
+
from .mcp_transport import HTTPTransport
|
|
12
|
+
from .enhanced_mcp_agent import EnhancedMCPAgent
|
|
13
|
+
from .mcp_agent import MCPAgent
|
|
14
|
+
import re
|
|
15
|
+
import string
|
|
16
|
+
import logging
|
|
17
|
+
from typing import Dict, Any, Optional, List
|
|
18
|
+
import os
|
|
19
|
+
import time
|
|
20
|
+
|
|
21
|
+
logger = logging.getLogger(__name__)
|
|
22
|
+
|
|
23
|
+
class CoordinatorAgent(EnhancedMCPAgent):
|
|
24
|
+
def __init__(self, group_chat, *args, **kwargs):
|
|
25
|
+
super().__init__(*args, **kwargs)
|
|
26
|
+
self.group_chat = group_chat # Reference to HeterogeneousGroupChat instance
|
|
27
|
+
|
|
28
|
+
async def handle_incoming_message(self, message: Dict):
|
|
29
|
+
|
|
30
|
+
# First, call the super method to handle default processing
|
|
31
|
+
await super().handle_incoming_message(message)
|
|
32
|
+
|
|
33
|
+
# Delegate to the group chat's custom handler
|
|
34
|
+
await self.group_chat._handle_coordinator_message(message, message.get('message_id'))
|
|
35
|
+
|
|
36
|
+
class ContextAgent(EnhancedMCPAgent):
|
|
37
|
+
"""Agent that maintains and provides access to task context and results."""
|
|
38
|
+
|
|
39
|
+
def __init__(self, name: str, **kwargs):
|
|
40
|
+
super().__init__(
|
|
41
|
+
name=name,
|
|
42
|
+
transport=None, # No transport needed for internal use
|
|
43
|
+
server_mode=False,
|
|
44
|
+
client_mode=False,
|
|
45
|
+
**kwargs
|
|
46
|
+
)
|
|
47
|
+
self.task_results = {} # Store task results
|
|
48
|
+
self.task_descriptions = {} # Store task descriptions
|
|
49
|
+
self._pending_tasks = {} # Track pending tasks with their completion events
|
|
50
|
+
print(f"[DEBUG] __init__: self ID: {id(self)}, _pending_tasks ID: {id(self._pending_tasks)}")
|
|
51
|
+
|
|
52
|
+
logger.info(f"[{self.name}] Initialized as context agent")
|
|
53
|
+
|
|
54
|
+
async def query_context(self, query: str) -> Dict[str, Any]:
|
|
55
|
+
"""
|
|
56
|
+
Query the context agent for information.
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
query: Natural language query about tasks, results, or context.
|
|
60
|
+
Can also be a request to generate email content.
|
|
61
|
+
|
|
62
|
+
Returns:
|
|
63
|
+
Dict with 'answer' and 'supporting_data' keys
|
|
64
|
+
"""
|
|
65
|
+
# Regular context query
|
|
66
|
+
return await self.generate_response(query)
|
|
67
|
+
|
|
68
|
+
async def generate_response(self, query: str) -> Dict[str, Any]:
|
|
69
|
+
"""Answer general questions about tasks and results."""
|
|
70
|
+
context = {
|
|
71
|
+
"task_descriptions": self.task_descriptions,
|
|
72
|
+
"task_results": {
|
|
73
|
+
tid: str(r)[:500] for tid, r in self.task_results.items()
|
|
74
|
+
}
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
messages = [{
|
|
78
|
+
"role": "system",
|
|
79
|
+
"content": f"""You are a context assistant that generates responses, results or content based on task as query.
|
|
80
|
+
You will be given a query, task description and expected to generate a content, response, as result or output
|
|
81
|
+
|
|
82
|
+
Available context, tasks and their results: {context}
|
|
83
|
+
|
|
84
|
+
"""
|
|
85
|
+
}, {
|
|
86
|
+
"role": "user",
|
|
87
|
+
"content": f"""Generate a response, result or content based on these instructions:
|
|
88
|
+
{query}
|
|
89
|
+
|
|
90
|
+
"""
|
|
91
|
+
}]
|
|
92
|
+
|
|
93
|
+
try:
|
|
94
|
+
response = await self.a_generate_reply(messages)
|
|
95
|
+
|
|
96
|
+
# Ensure we have a valid response
|
|
97
|
+
if not response:
|
|
98
|
+
raise ValueError("Empty response from LLM")
|
|
99
|
+
|
|
100
|
+
# Handle both string and dictionary responses
|
|
101
|
+
if isinstance(response, str):
|
|
102
|
+
content = response
|
|
103
|
+
elif isinstance(response, dict):
|
|
104
|
+
content = response.get("content", "")
|
|
105
|
+
if not content and "message" in response:
|
|
106
|
+
content = response.get("message", {}).get("content", "")
|
|
107
|
+
else:
|
|
108
|
+
content = str(response)
|
|
109
|
+
|
|
110
|
+
print(f"Generated response: {content}") # Log first 200 chars
|
|
111
|
+
return {
|
|
112
|
+
"answer": content,
|
|
113
|
+
"supporting_data": context
|
|
114
|
+
}
|
|
115
|
+
except Exception as e:
|
|
116
|
+
logger.error(f"Error querying context: {e}")
|
|
117
|
+
return {
|
|
118
|
+
"answer": f"Error: {str(e)}",
|
|
119
|
+
"supporting_data": {}
|
|
120
|
+
}
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
async def update_task(self, task_id: str, task_data: Dict, result: Optional[Any] = None):
|
|
124
|
+
"""Update task information and results."""
|
|
125
|
+
self.task_descriptions[task_id] = task_data.get("description", "No description")
|
|
126
|
+
if result is not None:
|
|
127
|
+
self.task_results[task_id] = result
|
|
128
|
+
logger.debug(f"Updated context for task {task_id}")
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
class HeterogeneousGroupChat:
|
|
132
|
+
"""
|
|
133
|
+
A group chat for heterogeneous agents that abstracts away the complexity
|
|
134
|
+
of setting up connections and coordinating tasks between different frameworks.
|
|
135
|
+
"""
|
|
136
|
+
|
|
137
|
+
def __init__(
|
|
138
|
+
self,
|
|
139
|
+
name: str,
|
|
140
|
+
server_url: str = "https://mcp-server-ixlfhxquwq-ew.a.run.app",
|
|
141
|
+
coordinator_config: Optional[Dict[str, Any]] = None
|
|
142
|
+
):
|
|
143
|
+
"""
|
|
144
|
+
Initialize a heterogeneous group chat.
|
|
145
|
+
|
|
146
|
+
Args:
|
|
147
|
+
name: Name of the group chat
|
|
148
|
+
server_url: URL of the deployed MCP server
|
|
149
|
+
coordinator_config: Optional configuration for the coordinator agent
|
|
150
|
+
"""
|
|
151
|
+
self.name = name
|
|
152
|
+
self.server_url = server_url
|
|
153
|
+
self.agents: List[MCPAgent] = []
|
|
154
|
+
self.coordinator: Optional[EnhancedMCPAgent] = None
|
|
155
|
+
self.coordinator_config = coordinator_config or {}
|
|
156
|
+
self.coordinator_url = server_url
|
|
157
|
+
self.agent_tokens: Dict[str, str] = {} # Store agent tokens
|
|
158
|
+
self._register_event = asyncio.Event()
|
|
159
|
+
self._agent_tasks = [] # Initialize list to store agent tasks
|
|
160
|
+
# Initialize directly on the group chat instance first
|
|
161
|
+
self.task_results: Dict[str, Any] = {}
|
|
162
|
+
self.task_dependencies: Dict[str, Dict] = {}
|
|
163
|
+
self.dependency_results: Dict[str, Any] = {} # Initialize dependency results
|
|
164
|
+
|
|
165
|
+
# Store coordinator config for later use
|
|
166
|
+
self.coordinator_config = coordinator_config or {}
|
|
167
|
+
|
|
168
|
+
# Initialize context agent with default LLM config
|
|
169
|
+
default_llm_config = {
|
|
170
|
+
"config_list": [{
|
|
171
|
+
"model": "gpt-3.5-turbo",
|
|
172
|
+
"api_key": os.getenv("OPENAI_API_KEY"), # Will be set when coordinator is created
|
|
173
|
+
"api_type": "openai"
|
|
174
|
+
}]
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
# Use provided config or default
|
|
178
|
+
llm_config = self.coordinator_config.get("llm_config", default_llm_config).copy()
|
|
179
|
+
|
|
180
|
+
# Ensure config_list exists and has at least one config
|
|
181
|
+
if not llm_config.get("config_list"):
|
|
182
|
+
llm_config["config_list"] = default_llm_config["config_list"]
|
|
183
|
+
|
|
184
|
+
# Create context agent
|
|
185
|
+
self.context_agent = ContextAgent(
|
|
186
|
+
name=f"{self.name}_context",
|
|
187
|
+
llm_config=llm_config
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
def _get_agent_url(self, agent_name: str) -> str:
|
|
191
|
+
"""Get the URL for an agent on the deployed server"""
|
|
192
|
+
return f"{self.server_url}/agents/{agent_name}"
|
|
193
|
+
|
|
194
|
+
def create_coordinator(self, api_key: str) -> CoordinatorAgent:
|
|
195
|
+
"""Create the coordinator agent for the group chat"""
|
|
196
|
+
# Avoid creating coordinator if it already exists
|
|
197
|
+
if self.coordinator:
|
|
198
|
+
return self.coordinator
|
|
199
|
+
|
|
200
|
+
# Define coordinator name (use config if provided, else default)
|
|
201
|
+
coordinator_name = self.coordinator_config.get("name", f"{self.name}Coordinator")
|
|
202
|
+
|
|
203
|
+
# Create transport for coordinator, passing its name
|
|
204
|
+
coordinator_transport = HTTPTransport.from_url(
|
|
205
|
+
self.server_url,
|
|
206
|
+
agent_name=coordinator_name
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
# --- Default Coordinator Configuration ---
|
|
210
|
+
default_config = {
|
|
211
|
+
"name": coordinator_name,
|
|
212
|
+
"transport": coordinator_transport,
|
|
213
|
+
"system_message": "You are a helpful AI assistant coordinating tasks between other specialized agents. You receive task results and ensure the overall goal is achieved.",
|
|
214
|
+
"llm_config": {
|
|
215
|
+
# Default model, can be overridden by coordinator_config
|
|
216
|
+
"config_list": [{
|
|
217
|
+
"model": "gpt-3.5-turbo",
|
|
218
|
+
"api_key": api_key
|
|
219
|
+
}],
|
|
220
|
+
"cache_seed": 42 # Or None for no caching
|
|
221
|
+
},
|
|
222
|
+
}
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
# --- Merge Default and User Config ---
|
|
226
|
+
# User config takes precedence
|
|
227
|
+
final_config = default_config.copy() # Start with defaults
|
|
228
|
+
final_config.update(self.coordinator_config) # Update with user overrides
|
|
229
|
+
|
|
230
|
+
# Ensure llm_config is properly structured if overridden
|
|
231
|
+
if "llm_config" in self.coordinator_config and "config_list" not in final_config["llm_config"]:
|
|
232
|
+
print("Warning: coordinator_config provided llm_config without config_list. Re-structuring.")
|
|
233
|
+
# Assume the user provided a simple dict like {"api_key": ..., "model": ...}
|
|
234
|
+
# We need to wrap it in config_list for AutoGen
|
|
235
|
+
user_llm_config = final_config["llm_config"]
|
|
236
|
+
final_config["llm_config"] = {
|
|
237
|
+
"config_list": [user_llm_config],
|
|
238
|
+
"cache_seed": user_llm_config.get("cache_seed", 42)
|
|
239
|
+
}
|
|
240
|
+
elif "llm_config" in final_config and "api_key" not in final_config["llm_config"].get("config_list", [{}])[0]:
|
|
241
|
+
# If llm_config exists but api_key is missing in the primary config
|
|
242
|
+
print("Warning: api_key missing in llm_config config_list. Injecting from create_coordinator argument.")
|
|
243
|
+
if "config_list" not in final_config["llm_config"]:
|
|
244
|
+
final_config["llm_config"]["config_list"] = [{}]
|
|
245
|
+
final_config["llm_config"]["config_list"][0]["api_key"] = api_key
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
# Update context agent's LLM config to match coordinator's
|
|
249
|
+
if hasattr(self, 'context_agent') and self.context_agent:
|
|
250
|
+
# Get the final config that will be used by the coordinator
|
|
251
|
+
context_llm_config = final_config.get('llm_config', {})
|
|
252
|
+
# Update the context agent's config
|
|
253
|
+
if hasattr(self.context_agent, 'llm_config'):
|
|
254
|
+
self.context_agent.llm_config = context_llm_config
|
|
255
|
+
logger.info(f"Updated context agent's LLM config to match coordinator")
|
|
256
|
+
|
|
257
|
+
# --- Create Coordinator Agent ---
|
|
258
|
+
print(f"Creating coordinator with config: {final_config}") # Debug: Log final config
|
|
259
|
+
self.coordinator = CoordinatorAgent(self, **final_config)
|
|
260
|
+
|
|
261
|
+
# --- Set Message Handler ---
|
|
262
|
+
#self.coordinator.transport.set_message_handler(self._handle_coordinator_message)
|
|
263
|
+
# Use a lambda to explicitly capture the correct 'self' (the HeterogeneousGroupChat instance)
|
|
264
|
+
#self.coordinator.transport.set_message_handler(lambda msg, msg_id: self._handle_coordinator_message(msg, msg_id))
|
|
265
|
+
|
|
266
|
+
return self.coordinator
|
|
267
|
+
|
|
268
|
+
def add_agents(self, agents: Union[MCPAgent, Sequence[MCPAgent]]) -> List[MCPAgent]:
|
|
269
|
+
"""
|
|
270
|
+
Add one or more agents to the group chat.
|
|
271
|
+
|
|
272
|
+
Args:
|
|
273
|
+
agents: A single MCPAgent or a sequence of MCPAgents
|
|
274
|
+
|
|
275
|
+
Returns:
|
|
276
|
+
List of added agents
|
|
277
|
+
|
|
278
|
+
Example:
|
|
279
|
+
# Add a single agent
|
|
280
|
+
group.add_agents(agent1)
|
|
281
|
+
|
|
282
|
+
# Add multiple agents
|
|
283
|
+
group.add_agents([agent1, agent2, agent3])
|
|
284
|
+
|
|
285
|
+
# Add agents as separate arguments
|
|
286
|
+
group.add_agents(agent1, agent2, agent3)
|
|
287
|
+
"""
|
|
288
|
+
if not isinstance(agents, (list, tuple)):
|
|
289
|
+
agents = [agents]
|
|
290
|
+
|
|
291
|
+
added_agents = []
|
|
292
|
+
for agent in agents:
|
|
293
|
+
# Retrieve token if agent was already registered
|
|
294
|
+
token = self.agent_tokens.get(agent.name)
|
|
295
|
+
if not self.server_url:
|
|
296
|
+
raise ValueError("Cannot add agents before connecting. Call connect() first.")
|
|
297
|
+
|
|
298
|
+
# Create transport for the agent, passing its name and token
|
|
299
|
+
agent.transport = HTTPTransport.from_url(self.server_url, agent_name=agent.name, token=token)
|
|
300
|
+
|
|
301
|
+
# Set client mode if needed
|
|
302
|
+
if hasattr(agent, 'client_mode'):
|
|
303
|
+
agent.client_mode = True
|
|
304
|
+
|
|
305
|
+
self.agents.append(agent)
|
|
306
|
+
added_agents.append(agent)
|
|
307
|
+
|
|
308
|
+
return added_agents
|
|
309
|
+
|
|
310
|
+
# Alias for backward compatibility
|
|
311
|
+
add_agent = add_agents
|
|
312
|
+
|
|
313
|
+
async def connect(self):
|
|
314
|
+
"""Register all agents and start their processing loops."""
|
|
315
|
+
print("Registering coordinator...")
|
|
316
|
+
coord_task = await self._register_and_start_agent(self.coordinator)
|
|
317
|
+
if not coord_task:
|
|
318
|
+
print("Coordinator registration failed. Aborting connect.")
|
|
319
|
+
return
|
|
320
|
+
|
|
321
|
+
print("Registering agents...")
|
|
322
|
+
tasks = [coord_task] # Start with coordinator task
|
|
323
|
+
for agent in self.agents:
|
|
324
|
+
agent_task = await self._register_and_start_agent(agent)
|
|
325
|
+
if agent_task: # Only add task if registration was successful
|
|
326
|
+
tasks.append(agent_task)
|
|
327
|
+
else:
|
|
328
|
+
print(f"Skipping agent {agent.name} due to registration failure.")
|
|
329
|
+
# Optionally, handle failed agents (e.g., remove from group?)
|
|
330
|
+
|
|
331
|
+
if not tasks:
|
|
332
|
+
print("No agents were successfully registered and started.")
|
|
333
|
+
return
|
|
334
|
+
|
|
335
|
+
print(f"All {len(tasks)} agents registered and started.")
|
|
336
|
+
# Store tasks but don't wait for them - they'll run in the background
|
|
337
|
+
self._agent_tasks = tasks
|
|
338
|
+
print("Group chat ready for task submission.")
|
|
339
|
+
|
|
340
|
+
async def _register_and_start_agent(self, agent: MCPAgent):
|
|
341
|
+
"""Register an agent, start its event stream, and its processors."""
|
|
342
|
+
if not agent.transport or not isinstance(agent.transport, HTTPTransport):
|
|
343
|
+
raise ValueError(f"Agent {agent.name} has no valid HTTPTransport defined.")
|
|
344
|
+
|
|
345
|
+
response = await agent.transport.register_agent(agent)
|
|
346
|
+
|
|
347
|
+
# Parse response which may be in {'body': '{...}'} format
|
|
348
|
+
if isinstance(response, dict):
|
|
349
|
+
if 'body' in response:
|
|
350
|
+
# Response is wrapped, parse the body string
|
|
351
|
+
try:
|
|
352
|
+
response = json.loads(response['body'])
|
|
353
|
+
except json.JSONDecodeError:
|
|
354
|
+
print(f"Error parsing agent registration response body: {response}")
|
|
355
|
+
|
|
356
|
+
if response and isinstance(response, dict) and "token" in response:
|
|
357
|
+
token = response["token"]
|
|
358
|
+
self.agent_tokens[agent.name] = token
|
|
359
|
+
agent.transport.token = token
|
|
360
|
+
agent.transport.auth_token = token
|
|
361
|
+
print(f"Agent {agent.name} registered successfully with token.")
|
|
362
|
+
|
|
363
|
+
# Start polling *before* starting the agent's run loop
|
|
364
|
+
await agent.transport.start_polling()
|
|
365
|
+
|
|
366
|
+
# Start agent's main run loop (message processing, etc.)
|
|
367
|
+
# We create the task but don't await it here; the calling function (connect) will gather tasks.
|
|
368
|
+
task = asyncio.create_task(agent.run())
|
|
369
|
+
self._agent_tasks.append(task) # Store the task
|
|
370
|
+
return task # Return the task for potential gathering
|
|
371
|
+
else:
|
|
372
|
+
print(f"Warning: Agent {agent.name} registration failed or did not return a token. Response: {response}")
|
|
373
|
+
# Don't run the agent if registration fails - it won't be able to communicate
|
|
374
|
+
return None # Indicate failure
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
async def query_context(self, query: str) -> Dict[str, Any]:
|
|
378
|
+
"""
|
|
379
|
+
Query the context agent for information about tasks and results.
|
|
380
|
+
|
|
381
|
+
Args:
|
|
382
|
+
query: Natural language query about tasks, results, or context
|
|
383
|
+
|
|
384
|
+
Returns:
|
|
385
|
+
Dict with 'answer' and 'supporting_data' keys
|
|
386
|
+
"""
|
|
387
|
+
return await self.context_agent.query_context(query)
|
|
388
|
+
|
|
389
|
+
def _inject_dependency_results(self, step: Dict, dependency_results: Dict) -> Dict:
|
|
390
|
+
"""Injects dependency results into a step's content.
|
|
391
|
+
|
|
392
|
+
If the step contains string.Template style placeholders (e.g., ${task_id}),
|
|
393
|
+
it substitutes them with the corresponding results.
|
|
394
|
+
|
|
395
|
+
If no placeholders are found, it assumes the agent needs the raw results
|
|
396
|
+
and adds them to the step's content under the key 'dependency_data'.
|
|
397
|
+
"""
|
|
398
|
+
if not step:
|
|
399
|
+
return step
|
|
400
|
+
|
|
401
|
+
# Check if any part of the step contains a placeholder
|
|
402
|
+
logger.info(f"No placeholders detected in step {step.get('task_id', 'N/A')}. Adding raw dependency data.")
|
|
403
|
+
dependency_data = {}
|
|
404
|
+
for dep_task_id in step.get("depends_on", []):
|
|
405
|
+
result_value = dependency_results.get(dep_task_id)
|
|
406
|
+
if result_value is None:
|
|
407
|
+
logger.warning(f"No result found for dependency '{dep_task_id}' when preparing raw data for step '{step.get('task_id', 'N/A')}'")
|
|
408
|
+
extracted_value = None # Or some placeholder?
|
|
409
|
+
elif isinstance(result_value, dict):
|
|
410
|
+
# Prioritize 'output', then 'result', then string representation
|
|
411
|
+
if 'output' in result_value: # Check presence first
|
|
412
|
+
extracted_value = result_value['output']
|
|
413
|
+
elif 'result' in result_value: # Check presence first
|
|
414
|
+
extracted_value = result_value['result']
|
|
415
|
+
else:
|
|
416
|
+
logger.warning(f"Raw dependency '{dep_task_id}': Neither 'output' nor 'result' key found in dict result. Using full dict.")
|
|
417
|
+
extracted_value = result_value # Pass the whole dict
|
|
418
|
+
else:
|
|
419
|
+
extracted_value = result_value # Pass strings, numbers, lists as-is
|
|
420
|
+
|
|
421
|
+
dependency_data[dep_task_id] = extracted_value
|
|
422
|
+
|
|
423
|
+
# Ensure 'content' exists and add the data
|
|
424
|
+
if "content" not in step:
|
|
425
|
+
step["content"] = {}
|
|
426
|
+
if not isinstance(step["content"], dict):
|
|
427
|
+
logger.warning(f"Step {step.get('task_id', 'N/A')} content is not a dict, cannot add dependency_data. Content: {step['content']}")
|
|
428
|
+
else:
|
|
429
|
+
step["content"]["dependency_data"] = dependency_data
|
|
430
|
+
|
|
431
|
+
return step
|
|
432
|
+
|
|
433
|
+
async def submit_task(self, task: Dict[str, Any], inject_at_submit_time: bool = False) -> None:
|
|
434
|
+
"""
|
|
435
|
+
Submit a group task. If inject_at_submit_time is True, inject dependency results into each step now.
|
|
436
|
+
If False, inject at the last possible moment (just before sending to agents).
|
|
437
|
+
"""
|
|
438
|
+
# Reset state for new task submission
|
|
439
|
+
self.task_results = {}
|
|
440
|
+
self.context_agent.task_results = {}
|
|
441
|
+
self.context_agent.task_descriptions = {}
|
|
442
|
+
self._pending_tasks = {} # Track pending tasks with their completion events to ensure its always new for each submission
|
|
443
|
+
print(f"[DEBUG] __init__: self ID: {id(self)}, _pending_tasks ID: {id(self._pending_tasks)}")
|
|
444
|
+
steps = task.get("steps", [])
|
|
445
|
+
self.task_dependencies = {step["task_id"]: step for step in steps} # Store task dependencies
|
|
446
|
+
|
|
447
|
+
self._inject_at_submit_time = inject_at_submit_time
|
|
448
|
+
if inject_at_submit_time:
|
|
449
|
+
steps = [self._inject_dependency_results(step, self.task_results) for step in steps]
|
|
450
|
+
self._pending_steps = steps # Store for later use
|
|
451
|
+
await self._submit_steps(steps)
|
|
452
|
+
|
|
453
|
+
async def _submit_steps(self, steps):
|
|
454
|
+
for step in steps:
|
|
455
|
+
try:
|
|
456
|
+
# Only inject here if not already injected at submit time
|
|
457
|
+
if not getattr(self, '_inject_at_submit_time', True):
|
|
458
|
+
step = self._inject_dependency_results(step, self.task_results)
|
|
459
|
+
|
|
460
|
+
# Create and store event for this task
|
|
461
|
+
task_id = step['task_id']
|
|
462
|
+
future = asyncio.Future()
|
|
463
|
+
self._pending_tasks[task_id] = future
|
|
464
|
+
print(f"[DEBUG] _submit_steps: Added task {task_id}. Current _pending_tasks: {list(self._pending_tasks.keys())} (ID: {id(self._pending_tasks)})")
|
|
465
|
+
print(f"[DEBUG] Added task {task_id} to pending_tasks")
|
|
466
|
+
# Submit the task
|
|
467
|
+
await self._send_step_to_agent(step)
|
|
468
|
+
|
|
469
|
+
# Wait for task completion with timeout
|
|
470
|
+
try:
|
|
471
|
+
await asyncio.wait_for(future, timeout=60)
|
|
472
|
+
print(f"[DEBUG] Task {task_id} completed with result: {future.result()}")
|
|
473
|
+
except asyncio.TimeoutError:
|
|
474
|
+
logger.error(f"Task {task_id} timed out")
|
|
475
|
+
raise TimeoutError(f"Task {task_id} timed out")
|
|
476
|
+
finally:
|
|
477
|
+
# Clean up
|
|
478
|
+
self._pending_tasks.pop(task_id, None)
|
|
479
|
+
|
|
480
|
+
except Exception as e:
|
|
481
|
+
logger.error(f"Error in step {step.get('task_id')}: {e}")
|
|
482
|
+
raise
|
|
483
|
+
|
|
484
|
+
async def _generate_content(self, description: str, content: Dict) -> Dict:
|
|
485
|
+
"""Generate content using the ContextAgent based on the task description.
|
|
486
|
+
|
|
487
|
+
Args:
|
|
488
|
+
description: The task description
|
|
489
|
+
content: Existing content to be augmented with generated content
|
|
490
|
+
|
|
491
|
+
Returns:
|
|
492
|
+
Dict: Content with generated fields merged in
|
|
493
|
+
"""
|
|
494
|
+
# Ensure we have a dictionary to work with
|
|
495
|
+
if not isinstance(content, dict):
|
|
496
|
+
content = {}
|
|
497
|
+
|
|
498
|
+
try:
|
|
499
|
+
# Generate content using the context agent
|
|
500
|
+
generated = await self.context_agent.generate_response(description)
|
|
501
|
+
|
|
502
|
+
print(f"Generated content: {generated}")
|
|
503
|
+
if generated and isinstance(generated, dict) and "answer" in generated:
|
|
504
|
+
try:
|
|
505
|
+
# Try to parse as JSON first
|
|
506
|
+
generated_content = json.loads(generated["answer"])
|
|
507
|
+
# If it's a dictionary, merge it intelligently
|
|
508
|
+
if isinstance(generated_content, dict):
|
|
509
|
+
# Merge with existing content, with generated content taking precedence
|
|
510
|
+
content = {**content, **generated_content}
|
|
511
|
+
# If it's not a dictionary, store it as generated_content
|
|
512
|
+
else:
|
|
513
|
+
content["content"] = generated_content # this is the generated content that will be sent to the agent
|
|
514
|
+
except (json.JSONDecodeError, TypeError):
|
|
515
|
+
# If not JSON, store the raw answer
|
|
516
|
+
content["content"] = generated["answer"] # this is the generated content that will be sent to the agent
|
|
517
|
+
|
|
518
|
+
except Exception as e:
|
|
519
|
+
logger.error(f"Error generating content: {e}")
|
|
520
|
+
print(f"Error generating content: {e}")
|
|
521
|
+
content["error"] = str(e)
|
|
522
|
+
|
|
523
|
+
return content
|
|
524
|
+
|
|
525
|
+
async def _send_step_to_agent(self, step):
|
|
526
|
+
# 1-line dependency enforcement: skip if any dependency missing or empty
|
|
527
|
+
#if any(not self.dependency_results.get(dep) for dep in step.get("depends_on", [])):
|
|
528
|
+
# print(f"Skipping {step['task_id']} because dependencies not satisfied: {step.get('depends_on', [])}")
|
|
529
|
+
# return
|
|
530
|
+
step = self._inject_dependency_results(step, self.task_results)
|
|
531
|
+
|
|
532
|
+
# Update context agent with task info
|
|
533
|
+
task_id = step.get("task_id", str(id(step)))
|
|
534
|
+
await self.context_agent.update_task(task_id, step)
|
|
535
|
+
|
|
536
|
+
print("\n=== Submitting task to group ===")
|
|
537
|
+
|
|
538
|
+
# Ensure task is in the correct format
|
|
539
|
+
if not isinstance(step, dict):
|
|
540
|
+
raise ValueError("Invalid task format. Expected a dictionary.")
|
|
541
|
+
|
|
542
|
+
# Handle content generation if requested
|
|
543
|
+
if step.get("content", {}).get("generate_content", False):
|
|
544
|
+
description = step.get("description", "")
|
|
545
|
+
if description:
|
|
546
|
+
# Make a copy to avoid modifying the original
|
|
547
|
+
content = step.get("content", {}).copy()
|
|
548
|
+
# Remove the flag before generation
|
|
549
|
+
content.pop("generate_content", None)
|
|
550
|
+
# Generate and merge content
|
|
551
|
+
step["content"] = await self._generate_content(description, content)
|
|
552
|
+
|
|
553
|
+
# Store task dependencies from the input task definition
|
|
554
|
+
# We need a dictionary where keys are the step task_ids
|
|
555
|
+
self.task_dependencies[step["task_id"]] = step
|
|
556
|
+
print(f"Parsed Step Dependencies: {self.task_dependencies}")
|
|
557
|
+
|
|
558
|
+
# Also store in coordinator instance if it exists
|
|
559
|
+
if self.coordinator:
|
|
560
|
+
# Ensure the coordinator has the dict initialized
|
|
561
|
+
if not hasattr(self.coordinator, 'task_dependencies') or not isinstance(getattr(self.coordinator, 'task_dependencies', None), dict):
|
|
562
|
+
self.coordinator.task_dependencies = {}
|
|
563
|
+
self.coordinator.task_dependencies.update(self.task_dependencies)
|
|
564
|
+
|
|
565
|
+
if not self.coordinator or not self.coordinator.transport:
|
|
566
|
+
print("CRITICAL ERROR: Coordinator is not initialized or has no transport. Cannot submit task.")
|
|
567
|
+
return
|
|
568
|
+
|
|
569
|
+
coordinator_transport = self.coordinator.transport
|
|
570
|
+
|
|
571
|
+
print(f"[DEBUG - {self.name}] Starting submit_task loop over {len(self.task_dependencies)} dependencies.", flush=True)
|
|
572
|
+
print(f"***** [{self.name}] Dependencies Content: {self.task_dependencies} *****", flush=True) # Log content before loop
|
|
573
|
+
|
|
574
|
+
# Assign tasks to agents based on the structure
|
|
575
|
+
# Submit tasks to their respective agents
|
|
576
|
+
agent_name = step["agent"]
|
|
577
|
+
# Create message with all necessary fields including content
|
|
578
|
+
message = {
|
|
579
|
+
"type": "task",
|
|
580
|
+
"task_id": step["task_id"],
|
|
581
|
+
"description": step["description"],
|
|
582
|
+
"sender": self.coordinator.name,
|
|
583
|
+
"content": step.get("content", {}), # Include task content
|
|
584
|
+
"depends_on": step.get("depends_on", []), # Include dependencies
|
|
585
|
+
"reply_to": f"{self.server_url}/message/{self.coordinator.name}" # Full URL for reply
|
|
586
|
+
}
|
|
587
|
+
print(f"Sending task to {agent_name}")
|
|
588
|
+
print(f"Task message: {message}")
|
|
589
|
+
# Use coordinator's transport to send task to agent
|
|
590
|
+
await coordinator_transport.send_message(agent_name, message)
|
|
591
|
+
|
|
592
|
+
print("Task submitted. Waiting for completion...")
|
|
593
|
+
|
|
594
|
+
async def wait_for_completion(self, check_interval: float = 1.0):
|
|
595
|
+
"""
|
|
596
|
+
Wait for all tasks to complete.
|
|
597
|
+
|
|
598
|
+
Args:
|
|
599
|
+
check_interval: How often to check for completion in seconds
|
|
600
|
+
"""
|
|
601
|
+
if not self.coordinator:
|
|
602
|
+
raise ValueError("Group chat not connected. Call connect() first.")
|
|
603
|
+
|
|
604
|
+
try:
|
|
605
|
+
while True:
|
|
606
|
+
# Check if all tasks have results
|
|
607
|
+
all_completed = True
|
|
608
|
+
# Use the dependencies stored in the coordinator
|
|
609
|
+
for task_id in self.task_dependencies:
|
|
610
|
+
# Check both group chat and coordinator results
|
|
611
|
+
if task_id not in self.task_results and task_id not in self.coordinator.task_results:
|
|
612
|
+
all_completed = False
|
|
613
|
+
print(f"Waiting for task {task_id}...")
|
|
614
|
+
break
|
|
615
|
+
|
|
616
|
+
if all_completed:
|
|
617
|
+
print("\n=== All tasks completed! ===")
|
|
618
|
+
print("\nResults:")
|
|
619
|
+
# Merge results from both sources
|
|
620
|
+
all_results = {**self.task_results, **self.coordinator.task_results}
|
|
621
|
+
for task_id, result in all_results.items():
|
|
622
|
+
print(f"\n{task_id}:")
|
|
623
|
+
print(result)
|
|
624
|
+
break
|
|
625
|
+
|
|
626
|
+
await asyncio.sleep(check_interval)
|
|
627
|
+
|
|
628
|
+
except KeyboardInterrupt:
|
|
629
|
+
print("\nStopping group chat...")
|
|
630
|
+
|
|
631
|
+
async def _handle_coordinator_message(self, message: Dict, message_id: str):
|
|
632
|
+
"""Handles messages received by the coordinator's transport."""
|
|
633
|
+
|
|
634
|
+
if not self.coordinator: # Ensure coordinator exists
|
|
635
|
+
print(f"[Coordinator Handler] Error: Coordinator not initialized. Self ID: {id(self)}")
|
|
636
|
+
return
|
|
637
|
+
|
|
638
|
+
print(f"\n[Coordinator {self.coordinator.name}] Received message: {message}. Self ID: {id(self)}")
|
|
639
|
+
|
|
640
|
+
# Handle messages wrapped in 'body' field
|
|
641
|
+
if isinstance(message, dict) and 'body' in message:
|
|
642
|
+
try:
|
|
643
|
+
if isinstance(message['body'], str):
|
|
644
|
+
message = json.loads(message['body'])
|
|
645
|
+
else:
|
|
646
|
+
message = message['body']
|
|
647
|
+
print(f"[Coordinator {self.coordinator.name}] Unwrapped message body: {message}")
|
|
648
|
+
except json.JSONDecodeError:
|
|
649
|
+
print(f"[Coordinator {self.coordinator.name}] Error decoding message body: {message}")
|
|
650
|
+
return
|
|
651
|
+
|
|
652
|
+
# Look for type and task_id at top level
|
|
653
|
+
msg_type = message.get("type")
|
|
654
|
+
task_id = message.get("task_id")
|
|
655
|
+
|
|
656
|
+
print(f"[Coordinator {self.coordinator.name}] Processing message type '{msg_type}' for task {task_id}. Current _pending_tasks in handler: {list(self._pending_tasks.keys())} (ID: {id(self._pending_tasks)})")
|
|
657
|
+
|
|
658
|
+
if msg_type in ["result", "task_result"]: # Handle both result types
|
|
659
|
+
# First try direct fields, then try parsing content.text if it exists
|
|
660
|
+
result_content = None
|
|
661
|
+
|
|
662
|
+
# Try direct fields first
|
|
663
|
+
result_content = message.get("result") or message.get("description")
|
|
664
|
+
|
|
665
|
+
# If not found, try to parse from content.text
|
|
666
|
+
if result_content is None and "content" in message and isinstance(message["content"], dict):
|
|
667
|
+
content_text = message["content"].get("text")
|
|
668
|
+
if content_text:
|
|
669
|
+
try:
|
|
670
|
+
content_data = json.loads(content_text)
|
|
671
|
+
result_content = content_data.get("result") or content_data.get("description")
|
|
672
|
+
# Update task_id from content if not set
|
|
673
|
+
if not task_id and "task_id" in content_data:
|
|
674
|
+
task_id = content_data["task_id"]
|
|
675
|
+
except (json.JSONDecodeError, AttributeError, TypeError) as e:
|
|
676
|
+
print(f"[Coordinator {self.coordinator.name}] Error parsing content.text: {e}")
|
|
677
|
+
|
|
678
|
+
if task_id and result_content is not None:
|
|
679
|
+
print(f"[Coordinator {self.coordinator.name}] Storing result for task {task_id}")
|
|
680
|
+
# Store result in both the group chat and coordinator
|
|
681
|
+
self.task_results[task_id] = result_content
|
|
682
|
+
self.dependency_results[task_id] = result_content # Required for template resolution
|
|
683
|
+
if "dependency_results" not in self.coordinator.task_results:
|
|
684
|
+
self.coordinator.task_results["dependency_results"] = {}
|
|
685
|
+
self.coordinator.task_results["dependency_results"][task_id] = result_content
|
|
686
|
+
self.coordinator.task_results[task_id] = result_content
|
|
687
|
+
print(f"[Coordinator {self.coordinator.name}] Stored result for task {task_id}")
|
|
688
|
+
print(f"[Coordinator {self.coordinator.name}] Stored result: {result_content}...")
|
|
689
|
+
print(f"[Coordinator {self.coordinator.name}] Current task results: {list(self.task_results.keys())}")
|
|
690
|
+
print(f"[Coordinator {self.coordinator.name}] Current dependencies: {self.task_dependencies}")
|
|
691
|
+
|
|
692
|
+
# Signal task completion if anyone is waiting
|
|
693
|
+
if not hasattr(self, '_pending_tasks'):
|
|
694
|
+
self._pending_tasks = {}
|
|
695
|
+
print(f"[Coordinator {self.coordinator.name}] Current pending tasks: {list(self._pending_tasks.keys())}")
|
|
696
|
+
print(f"[DEBUG] Checking if task {task_id} is in pending_tasks: {task_id in self._pending_tasks}")
|
|
697
|
+
|
|
698
|
+
if task_id in self._pending_tasks:
|
|
699
|
+
print(f"[Coordinator {self.coordinator.name}] Signaling completion for task {task_id}")
|
|
700
|
+
future = self._pending_tasks[task_id]
|
|
701
|
+
if not future.done():
|
|
702
|
+
#future.set_result(result_content)
|
|
703
|
+
asyncio.get_event_loop().call_soon_threadsafe(lambda: future.set_result(result_content) if not future.done() else None)
|
|
704
|
+
print(f"[DEBUG] Set result for task {task_id}")
|
|
705
|
+
await asyncio.sleep(0)
|
|
706
|
+
print(f"[Coordinator {self.coordinator.name}] Completed task {task_id}")
|
|
707
|
+
#asyncio.get_running_loop().call_soon(future.set_result, result_content)
|
|
708
|
+
#asyncio.get_event_loop().call_soon_threadsafe(lambda: future.set_result(result_content) if not future.done() else None)
|
|
709
|
+
# Clean up the task after signaling
|
|
710
|
+
#if task_id in self._pending_tasks:
|
|
711
|
+
#del self._pending_tasks[task_id]
|
|
712
|
+
print(f"[Coordinator {self.coordinator.name}] Completed task {task_id}")
|
|
713
|
+
else:
|
|
714
|
+
print(f"[Coordinator {self.coordinator.name}] Task {task_id} not found in pending tasks")
|
|
715
|
+
|
|
716
|
+
# Acknowledge the message
|
|
717
|
+
try:
|
|
718
|
+
if message_id: # Only acknowledge if we have a message ID
|
|
719
|
+
await self.coordinator.transport.acknowledge_message(self.coordinator.name, message_id)
|
|
720
|
+
print(f"[Coordinator {self.coordinator.name}] Acknowledged message {message_id}")
|
|
721
|
+
except Exception as e:
|
|
722
|
+
print(f"[Coordinator {self.coordinator.name}] Error acknowledging message {message_id}: {e}")
|
|
723
|
+
return
|
|
724
|
+
else:
|
|
725
|
+
print(f"[Coordinator {self.coordinator.name}] Received invalid result message (missing task_id or result): {message}")
|
|
726
|
+
elif msg_type == "get_result": # Handle get result request
|
|
727
|
+
result = None
|
|
728
|
+
if task_id in self.task_results:
|
|
729
|
+
result = self.task_results[task_id]
|
|
730
|
+
elif task_id in self.coordinator.task_results:
|
|
731
|
+
result = self.coordinator.task_results[task_id]
|
|
732
|
+
|
|
733
|
+
if result:
|
|
734
|
+
print(f"[Coordinator {self.coordinator.name}] Found result for task {task_id}")
|
|
735
|
+
# Send result back
|
|
736
|
+
try:
|
|
737
|
+
await self.coordinator.transport.send_message(
|
|
738
|
+
f"{self.server_url}/message/{message.get('sender', 'unknown')}",
|
|
739
|
+
{
|
|
740
|
+
"type": "task_result",
|
|
741
|
+
"task_id": task_id,
|
|
742
|
+
"result": result
|
|
743
|
+
}
|
|
744
|
+
)
|
|
745
|
+
print(f"[Coordinator {self.coordinator.name}] Sent result for task {task_id}")
|
|
746
|
+
except Exception as e:
|
|
747
|
+
print(f"[Coordinator {self.coordinator.name}] Error sending result: {e}")
|
|
748
|
+
else:
|
|
749
|
+
print(f"[Coordinator {self.coordinator.name}] No result found for task {task_id}")
|
|
750
|
+
else:
|
|
751
|
+
print(f"[Coordinator {self.coordinator.name}] Received unhandled message type '{msg_type}': {message}")
|
|
752
|
+
# Optionally, acknowledge other messages too or handle errors
|
|
753
|
+
try:
|
|
754
|
+
await self.coordinator.transport.acknowledge_message(message_id)
|
|
755
|
+
except Exception as e:
|
|
756
|
+
print(f"[Coordinator {self.coordinator.name}] Error acknowledging message {message_id}: {e}")
|
|
757
|
+
|
|
758
|
+
@property
|
|
759
|
+
def group_state(self) -> dict:
|
|
760
|
+
"""
|
|
761
|
+
Returns a merged dictionary of all task results (group and coordinator).
|
|
762
|
+
Agents can use this to access the shared group chat history/results.
|
|
763
|
+
"""
|
|
764
|
+
return {**self.task_results, **(self.coordinator.task_results if self.coordinator else {})}
|
|
765
|
+
|
|
766
|
+
async def shutdown(self):
|
|
767
|
+
"""Gracefully disconnect all agents and cancel their tasks."""
|
|
768
|
+
print(f"Initiating shutdown for {len(self._agent_tasks)} agent tasks...")
|
|
769
|
+
|
|
770
|
+
# 1. Cancel all running agent tasks
|
|
771
|
+
for task in self._agent_tasks:
|
|
772
|
+
if task and not task.done():
|
|
773
|
+
print(f"Cancelling task {task.get_name()}...")
|
|
774
|
+
task.cancel()
|
|
775
|
+
|
|
776
|
+
# Wait for all tasks to be cancelled
|
|
777
|
+
if self._agent_tasks:
|
|
778
|
+
await asyncio.gather(*[t for t in self._agent_tasks if t], return_exceptions=True)
|
|
779
|
+
print("All agent tasks cancelled or finished.")
|
|
780
|
+
self._agent_tasks.clear() # Clear the list of tasks
|
|
781
|
+
|
|
782
|
+
# 2. Disconnect transports for all agents (coordinator + regular agents)
|
|
783
|
+
all_agents = [self.coordinator] + self.agents
|
|
784
|
+
disconnect_tasks = []
|
|
785
|
+
for agent in all_agents:
|
|
786
|
+
if hasattr(agent, 'transport') and hasattr(agent.transport, 'disconnect'):
|
|
787
|
+
print(f"Disconnecting transport for {agent.name}...")
|
|
788
|
+
disconnect_tasks.append(agent.transport.disconnect())
|
|
789
|
+
|
|
790
|
+
if disconnect_tasks:
|
|
791
|
+
await asyncio.gather(*disconnect_tasks, return_exceptions=True)
|
|
792
|
+
print("All agent transports disconnected.")
|
|
793
|
+
|
|
794
|
+
print("Shutdown complete.")
|
|
795
|
+
|
|
796
|
+
# === Minimal free-flow chat: send a message to any agent ===
|
|
797
|
+
async def send_chat_message(self, agent_name, message):
|
|
798
|
+
await self.coordinator.transport.send_message(agent_name, {"type": "message", "content": message})
|