agent-mcp 0.1.2__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agent_mcp/__init__.py +16 -0
- agent_mcp/camel_mcp_adapter.py +521 -0
- agent_mcp/cli.py +47 -0
- agent_mcp/crewai_mcp_adapter.py +281 -0
- agent_mcp/enhanced_mcp_agent.py +601 -0
- agent_mcp/heterogeneous_group_chat.py +798 -0
- agent_mcp/langchain_mcp_adapter.py +458 -0
- agent_mcp/langgraph_mcp_adapter.py +325 -0
- agent_mcp/mcp_agent.py +658 -0
- agent_mcp/mcp_decorator.py +257 -0
- agent_mcp/mcp_langgraph.py +733 -0
- agent_mcp/mcp_transaction.py +97 -0
- agent_mcp/mcp_transport.py +706 -0
- agent_mcp/mcp_transport_enhanced.py +46 -0
- agent_mcp/proxy_agent.py +24 -0
- agent_mcp-0.1.4.dist-info/METADATA +333 -0
- agent_mcp-0.1.4.dist-info/RECORD +49 -0
- {agent_mcp-0.1.2.dist-info → agent_mcp-0.1.4.dist-info}/WHEEL +1 -1
- agent_mcp-0.1.4.dist-info/entry_points.txt +2 -0
- agent_mcp-0.1.4.dist-info/top_level.txt +3 -0
- demos/__init__.py +1 -0
- demos/basic/__init__.py +1 -0
- demos/basic/framework_examples.py +108 -0
- demos/basic/langchain_camel_demo.py +272 -0
- demos/basic/simple_chat.py +355 -0
- demos/basic/simple_integration_example.py +51 -0
- demos/collaboration/collaborative_task_example.py +437 -0
- demos/collaboration/group_chat_example.py +130 -0
- demos/collaboration/simplified_crewai_example.py +39 -0
- demos/langgraph/autonomous_langgraph_network.py +808 -0
- demos/langgraph/langgraph_agent_network.py +415 -0
- demos/langgraph/langgraph_collaborative_task.py +619 -0
- demos/langgraph/langgraph_example.py +227 -0
- demos/langgraph/run_langgraph_examples.py +213 -0
- demos/network/agent_network_example.py +381 -0
- demos/network/email_agent.py +130 -0
- demos/network/email_agent_demo.py +46 -0
- demos/network/heterogeneous_network_example.py +216 -0
- demos/network/multi_framework_example.py +199 -0
- demos/utils/check_imports.py +49 -0
- demos/workflows/autonomous_agent_workflow.py +248 -0
- demos/workflows/mcp_features_demo.py +353 -0
- demos/workflows/run_agent_collaboration_demo.py +63 -0
- demos/workflows/run_agent_collaboration_with_logs.py +396 -0
- demos/workflows/show_agent_interactions.py +107 -0
- demos/workflows/simplified_autonomous_demo.py +74 -0
- functions/main.py +144 -0
- functions/mcp_network_server.py +513 -0
- functions/utils.py +47 -0
- agent_mcp-0.1.2.dist-info/METADATA +0 -475
- agent_mcp-0.1.2.dist-info/RECORD +0 -5
- agent_mcp-0.1.2.dist-info/entry_points.txt +0 -2
- agent_mcp-0.1.2.dist-info/top_level.txt +0 -1
|
@@ -0,0 +1,437 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Collaborative Task Example using MCPAgent.
|
|
3
|
+
|
|
4
|
+
This example demonstrates a team of agents working together on a shared task,
|
|
5
|
+
with a user interacting with them throughout the process. Agents will collaborate
|
|
6
|
+
by sharing research, analysis, and planning information.
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import os
|
|
10
|
+
import json
|
|
11
|
+
import time
|
|
12
|
+
from typing import Dict, List, Any, Optional
|
|
13
|
+
|
|
14
|
+
# Import AutoGen components and MCPAgent
|
|
15
|
+
from autogen import UserProxyAgent
|
|
16
|
+
from agent_mcp.mcp_agent import MCPAgent
|
|
17
|
+
|
|
18
|
+
# Check for API key
|
|
19
|
+
api_key = os.environ.get("OPENAI_API_KEY")
|
|
20
|
+
if not api_key:
|
|
21
|
+
raise ValueError("Please set the OPENAI_API_KEY environment variable")
|
|
22
|
+
|
|
23
|
+
# LLM configuration
|
|
24
|
+
config = {
|
|
25
|
+
"config_list": [{"model": "gpt-3.5-turbo", "api_key": api_key}],
|
|
26
|
+
"temperature": 0.7,
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
class CollaborativeProject:
|
|
30
|
+
"""A collaborative project where agents work together on a task."""
|
|
31
|
+
|
|
32
|
+
def __init__(self, project_name="Research Project"):
|
|
33
|
+
"""Initialize a new collaborative project."""
|
|
34
|
+
self.project_name = project_name
|
|
35
|
+
self.agents = {}
|
|
36
|
+
self.user = None
|
|
37
|
+
self.project_context = {
|
|
38
|
+
"title": project_name,
|
|
39
|
+
"status": "initialized",
|
|
40
|
+
"created_at": time.time(),
|
|
41
|
+
"tasks": {},
|
|
42
|
+
"research": {},
|
|
43
|
+
"analysis": {},
|
|
44
|
+
"plan": {},
|
|
45
|
+
"messages": []
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
# Initialize the shared workspace
|
|
49
|
+
self.workspace = {
|
|
50
|
+
"project": self.project_context,
|
|
51
|
+
"last_updated": time.time()
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
def create_team(self):
|
|
55
|
+
"""Create a team of specialized agents for the project."""
|
|
56
|
+
# Create project manager
|
|
57
|
+
self.agents["manager"] = MCPAgent(
|
|
58
|
+
name="ProjectManager", # Removed whitespace from the name
|
|
59
|
+
system_message="""You are the Project Manager agent.
|
|
60
|
+
You coordinate the work of the research team, assign tasks, track progress,
|
|
61
|
+
and ensure everyone is working effectively. You have a clear view of the big picture
|
|
62
|
+
and help keep the project on track. When interacting with the user, be concise,
|
|
63
|
+
professional, and always focus on making project-related decisions.
|
|
64
|
+
|
|
65
|
+
When communicating with other agents, reference relevant context from the shared workspace,
|
|
66
|
+
and continually update the project plan as information evolves.""",
|
|
67
|
+
llm_config=config
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Create researcher
|
|
71
|
+
self.agents["researcher"] = MCPAgent(
|
|
72
|
+
name="Researcher",
|
|
73
|
+
system_message="""You are the Researcher agent.
|
|
74
|
+
Your role is to gather information, find facts, and provide well-researched content
|
|
75
|
+
for the project. Be thorough, detail-oriented, and always cite your sources when possible.
|
|
76
|
+
Focus on collecting accurate, relevant information on topics assigned by the Project Manager.
|
|
77
|
+
|
|
78
|
+
When you discover new information, add it to the shared workspace so other team members
|
|
79
|
+
can use it in their work. Ask specific questions to clarify research requirements.""",
|
|
80
|
+
llm_config=config
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
# Create analyst
|
|
84
|
+
self.agents["analyst"] = MCPAgent(
|
|
85
|
+
name="Analyst",
|
|
86
|
+
system_message="""You are the Analyst agent.
|
|
87
|
+
Your job is to evaluate the research, identify patterns, derive insights, and make
|
|
88
|
+
recommendations based on data. Be logical, critical, and balanced in your analysis.
|
|
89
|
+
Use quantitative and qualitative approaches as appropriate.
|
|
90
|
+
|
|
91
|
+
Review findings from the Researcher, provide meaningful interpretations, and update
|
|
92
|
+
the shared workspace with your analysis. Focus on what the information means for the project goals.""",
|
|
93
|
+
llm_config=config
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
# Create content specialist
|
|
97
|
+
self.agents["content"] = MCPAgent(
|
|
98
|
+
name="ContentSpecialist", # Removed whitespace from the name
|
|
99
|
+
system_message="""You are the Content Specialist agent.
|
|
100
|
+
You excel at crafting clear, compelling content based on research and analysis.
|
|
101
|
+
Your role is to take the project's information and create well-structured deliverables
|
|
102
|
+
that effectively communicate the key points.
|
|
103
|
+
|
|
104
|
+
Review research and analysis from other team members, organize information in a logical way,
|
|
105
|
+
and create drafts in the shared workspace. Focus on clarity, accuracy, and engagement.""",
|
|
106
|
+
llm_config=config
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
# Create user proxy for human interaction
|
|
110
|
+
self.user = UserProxyAgent(
|
|
111
|
+
name="User",
|
|
112
|
+
human_input_mode="ALWAYS",
|
|
113
|
+
max_consecutive_auto_reply=0
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Connect agents to each other as tools
|
|
117
|
+
self._connect_agents()
|
|
118
|
+
|
|
119
|
+
# Share the workspace with all agents
|
|
120
|
+
self._share_workspace()
|
|
121
|
+
|
|
122
|
+
print(f"Team created for project: {self.project_name}")
|
|
123
|
+
|
|
124
|
+
def _connect_agents(self):
|
|
125
|
+
"""Register each agent as a tool for the other agents."""
|
|
126
|
+
agent_ids = list(self.agents.keys())
|
|
127
|
+
|
|
128
|
+
for agent_id in agent_ids:
|
|
129
|
+
for other_id in agent_ids:
|
|
130
|
+
if agent_id != other_id:
|
|
131
|
+
self.agents[agent_id].register_agent_as_tool(self.agents[other_id])
|
|
132
|
+
|
|
133
|
+
print("Agents connected for collaboration")
|
|
134
|
+
|
|
135
|
+
def _share_workspace(self):
|
|
136
|
+
"""Share the workspace with all agents."""
|
|
137
|
+
for agent_id, agent in self.agents.items():
|
|
138
|
+
agent.update_context("workspace", self.workspace)
|
|
139
|
+
|
|
140
|
+
# Add agent specific info
|
|
141
|
+
agent.update_context("role", {
|
|
142
|
+
"id": agent_id,
|
|
143
|
+
"name": agent.name,
|
|
144
|
+
"primary_responsibility": agent_id
|
|
145
|
+
})
|
|
146
|
+
|
|
147
|
+
print("Shared workspace initialized")
|
|
148
|
+
|
|
149
|
+
def update_workspace(self, section, key, value):
|
|
150
|
+
"""Update a section of the workspace and share with all agents."""
|
|
151
|
+
if section in self.project_context:
|
|
152
|
+
if isinstance(self.project_context[section], dict):
|
|
153
|
+
self.project_context[section][key] = value
|
|
154
|
+
else:
|
|
155
|
+
print(f"Section {section} is not a dictionary and cannot be updated with a key.")
|
|
156
|
+
return
|
|
157
|
+
else:
|
|
158
|
+
print(f"Section {section} not found in project context.")
|
|
159
|
+
return
|
|
160
|
+
|
|
161
|
+
# Update timestamp
|
|
162
|
+
self.workspace["last_updated"] = time.time()
|
|
163
|
+
|
|
164
|
+
# Share updated workspace with all agents
|
|
165
|
+
for agent in self.agents.values():
|
|
166
|
+
agent.update_context("workspace", self.workspace)
|
|
167
|
+
|
|
168
|
+
print(f"Workspace updated: Added {key} to {section}")
|
|
169
|
+
|
|
170
|
+
def add_message(self, from_agent, message):
|
|
171
|
+
"""Add a message to the project communication log."""
|
|
172
|
+
msg = {
|
|
173
|
+
"from": from_agent,
|
|
174
|
+
"timestamp": time.time(),
|
|
175
|
+
"content": message
|
|
176
|
+
}
|
|
177
|
+
|
|
178
|
+
self.project_context["messages"].append(msg)
|
|
179
|
+
self.workspace["last_updated"] = time.time()
|
|
180
|
+
|
|
181
|
+
# Share updated workspace with all agents
|
|
182
|
+
for agent in self.agents.values():
|
|
183
|
+
agent.update_context("workspace", self.workspace)
|
|
184
|
+
|
|
185
|
+
print(f"Message added from {from_agent}")
|
|
186
|
+
|
|
187
|
+
def set_project_topic(self, topic, description):
|
|
188
|
+
"""Set the project topic and description."""
|
|
189
|
+
self.project_context["title"] = topic
|
|
190
|
+
self.project_context["description"] = description
|
|
191
|
+
self.project_context["status"] = "topic_set"
|
|
192
|
+
self.workspace["last_updated"] = time.time()
|
|
193
|
+
|
|
194
|
+
# Share with all agents
|
|
195
|
+
for agent in self.agents.values():
|
|
196
|
+
agent.update_context("workspace", self.workspace)
|
|
197
|
+
|
|
198
|
+
print(f"Project topic set: {topic}")
|
|
199
|
+
|
|
200
|
+
def assign_task(self, agent_id, task_name, description):
|
|
201
|
+
"""Assign a task to a specific agent."""
|
|
202
|
+
if agent_id not in self.agents:
|
|
203
|
+
print(f"Agent {agent_id} not found.")
|
|
204
|
+
return
|
|
205
|
+
|
|
206
|
+
task_id = f"task_{int(time.time())}"
|
|
207
|
+
|
|
208
|
+
task = {
|
|
209
|
+
"id": task_id,
|
|
210
|
+
"name": task_name,
|
|
211
|
+
"description": description,
|
|
212
|
+
"assigned_to": agent_id,
|
|
213
|
+
"status": "assigned",
|
|
214
|
+
"created_at": time.time()
|
|
215
|
+
}
|
|
216
|
+
|
|
217
|
+
# Add to tasks
|
|
218
|
+
self.project_context["tasks"][task_id] = task
|
|
219
|
+
self.workspace["last_updated"] = time.time()
|
|
220
|
+
|
|
221
|
+
# Share with all agents
|
|
222
|
+
for agent in self.agents.values():
|
|
223
|
+
agent.update_context("workspace", self.workspace)
|
|
224
|
+
|
|
225
|
+
# Notify the assigned agent specifically
|
|
226
|
+
self.agents[agent_id].update_context("new_task", task)
|
|
227
|
+
|
|
228
|
+
print(f"Task '{task_name}' assigned to {self.agents[agent_id].name}")
|
|
229
|
+
return task_id
|
|
230
|
+
|
|
231
|
+
def update_task_status(self, task_id, status, result=None):
|
|
232
|
+
"""Update the status of a task."""
|
|
233
|
+
if task_id not in self.project_context["tasks"]:
|
|
234
|
+
print(f"Task {task_id} not found.")
|
|
235
|
+
return
|
|
236
|
+
|
|
237
|
+
self.project_context["tasks"][task_id]["status"] = status
|
|
238
|
+
self.project_context["tasks"][task_id]["updated_at"] = time.time()
|
|
239
|
+
|
|
240
|
+
if result:
|
|
241
|
+
self.project_context["tasks"][task_id]["result"] = result
|
|
242
|
+
|
|
243
|
+
self.workspace["last_updated"] = time.time()
|
|
244
|
+
|
|
245
|
+
# Share with all agents
|
|
246
|
+
for agent in self.agents.values():
|
|
247
|
+
agent.update_context("workspace", self.workspace)
|
|
248
|
+
|
|
249
|
+
print(f"Task {task_id} status updated to {status}")
|
|
250
|
+
|
|
251
|
+
def interact_with_agent(self, agent_id):
|
|
252
|
+
"""Allow the user to interact with a specific agent."""
|
|
253
|
+
if agent_id not in self.agents:
|
|
254
|
+
print(f"Agent '{agent_id}' not found. Available agents: {', '.join(self.agents.keys())}")
|
|
255
|
+
return
|
|
256
|
+
|
|
257
|
+
agent = self.agents[agent_id]
|
|
258
|
+
print(f"\n--- Starting interaction with {agent.name} ({agent_id}) ---")
|
|
259
|
+
|
|
260
|
+
# Get initial message from user
|
|
261
|
+
initial_message = input(f"\nYour message to {agent.name}: ")
|
|
262
|
+
|
|
263
|
+
# Create a conversation chain that includes the agent's context
|
|
264
|
+
messages = [{"role": "user", "content": initial_message}]
|
|
265
|
+
|
|
266
|
+
# Get agent response
|
|
267
|
+
response = agent.generate_reply(messages=messages, sender=self.user)
|
|
268
|
+
print(f"\n{agent.name}: {response}")
|
|
269
|
+
|
|
270
|
+
# Add to project messages
|
|
271
|
+
self.add_message(agent.name, response)
|
|
272
|
+
|
|
273
|
+
# Continue the conversation until user exits
|
|
274
|
+
while True:
|
|
275
|
+
# Check if user wants to exit
|
|
276
|
+
next_message = input("\nYour response (or type 'exit' to end, 'switch:agent_id' to change agents): ")
|
|
277
|
+
|
|
278
|
+
if next_message.lower() == 'exit':
|
|
279
|
+
print(f"--- Ending interaction with {agent.name} ---")
|
|
280
|
+
break
|
|
281
|
+
|
|
282
|
+
if next_message.lower().startswith('switch:'):
|
|
283
|
+
new_agent_id = next_message.split(':', 1)[1].strip()
|
|
284
|
+
print(f"--- Switching from {agent.name} to {new_agent_id} ---")
|
|
285
|
+
self.interact_with_agent(new_agent_id)
|
|
286
|
+
break
|
|
287
|
+
|
|
288
|
+
# Add message from user to project
|
|
289
|
+
self.add_message("User", next_message)
|
|
290
|
+
|
|
291
|
+
# Add to messages and get response
|
|
292
|
+
messages.append({"role": "user", "content": next_message})
|
|
293
|
+
response = agent.generate_reply(messages=messages, sender=self.user)
|
|
294
|
+
print(f"\n{agent.name}: {response}")
|
|
295
|
+
|
|
296
|
+
# Add agent response to project and message history
|
|
297
|
+
self.add_message(agent.name, response)
|
|
298
|
+
messages.append({"role": "assistant", "content": response})
|
|
299
|
+
|
|
300
|
+
def list_agents(self):
|
|
301
|
+
"""List all agents in the team."""
|
|
302
|
+
print("\n--- Project Team Directory ---")
|
|
303
|
+
for agent_id, agent in self.agents.items():
|
|
304
|
+
role = agent.get_context("role")
|
|
305
|
+
print(f"- {agent.name} ({agent_id})")
|
|
306
|
+
|
|
307
|
+
def show_workspace(self):
|
|
308
|
+
"""Display the current state of the workspace."""
|
|
309
|
+
print("\n--- Project Workspace ---")
|
|
310
|
+
print(f"Project: {self.project_context['title']}")
|
|
311
|
+
print(f"Status: {self.project_context['status']}")
|
|
312
|
+
|
|
313
|
+
if "description" in self.project_context:
|
|
314
|
+
print(f"Description: {self.project_context['description']}")
|
|
315
|
+
|
|
316
|
+
print("\nTasks:")
|
|
317
|
+
if self.project_context["tasks"]:
|
|
318
|
+
for task_id, task in self.project_context["tasks"].items():
|
|
319
|
+
print(f"- [{task['status']}] {task['name']} (Assigned to: {task['assigned_to']})")
|
|
320
|
+
else:
|
|
321
|
+
print("No tasks yet")
|
|
322
|
+
|
|
323
|
+
print("\nResearch Items:")
|
|
324
|
+
if self.project_context["research"]:
|
|
325
|
+
for key, value in self.project_context["research"].items():
|
|
326
|
+
if isinstance(value, dict) and "title" in value:
|
|
327
|
+
print(f"- {value['title']}")
|
|
328
|
+
else:
|
|
329
|
+
print(f"- {key}")
|
|
330
|
+
else:
|
|
331
|
+
print("No research items yet")
|
|
332
|
+
|
|
333
|
+
print("\nAnalysis Items:")
|
|
334
|
+
if self.project_context["analysis"]:
|
|
335
|
+
for key, value in self.project_context["analysis"].items():
|
|
336
|
+
if isinstance(value, dict) and "title" in value:
|
|
337
|
+
print(f"- {value['title']}")
|
|
338
|
+
else:
|
|
339
|
+
print(f"- {key}")
|
|
340
|
+
else:
|
|
341
|
+
print("No analysis items yet")
|
|
342
|
+
|
|
343
|
+
print("\nRecent Messages:")
|
|
344
|
+
messages = self.project_context["messages"][-5:] if self.project_context["messages"] else []
|
|
345
|
+
if messages:
|
|
346
|
+
for msg in messages:
|
|
347
|
+
print(f"- {msg['from']}: {msg['content'][:50]}..." if len(msg['content']) > 50 else f"- {msg['from']}: {msg['content']}")
|
|
348
|
+
else:
|
|
349
|
+
print("No messages yet")
|
|
350
|
+
|
|
351
|
+
def main():
|
|
352
|
+
"""Run the collaborative project example."""
|
|
353
|
+
print("=== Collaborative Project Example ===")
|
|
354
|
+
print("This example demonstrates agents working together on a shared project.")
|
|
355
|
+
|
|
356
|
+
# Create a new project
|
|
357
|
+
project_name = input("Enter a name for your project: ")
|
|
358
|
+
project = CollaborativeProject(project_name)
|
|
359
|
+
project.create_team()
|
|
360
|
+
|
|
361
|
+
# Main interaction loop
|
|
362
|
+
while True:
|
|
363
|
+
print("\n=== Project Menu ===")
|
|
364
|
+
print("1. List team members")
|
|
365
|
+
print("2. Set project topic and description")
|
|
366
|
+
print("3. Show workspace")
|
|
367
|
+
print("4. Assign a task")
|
|
368
|
+
print("5. Talk to a team member")
|
|
369
|
+
print("6. Add research item")
|
|
370
|
+
print("7. Add analysis")
|
|
371
|
+
print("8. Exit")
|
|
372
|
+
|
|
373
|
+
choice = input("\nSelect an option (1-8): ")
|
|
374
|
+
|
|
375
|
+
if choice == "1":
|
|
376
|
+
project.list_agents()
|
|
377
|
+
|
|
378
|
+
elif choice == "2":
|
|
379
|
+
topic = input("Enter the project topic: ")
|
|
380
|
+
description = input("Enter a brief description: ")
|
|
381
|
+
project.set_project_topic(topic, description)
|
|
382
|
+
|
|
383
|
+
elif choice == "3":
|
|
384
|
+
project.show_workspace()
|
|
385
|
+
|
|
386
|
+
elif choice == "4":
|
|
387
|
+
project.list_agents()
|
|
388
|
+
agent_id = input("\nAssign to which team member? ")
|
|
389
|
+
if agent_id in project.agents:
|
|
390
|
+
task_name = input("Task name: ")
|
|
391
|
+
description = input("Task description: ")
|
|
392
|
+
project.assign_task(agent_id, task_name, description)
|
|
393
|
+
else:
|
|
394
|
+
print(f"Agent '{agent_id}' not found.")
|
|
395
|
+
|
|
396
|
+
elif choice == "5":
|
|
397
|
+
project.list_agents()
|
|
398
|
+
agent_id = input("\nWhich team member do you want to talk to? ")
|
|
399
|
+
project.interact_with_agent(agent_id)
|
|
400
|
+
|
|
401
|
+
elif choice == "6":
|
|
402
|
+
title = input("Research item title: ")
|
|
403
|
+
content = input("Research content: ")
|
|
404
|
+
source = input("Source (optional): ")
|
|
405
|
+
|
|
406
|
+
research_item = {
|
|
407
|
+
"title": title,
|
|
408
|
+
"content": content,
|
|
409
|
+
"source": source,
|
|
410
|
+
"added_at": time.time()
|
|
411
|
+
}
|
|
412
|
+
|
|
413
|
+
key = title.lower().replace(" ", "_")
|
|
414
|
+
project.update_workspace("research", key, research_item)
|
|
415
|
+
|
|
416
|
+
elif choice == "7":
|
|
417
|
+
title = input("Analysis title: ")
|
|
418
|
+
content = input("Analysis content: ")
|
|
419
|
+
|
|
420
|
+
analysis_item = {
|
|
421
|
+
"title": title,
|
|
422
|
+
"content": content,
|
|
423
|
+
"added_at": time.time()
|
|
424
|
+
}
|
|
425
|
+
|
|
426
|
+
key = title.lower().replace(" ", "_")
|
|
427
|
+
project.update_workspace("analysis", key, analysis_item)
|
|
428
|
+
|
|
429
|
+
elif choice == "8":
|
|
430
|
+
print("Exiting the Collaborative Project Example. Goodbye!")
|
|
431
|
+
break
|
|
432
|
+
|
|
433
|
+
else:
|
|
434
|
+
print("Invalid option. Please try again.")
|
|
435
|
+
|
|
436
|
+
if __name__ == "__main__":
|
|
437
|
+
main()
|
|
@@ -0,0 +1,130 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Example of using HeterogeneousGroupChat with different agent frameworks.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
import asyncio
|
|
7
|
+
import openai
|
|
8
|
+
from agent_mcp.enhanced_mcp_agent import EnhancedMCPAgent
|
|
9
|
+
from agent_mcp.langchain_mcp_adapter import LangchainMCPAdapter
|
|
10
|
+
from agent_mcp.heterogeneous_group_chat import HeterogeneousGroupChat
|
|
11
|
+
from agent_mcp.mcp_transport import HTTPTransport
|
|
12
|
+
|
|
13
|
+
# Langchain imports
|
|
14
|
+
from langchain_openai import ChatOpenAI
|
|
15
|
+
from langchain_community.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
|
|
16
|
+
from langchain_community.tools import Tool
|
|
17
|
+
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
|
|
18
|
+
from langchain.schema.messages import SystemMessage
|
|
19
|
+
|
|
20
|
+
# Check for OpenAI API key
|
|
21
|
+
api_key = os.getenv("OPENAI_API_KEY")
|
|
22
|
+
if not api_key:
|
|
23
|
+
raise ValueError("Please set the OPENAI_API_KEY environment variable")
|
|
24
|
+
|
|
25
|
+
openai.api_key = api_key
|
|
26
|
+
|
|
27
|
+
async def setup_langchain_agent():
|
|
28
|
+
"""Setup a Langchain agent with search capabilities"""
|
|
29
|
+
# Create Langchain tools
|
|
30
|
+
search = DuckDuckGoSearchAPIWrapper()
|
|
31
|
+
search_tool = Tool(
|
|
32
|
+
name="duckduckgo_search",
|
|
33
|
+
description="Search the web using DuckDuckGo",
|
|
34
|
+
func=search.run
|
|
35
|
+
)
|
|
36
|
+
tools = [search_tool]
|
|
37
|
+
|
|
38
|
+
# Create Langchain model and agent
|
|
39
|
+
llm = ChatOpenAI(temperature=0)
|
|
40
|
+
agent = OpenAIFunctionsAgent.from_llm_and_tools(
|
|
41
|
+
llm=llm,
|
|
42
|
+
tools=tools,
|
|
43
|
+
system_message=SystemMessage(content=(
|
|
44
|
+
"You are a research assistant that helps find and analyze information."
|
|
45
|
+
))
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
# Create the agent executor
|
|
49
|
+
agent_executor = AgentExecutor.from_agent_and_tools(
|
|
50
|
+
agent=agent,
|
|
51
|
+
tools=tools,
|
|
52
|
+
verbose=True,
|
|
53
|
+
handle_parsing_errors=True
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
return agent, agent_executor
|
|
57
|
+
|
|
58
|
+
async def create_worker_agents(api_key: str):
|
|
59
|
+
"""Create a list of worker agents"""
|
|
60
|
+
# Create Autogen worker
|
|
61
|
+
autogen_worker = EnhancedMCPAgent(
|
|
62
|
+
name="AutogenWorker",
|
|
63
|
+
transport=HTTPTransport(host="localhost", port=8001),
|
|
64
|
+
client_mode=True,
|
|
65
|
+
system_message="I help with text analysis and summarization",
|
|
66
|
+
llm_config={
|
|
67
|
+
"config_list": [{
|
|
68
|
+
"model": "gpt-3.5-turbo",
|
|
69
|
+
"api_key": api_key
|
|
70
|
+
}]
|
|
71
|
+
}
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
# Create Langchain worker
|
|
75
|
+
langchain_agent, agent_executor = await setup_langchain_agent()
|
|
76
|
+
langchain_worker = LangchainMCPAdapter(
|
|
77
|
+
name="LangchainWorker",
|
|
78
|
+
transport=HTTPTransport(host="localhost", port=8002),
|
|
79
|
+
client_mode=True,
|
|
80
|
+
langchain_agent=langchain_agent,
|
|
81
|
+
agent_executor=agent_executor
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
return [autogen_worker, langchain_worker]
|
|
85
|
+
|
|
86
|
+
async def main():
|
|
87
|
+
# Create the group chat
|
|
88
|
+
group = HeterogeneousGroupChat(
|
|
89
|
+
name="ResearchTeam",
|
|
90
|
+
host="https://localhost:8000"
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
# Create and add the coordinator
|
|
94
|
+
coordinator = group.create_coordinator(api_key)
|
|
95
|
+
|
|
96
|
+
# Create and add all worker agents at once
|
|
97
|
+
workers = await create_worker_agents(api_key)
|
|
98
|
+
group.add_agents(workers)
|
|
99
|
+
|
|
100
|
+
# Connect all agents
|
|
101
|
+
await group.connect()
|
|
102
|
+
|
|
103
|
+
# Define a collaborative task
|
|
104
|
+
task = {
|
|
105
|
+
"task_id": "research_task_1",
|
|
106
|
+
"type": "collaborative_task",
|
|
107
|
+
"description": "Research the latest developments in quantum computing and prepare a summary",
|
|
108
|
+
"steps": [
|
|
109
|
+
{
|
|
110
|
+
"agent": "LangchainWorker",
|
|
111
|
+
"task_id": "research_task_1_LangchainWorker",
|
|
112
|
+
"description": "Search for recent quantum computing breakthroughs in 2024",
|
|
113
|
+
"url": "http://localhost:8002"
|
|
114
|
+
},
|
|
115
|
+
{
|
|
116
|
+
"agent": "AutogenWorker",
|
|
117
|
+
"task_id": "research_task_1_AutogenWorker",
|
|
118
|
+
"description": "Analyze and summarize the findings",
|
|
119
|
+
"url": "http://localhost:8001",
|
|
120
|
+
"depends_on": ["research_task_1_LangchainWorker"]
|
|
121
|
+
}
|
|
122
|
+
]
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
# Submit task and wait for completion
|
|
126
|
+
await group.submit_task(task)
|
|
127
|
+
await group.wait_for_completion()
|
|
128
|
+
|
|
129
|
+
if __name__ == "__main__":
|
|
130
|
+
asyncio.run(main())
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Example of using the one-line MCP integration with CrewAI agents.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
from crewai import Agent as CrewAgent
|
|
7
|
+
from agent_mcp.mcp_decorator import mcp_agent
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
from crewai import Task
|
|
11
|
+
|
|
12
|
+
# One-line integration with CrewAI
|
|
13
|
+
@mcp_agent(name="ResearchAgent")
|
|
14
|
+
class ResearchAgent(CrewAgent):
|
|
15
|
+
def __init__(self):
|
|
16
|
+
super().__init__(
|
|
17
|
+
name="ResearchAgent",
|
|
18
|
+
role="Research Analyst",
|
|
19
|
+
goal="Conduct thorough research on given topics",
|
|
20
|
+
backstory="Expert research analyst with deep analytical skills",
|
|
21
|
+
llm_model="gpt-3.5-turbo", # Specify the model explicitly
|
|
22
|
+
verbose=True # Show what the agent is doing
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
def analyze(self, topic: str) -> str:
|
|
26
|
+
"""Analyze a given research topic"""
|
|
27
|
+
task = Task(
|
|
28
|
+
description=f"Analyze the following topic and provide key insights: {topic}",
|
|
29
|
+
expected_output="A detailed analysis with key insights, trends, and potential impacts",
|
|
30
|
+
agent=self
|
|
31
|
+
)
|
|
32
|
+
return self.execute_task(task)
|
|
33
|
+
|
|
34
|
+
# Create and use the agent
|
|
35
|
+
if __name__ == "__main__":
|
|
36
|
+
agent = ResearchAgent()
|
|
37
|
+
result = agent.analyze("AI trends in 2025")
|
|
38
|
+
print(f"Analysis result: {result}")
|
|
39
|
+
print(f"Available MCP tools: {agent.mcp_tools.keys()}")
|