acoular 25.7__py3-none-any.whl → 26.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
acoular/fprocess.py CHANGED
@@ -4,6 +4,13 @@
4
4
  """
5
5
  Implements blockwise processing methods in the frequency domain.
6
6
 
7
+ .. inheritance-diagram::
8
+ acoular.fprocess
9
+ :top-classes:
10
+ acoular.base.Generator,
11
+ acoular.spectra.BaseSpectra
12
+ :parts: 1
13
+
7
14
  .. autosummary::
8
15
  :toctree: generated/
9
16
 
@@ -19,14 +26,12 @@ from traits.api import Bool, CArray, Enum, Instance, Int, Property, Union, cache
19
26
 
20
27
  # acoular imports
21
28
  from .base import SamplesGenerator, SpectraGenerator, SpectraOut, TimeOut
22
- from .deprecation import deprecated_alias
23
29
  from .fastFuncs import calcCSM
24
30
  from .internal import digest
25
31
  from .process import SamplesBuffer
26
32
  from .spectra import BaseSpectra
27
33
 
28
34
 
29
- @deprecated_alias({'numfreqs': 'num_freqs', 'numsamples': 'num_samples'}, read_only=True, removal_version='25.10')
30
35
  class RFFT(BaseSpectra, SpectraOut):
31
36
  """
32
37
  Compute the one-sided Fast Fourier Transform (FFT) for real-valued multichannel time data.
@@ -46,7 +51,7 @@ class RFFT(BaseSpectra, SpectraOut):
46
51
  #: The number of workers to use for FFT calculation.
47
52
  #: If set to a negative value, all available logical CPUs are used.
48
53
  #: Default is ``None``, which relies on the :func:`scipy.fft.rfft` implementation.
49
- workers = Union(Int(), None, default_value=None, desc='number of workers to use')
54
+ workers = Union(Int(), None, default_value=None)
50
55
 
51
56
  #: Defines the scaling method for the FFT result. Options are:
52
57
  #:
@@ -74,7 +79,8 @@ class RFFT(BaseSpectra, SpectraOut):
74
79
 
75
80
  # Internal representation of the block size for FFT processing.
76
81
  # Used for validation and property management.
77
- _block_size = Int(1024, desc='block size of the FFT')
82
+ #: block size of the FFT
83
+ _block_size = Int(1024)
78
84
 
79
85
  #: A unique identifier based on the process properties.
80
86
  digest = Property(depends_on=['source.digest', 'scaling', 'precision', '_block_size', 'window', 'overlap'])
@@ -167,7 +173,6 @@ class RFFT(BaseSpectra, SpectraOut):
167
173
  yield fftdata[: j + 1]
168
174
 
169
175
 
170
- @deprecated_alias({'numsamples': 'num_samples'}, read_only=True, removal_version='25.10')
171
176
  class IRFFT(TimeOut):
172
177
  """
173
178
  Perform the inverse Fast Fourier Transform (IFFT) for one-sided multi-channel spectra.
@@ -185,12 +190,12 @@ class IRFFT(TimeOut):
185
190
  #: The number of workers (threads) to use for the IFFT calculation.
186
191
  #: A negative value utilizes all available logical CPUs.
187
192
  #: Default is ``None``, which relies on the :func:`scipy.fft.irfft` implementation.
188
- workers = Union(Int(), None, default_value=None, desc='number of workers to use')
193
+ workers = Union(Int(), None, default_value=None)
189
194
 
190
195
  #: Determines the floating-point precision of the resulting time-domain signals.
191
196
  #: Options include ``'float64'`` and ``'float32'``.
192
197
  #: Default is ``'float64'``, ensuring high precision.
193
- precision = Enum('float64', 'float32', desc='precision of the time signal after the ifft')
198
+ precision = Enum('float64', 'float32')
194
199
 
195
200
  #: The total number of time-domain samples in the output.
196
201
  #: Computed as the product of the number of input samples and the block size.
@@ -199,7 +204,8 @@ class IRFFT(TimeOut):
199
204
 
200
205
  # Internal signal buffer used for handling arbitrary output block sizes. Optimizes
201
206
  # processing when the requested output block size does not match the source block size.
202
- _buffer = CArray(desc='signal buffer')
207
+ #: signal buffer
208
+ _buffer = CArray()
203
209
 
204
210
  #: A unique identifier based on the process properties.
205
211
  digest = Property(depends_on=['source.digest', 'scaling', 'precision', '_block_size', 'window', 'overlap'])
@@ -293,11 +299,11 @@ class AutoPowerSpectra(SpectraOut):
293
299
  scaling = Enum('power', 'psd')
294
300
 
295
301
  #: A Boolean flag indicating whether the input spectra are single-sided. Default is ``True``.
296
- single_sided = Bool(True, desc='single sided spectrum')
302
+ single_sided = Bool(True)
297
303
 
298
304
  #: Specifies the floating-point precision of the computed auto-power spectra.
299
305
  #: Options are ``'float64'`` and ``'float32'``. Default is ``'float64'``.
300
- precision = Enum('float64', 'float32', desc='floating-number-precision')
306
+ precision = Enum('float64', 'float32')
301
307
 
302
308
  #: A unique identifier based on the computation properties.
303
309
  digest = Property(depends_on=['source.digest', 'precision', 'scaling', 'single_sided'])
@@ -347,7 +353,6 @@ class AutoPowerSpectra(SpectraOut):
347
353
  yield ((temp * temp.conjugate()).real * scale).astype(self.precision)
348
354
 
349
355
 
350
- @deprecated_alias({'numchannels': 'num_channels'}, read_only=True, removal_version='25.10')
351
356
  class CrossPowerSpectra(AutoPowerSpectra):
352
357
  """
353
358
  Compute the complex-valued auto- and cross-power spectra from frequency-domain data.
@@ -369,7 +374,7 @@ class CrossPowerSpectra(AutoPowerSpectra):
369
374
 
370
375
  #: Specifies the floating-point precision of the computed cross-spectral matrix (CSM).
371
376
  #: Options are ``'complex128'`` and ``'complex64'``. Default is ``'complex128'``.
372
- precision = Enum('complex128', 'complex64', desc='precision of the fft')
377
+ precision = Enum('complex128', 'complex64')
373
378
 
374
379
  #: Defines the calculation mode for the cross-spectral matrix:
375
380
  #:
@@ -380,7 +385,7 @@ class CrossPowerSpectra(AutoPowerSpectra):
380
385
  #: excluding redundant upper-triangle elements.
381
386
  #:
382
387
  #: Default is ``'full'``.
383
- calc_mode = Enum('full', 'upper', 'lower', desc='calculation mode')
388
+ calc_mode = Enum('full', 'upper', 'lower')
384
389
 
385
390
  #: The number of channels in the output data. The value depends on the number of input channels
386
391
  #: :math:`n` and the selected :attr:`calc_mode`: