ObjectNat 1.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. objectnat/__init__.py +9 -0
  2. objectnat/_api.py +14 -0
  3. objectnat/_config.py +43 -0
  4. objectnat/_version.py +1 -0
  5. objectnat/methods/__init__.py +0 -0
  6. objectnat/methods/coverage_zones/__init__.py +3 -0
  7. objectnat/methods/coverage_zones/graph_coverage.py +105 -0
  8. objectnat/methods/coverage_zones/radius_voronoi_coverage.py +39 -0
  9. objectnat/methods/coverage_zones/stepped_coverage.py +136 -0
  10. objectnat/methods/isochrones/__init__.py +1 -0
  11. objectnat/methods/isochrones/isochrone_utils.py +167 -0
  12. objectnat/methods/isochrones/isochrones.py +282 -0
  13. objectnat/methods/noise/__init__.py +3 -0
  14. objectnat/methods/noise/noise_init_data.py +10 -0
  15. objectnat/methods/noise/noise_reduce.py +155 -0
  16. objectnat/methods/noise/noise_simulation.py +453 -0
  17. objectnat/methods/noise/noise_simulation_simplified.py +222 -0
  18. objectnat/methods/point_clustering/__init__.py +1 -0
  19. objectnat/methods/point_clustering/cluster_points_in_polygons.py +115 -0
  20. objectnat/methods/provision/__init__.py +1 -0
  21. objectnat/methods/provision/provision.py +213 -0
  22. objectnat/methods/provision/provision_exceptions.py +59 -0
  23. objectnat/methods/provision/provision_model.py +323 -0
  24. objectnat/methods/utils/__init__.py +1 -0
  25. objectnat/methods/utils/geom_utils.py +173 -0
  26. objectnat/methods/utils/graph_utils.py +306 -0
  27. objectnat/methods/utils/math_utils.py +32 -0
  28. objectnat/methods/visibility/__init__.py +6 -0
  29. objectnat/methods/visibility/visibility_analysis.py +485 -0
  30. objectnat-1.3.3.dist-info/METADATA +202 -0
  31. objectnat-1.3.3.dist-info/RECORD +33 -0
  32. objectnat-1.3.3.dist-info/WHEEL +4 -0
  33. objectnat-1.3.3.dist-info/licenses/LICENSE.txt +28 -0
@@ -0,0 +1,323 @@
1
+ # pylint: disable=singleton-comparison
2
+ from typing import Tuple
3
+
4
+ import geopandas as gpd
5
+ import numpy as np
6
+ import pandas as pd
7
+ from shapely import LineString
8
+
9
+ from objectnat import config
10
+
11
+ from .provision_exceptions import CapacityKeyError, DemandKeyError
12
+
13
+ logger = config.logger
14
+
15
+
16
+ class Provision:
17
+ """
18
+ Represents the logic for city provision calculations using a gravity or linear model.
19
+
20
+ Args:
21
+ services (gpd.GeoDataFrame): GeoDataFrame representing the services available in the city.
22
+ demanded_buildings (gpd.GeoDataFrame): GeoDataFrame representing the buildings with demands for services.
23
+ adjacency_matrix (pd.DataFrame): DataFrame representing the adjacency matrix between buildings.
24
+ threshold (int): Threshold value for the provision calculations.
25
+
26
+ Returns:
27
+ Provision: The CityProvision object.
28
+
29
+ Raises: KeyError: If the 'demand' column is missing in the provided 'demanded_buildings' GeoDataFrame,
30
+ or if the 'capacity' column is missing in the provided 'services' GeoDataFrame. ValueError: If the 'capacity'
31
+ column in 'services' or 'demand' column 'demanded_buildings' GeoDataFrame has no valid value.
32
+ """
33
+
34
+ destination_matrix = None
35
+
36
+ def __init__(
37
+ self,
38
+ services: gpd.GeoDataFrame,
39
+ demanded_buildings: gpd.GeoDataFrame,
40
+ adjacency_matrix: pd.DataFrame,
41
+ threshold: int,
42
+ ):
43
+ self.services = self.ensure_services(services.copy())
44
+ self.demanded_buildings = self.ensure_buildings(demanded_buildings.copy())
45
+ self.adjacency_matrix = self.delete_useless_matrix_rows_columns(
46
+ adjacency_matrix.copy(), demanded_buildings, services
47
+ ).copy()
48
+ self.threshold = threshold
49
+ self.services.to_crs(self.demanded_buildings.crs, inplace=True)
50
+
51
+ @staticmethod
52
+ def ensure_buildings(v: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
53
+ if "demand" not in v.columns:
54
+ raise DemandKeyError
55
+ v["demand_left"] = v["demand"]
56
+ return v
57
+
58
+ @staticmethod
59
+ def ensure_services(v: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
60
+ if "capacity" not in v.columns:
61
+ raise CapacityKeyError
62
+ v["capacity_left"] = v["capacity"]
63
+ return v
64
+
65
+ @staticmethod
66
+ def delete_useless_matrix_rows_columns(adjacency_matrix, demanded_buildings, services):
67
+ adjacency_matrix.index = adjacency_matrix.index.astype(int)
68
+
69
+ builds_indexes = set(demanded_buildings.index.astype(int).tolist())
70
+ rows = set(adjacency_matrix.index.astype(int).tolist())
71
+ dif = rows ^ builds_indexes
72
+ adjacency_matrix.drop(index=(list(dif)), axis=0, inplace=True)
73
+
74
+ service_indexes = set(services.index.astype(int).tolist())
75
+ columns = set(adjacency_matrix.columns.astype(int).tolist())
76
+ dif = columns ^ service_indexes
77
+ adjacency_matrix.drop(columns=(list(dif)), axis=0, inplace=True)
78
+ return adjacency_matrix.transpose()
79
+
80
+ def run(self) -> Tuple[gpd.GeoDataFrame, gpd.GeoDataFrame, gpd.GeoDataFrame]:
81
+
82
+ def calculate_flows_y(loc):
83
+ c = services_table.loc[loc.name]["capacity_left"]
84
+ p = 1 / loc / loc
85
+ p = p / p.sum()
86
+ threshold = p.quantile(best_houses)
87
+ p = p[p >= threshold]
88
+ p = p / p.sum()
89
+ if p.sum() == 0:
90
+ return loc
91
+ rng = np.random.default_rng(seed=0)
92
+ r = pd.Series(0, p.index)
93
+ choice = np.unique(rng.choice(p.index, int(c), p=p.values), return_counts=True)
94
+ choice = r.add(pd.Series(choice[1], choice[0]), fill_value=0)
95
+
96
+ return choice
97
+
98
+ def balance_flows_to_demands(loc):
99
+ d = houses_table.loc[loc.name]["demand_left"]
100
+ loc = loc[loc > 0]
101
+ if loc.sum() > 0:
102
+ p = loc / loc.sum()
103
+ rng = np.random.default_rng(seed=0)
104
+ r = pd.Series(0, p.index)
105
+ choice = np.unique(rng.choice(p.index, int(d), p=p.values), return_counts=True)
106
+ choice = r.add(pd.Series(choice[1], choice[0]), fill_value=0)
107
+ choice = pd.Series(
108
+ data=np.minimum(loc.sort_index().values, choice.sort_index().values),
109
+ index=loc.sort_index().index,
110
+ )
111
+ return choice
112
+ return loc
113
+
114
+ logger.debug(
115
+ f"Calculating provision from {len(self.services)} services to {len(self.demanded_buildings)} buildings."
116
+ )
117
+
118
+ distance_matrix = self.adjacency_matrix
119
+ destination_matrix = pd.DataFrame(
120
+ 0,
121
+ index=distance_matrix.index,
122
+ columns=distance_matrix.columns,
123
+ dtype=int,
124
+ )
125
+ distance_matrix = distance_matrix.where(distance_matrix <= self.threshold * 3, np.inf)
126
+
127
+ houses_table = self.demanded_buildings[["demand", "demand_left"]].copy()
128
+ services_table = self.services[["capacity", "capacity_left"]].copy()
129
+ distance_matrix = distance_matrix.drop(
130
+ index=services_table[services_table["capacity_left"] == 0].index.values,
131
+ columns=houses_table[houses_table["demand_left"] == 0].index.values,
132
+ errors="ignore",
133
+ )
134
+ distance_matrix = distance_matrix.loc[~(distance_matrix == np.inf).all(axis=1)]
135
+ distance_matrix = distance_matrix.loc[:, ~(distance_matrix == np.inf).all(axis=0)]
136
+
137
+ distance_matrix = distance_matrix + 1
138
+ selection_range = (self.threshold + 1) / 2
139
+ best_houses = 0.9
140
+ while len(distance_matrix.columns) > 0 and len(distance_matrix.index) > 0:
141
+ objects_n = sum(distance_matrix.shape)
142
+ logger.debug(
143
+ f"Matrix shape: {distance_matrix.shape},"
144
+ f" Total objects: {objects_n},"
145
+ f" Selection range: {selection_range},"
146
+ f" Best houses: {best_houses}"
147
+ )
148
+
149
+ temp_destination_matrix = distance_matrix.apply(
150
+ lambda x: calculate_flows_y(x[x <= selection_range]), axis=1
151
+ )
152
+ temp_destination_matrix = temp_destination_matrix.fillna(0)
153
+ temp_destination_matrix = temp_destination_matrix.apply(balance_flows_to_demands, axis=0)
154
+ temp_destination_matrix = temp_destination_matrix.fillna(0)
155
+ temp_destination_matrix_aligned = temp_destination_matrix.reindex(
156
+ index=destination_matrix.index, columns=destination_matrix.columns, fill_value=0
157
+ )
158
+ del temp_destination_matrix
159
+ destination_matrix_np = destination_matrix.to_numpy()
160
+ temp_destination_matrix_np = temp_destination_matrix_aligned.to_numpy()
161
+ del temp_destination_matrix_aligned
162
+ destination_matrix = pd.DataFrame(
163
+ destination_matrix_np + temp_destination_matrix_np,
164
+ index=destination_matrix.index,
165
+ columns=destination_matrix.columns,
166
+ )
167
+ del destination_matrix_np, temp_destination_matrix_np
168
+ axis_1 = destination_matrix.sum(axis=1).astype(int)
169
+ axis_0 = destination_matrix.sum(axis=0).astype(int)
170
+
171
+ services_table["capacity_left"] = services_table["capacity"].subtract(axis_1, fill_value=0)
172
+ houses_table["demand_left"] = houses_table["demand"].subtract(axis_0, fill_value=0)
173
+ del axis_1, axis_0
174
+ distance_matrix = distance_matrix.drop(
175
+ index=services_table[services_table["capacity_left"] == 0].index.values,
176
+ columns=houses_table[houses_table["demand_left"] == 0].index.values,
177
+ errors="ignore",
178
+ )
179
+ distance_matrix = distance_matrix.loc[~(distance_matrix == np.inf).all(axis=1)]
180
+ distance_matrix = distance_matrix.loc[:, ~(distance_matrix == np.inf).all(axis=0)]
181
+
182
+ selection_range *= 1.5
183
+ if best_houses <= 0.1:
184
+ best_houses = 0
185
+ else:
186
+ objects_n_new = sum(distance_matrix.shape)
187
+ best_houses = objects_n_new / (objects_n / best_houses)
188
+
189
+ logger.debug("Done!")
190
+ del distance_matrix, houses_table, services_table
191
+ self.destination_matrix = destination_matrix
192
+
193
+ _additional_options(
194
+ self.demanded_buildings,
195
+ self.services,
196
+ self.adjacency_matrix,
197
+ self.destination_matrix,
198
+ self.threshold,
199
+ )
200
+
201
+ return (
202
+ self.demanded_buildings,
203
+ self.services,
204
+ _calc_links(
205
+ self.destination_matrix,
206
+ self.services,
207
+ self.demanded_buildings,
208
+ self.adjacency_matrix,
209
+ ),
210
+ )
211
+
212
+
213
+ def _calc_links(
214
+ destination_matrix: pd.DataFrame,
215
+ services: gpd.GeoDataFrame,
216
+ buildings: gpd.GeoDataFrame,
217
+ distance_matrix: pd.DataFrame,
218
+ ):
219
+ buildings_ = buildings.copy()
220
+ services_ = services.copy()
221
+ buildings_.geometry = buildings_.representative_point()
222
+ services_.geometry = services_.representative_point()
223
+
224
+ def subfunc(loc):
225
+ try:
226
+ return [
227
+ {
228
+ "building_index": int(k),
229
+ "demand": int(v),
230
+ "service_index": int(loc.name),
231
+ }
232
+ for k, v in loc.to_dict().items()
233
+ ]
234
+ except:
235
+ return np.NaN
236
+
237
+ def subfunc_geom(loc):
238
+ return LineString(
239
+ (
240
+ buildings_.geometry[loc["building_index"]],
241
+ services_.geometry[loc["service_index"]],
242
+ )
243
+ )
244
+
245
+ flat_matrix = destination_matrix.transpose().apply(lambda x: subfunc(x[x > 0]), result_type="reduce")
246
+
247
+ distribution_links = gpd.GeoDataFrame(data=[item for sublist in list(flat_matrix) for item in sublist])
248
+ if distribution_links.empty:
249
+ logger.warning(
250
+ "Unable to create distribution links - no demand could be matched with service locations. "
251
+ "This is likely because either: "
252
+ "1) The demand column in buildings contains zero values, or "
253
+ "2) The capacity column in services contains zero values, or "
254
+ "3) There are no service locations within the maximum allowed distance"
255
+ )
256
+ return distribution_links
257
+ distribution_links["distance"] = distribution_links.apply(
258
+ lambda x: distance_matrix.loc[x["service_index"]][x["building_index"]],
259
+ axis=1,
260
+ result_type="reduce",
261
+ )
262
+
263
+ sel = distribution_links["building_index"].isin(buildings_.index.values) & distribution_links["service_index"].isin(
264
+ services_.index.values
265
+ )
266
+ sel = distribution_links.loc[sel[sel].index.values]
267
+ distribution_links = distribution_links.set_geometry(sel.apply(subfunc_geom, axis=1)).set_crs(buildings_.crs)
268
+ distribution_links["distance"] = distribution_links["distance"].astype(float).round(2)
269
+ return distribution_links
270
+
271
+
272
+ def _additional_options(
273
+ buildings,
274
+ services,
275
+ matrix,
276
+ destination_matrix,
277
+ normative_distance,
278
+ ):
279
+ buildings["avg_dist"] = 0
280
+ buildings["supplied_demands_within"] = 0
281
+ buildings["supplied_demands_without"] = 0
282
+ services["carried_capacity_within"] = 0
283
+ services["carried_capacity_without"] = 0
284
+ for _, loc in destination_matrix.iterrows():
285
+ distances_all = matrix.loc[loc.name]
286
+ distances = distances_all[distances_all <= normative_distance]
287
+ s = matrix.loc[loc.name] <= normative_distance
288
+ within = loc[s]
289
+ without = loc[~s]
290
+ within = within[within > 0]
291
+ without = without[without > 0]
292
+ buildings["avg_dist"] = (
293
+ buildings["avg_dist"]
294
+ .add(distances.multiply(within, fill_value=0), fill_value=0)
295
+ .add(distances_all.multiply(without, fill_value=0), fill_value=0)
296
+ )
297
+ buildings["demand_left"] = buildings["demand_left"].sub(within.add(without, fill_value=0), fill_value=0)
298
+ buildings["supplied_demands_within"] = buildings["supplied_demands_within"].add(within, fill_value=0)
299
+ buildings["supplied_demands_without"] = buildings["supplied_demands_without"].add(without, fill_value=0)
300
+
301
+ services.at[loc.name, "capacity_left"] = (
302
+ services.at[loc.name, "capacity_left"] - within.add(without, fill_value=0).sum()
303
+ )
304
+ services.at[loc.name, "carried_capacity_within"] = (
305
+ services.at[loc.name, "carried_capacity_within"] + within.sum()
306
+ )
307
+ services.at[loc.name, "carried_capacity_without"] = (
308
+ services.at[loc.name, "carried_capacity_without"] + without.sum()
309
+ )
310
+ buildings["min_dist"] = matrix.min(axis=0).replace(np.inf, None)
311
+ buildings["avg_dist"] = (buildings["avg_dist"] / (buildings["demand"] - buildings["demand_left"])).astype(
312
+ np.float32
313
+ )
314
+ buildings["avg_dist"] = buildings.apply(
315
+ lambda x: np.nan if (x["demand"] == x["demand_left"]) else round(x["avg_dist"], 2), axis=1
316
+ )
317
+ buildings["provision_value"] = (buildings["supplied_demands_within"] / buildings["demand"]).astype(float).round(2)
318
+ services["service_load"] = (services["capacity"] - services["capacity_left"]).astype(np.uint16)
319
+ buildings["supplied_demands_within"] = buildings["supplied_demands_within"].astype(np.uint16)
320
+ buildings["supplied_demands_without"] = buildings["supplied_demands_without"].astype(np.uint16)
321
+ services["carried_capacity_within"] = services["carried_capacity_within"].astype(np.uint16)
322
+ services["carried_capacity_without"] = services["carried_capacity_without"].astype(np.uint16)
323
+ logger.debug("Done adding additional options")
@@ -0,0 +1 @@
1
+ from .graph_utils import gdf_to_graph, graph_to_gdf
@@ -0,0 +1,173 @@
1
+ import math
2
+
3
+ import geopandas as gpd
4
+ from shapely import LineString, MultiPolygon, Point, Polygon
5
+ from shapely.ops import polygonize, unary_union
6
+
7
+ from objectnat import config
8
+
9
+ logger = config.logger
10
+
11
+
12
+ def polygons_to_multilinestring(geom: Polygon | MultiPolygon):
13
+ # pylint: disable-next=redefined-outer-name,reimported,import-outside-toplevel
14
+ from shapely import LineString, MultiLineString, MultiPolygon
15
+
16
+ def convert_polygon(polygon: Polygon):
17
+ lines = []
18
+ exterior = LineString(polygon.exterior)
19
+ lines.append(exterior)
20
+ interior = [LineString(p) for p in polygon.interiors]
21
+ lines = lines + interior
22
+ return lines
23
+
24
+ def convert_multipolygon(polygon: MultiPolygon):
25
+ return MultiLineString(sum([convert_polygon(p) for p in polygon.geoms], []))
26
+
27
+ if geom.geom_type == "Polygon":
28
+ return MultiLineString(convert_polygon(geom))
29
+ return convert_multipolygon(geom)
30
+
31
+
32
+ def explode_linestring(geometry: LineString) -> list[LineString]:
33
+ """A function to return all segments of a linestring as a list of linestrings"""
34
+ coords_ext = geometry.coords # Create a list of all line node coordinates
35
+ result = [LineString(part) for part in zip(coords_ext, coords_ext[1:])]
36
+ return result
37
+
38
+
39
+ def point_side_of_line(line: LineString, point: Point) -> int:
40
+ """A positive indicates the left-hand side a negative indicates the right-hand side"""
41
+ x1, y1 = line.coords[0]
42
+ x2, y2 = line.coords[-1]
43
+ x, y = point.coords[0]
44
+ cross_product = (x2 - x1) * (y - y1) - (y2 - y1) * (x - x1)
45
+ if cross_product > 0:
46
+ return 1
47
+ return -1
48
+
49
+
50
+ def get_point_from_a_thorough_b(a: Point, b: Point, dist):
51
+ """
52
+ Func to get Point from point a thorough point b on dist
53
+ """
54
+ direction = math.atan2(b.y - a.y, b.x - a.x)
55
+ c_x = a.x + dist * math.cos(direction)
56
+ c_y = a.y + dist * math.sin(direction)
57
+ return Point(c_x, c_y)
58
+
59
+
60
+ def gdf_to_circle_zones_from_point(
61
+ gdf: gpd.GeoDataFrame, point_from: Point, zone_radius, resolution=4, explode_multigeom=True
62
+ ) -> gpd.GeoDataFrame:
63
+ """n_segments = 4*resolution,e.g. if resolution = 4 that means there will be 16 segments"""
64
+ crs = gdf.crs
65
+ buffer = point_from.buffer(zone_radius, resolution=resolution)
66
+ gdf_unary = gdf.clip(buffer, keep_geom_type=True).union_all()
67
+ gdf_geometry = (
68
+ gpd.GeoDataFrame(geometry=[gdf_unary], crs=crs)
69
+ .explode(index_parts=True)
70
+ .geometry.apply(polygons_to_multilinestring)
71
+ .union_all()
72
+ )
73
+ zones_lines = [LineString([Point(coords1), Point(point_from)]) for coords1 in buffer.exterior.coords[:-1]]
74
+ if explode_multigeom:
75
+ return (
76
+ gpd.GeoDataFrame(geometry=list(polygonize(unary_union([gdf_geometry] + zones_lines))), crs=crs)
77
+ .clip(gdf_unary, keep_geom_type=True)
78
+ .explode(index_parts=False)
79
+ )
80
+ return gpd.GeoDataFrame(geometry=list(polygonize(unary_union([gdf_geometry] + zones_lines))), crs=crs).clip(
81
+ gdf_unary, keep_geom_type=True
82
+ )
83
+
84
+
85
+ def remove_inner_geom(polygon: Polygon | MultiPolygon):
86
+ """function to get rid of inner polygons"""
87
+ if isinstance(polygon, Polygon):
88
+ return Polygon(polygon.exterior.coords)
89
+ if isinstance(polygon, MultiPolygon):
90
+ polys = []
91
+ for poly in polygon.geoms:
92
+ polys.append(Polygon(poly.exterior.coords))
93
+ return MultiPolygon(polys)
94
+ else:
95
+ return Polygon()
96
+
97
+
98
+ def combine_geometry(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
99
+ """
100
+ Combine geometry of intersecting layers into a single GeoDataFrame.
101
+ Parameters
102
+ ----------
103
+ gdf: gpd.GeoDataFrame
104
+ A GeoPandas GeoDataFrame
105
+
106
+ Returns
107
+ -------
108
+ gpd.GeoDataFrame
109
+ The combined GeoDataFrame with aggregated in lists columns.
110
+
111
+ Examples
112
+ --------
113
+ >>> gdf = gpd.read_file('path_to_your_file.geojson')
114
+ >>> result = combine_geometry(gdf)
115
+ """
116
+
117
+ crs = gdf.crs
118
+
119
+ enclosures = gpd.GeoDataFrame(
120
+ geometry=list(polygonize(gdf["geometry"].apply(polygons_to_multilinestring).union_all())), crs=crs
121
+ )
122
+ enclosures_points = enclosures.copy()
123
+ enclosures_points.geometry = enclosures.representative_point()
124
+ joined = gpd.sjoin(enclosures_points, gdf, how="inner", predicate="within").reset_index()
125
+ cols = joined.columns.tolist()
126
+ cols.remove("geometry")
127
+ joined = joined.groupby("index").agg({column: list for column in cols})
128
+ joined["geometry"] = enclosures
129
+ joined = gpd.GeoDataFrame(joined, geometry="geometry", crs=crs)
130
+ return joined
131
+
132
+
133
+ def distribute_points_on_linestrings(lines: gpd.GeoDataFrame, radius, lloyd_relax_n=2) -> gpd.GeoDataFrame:
134
+ lines = lines.copy()
135
+ lines = lines.explode(ignore_index=True)
136
+ lines = lines[lines.geom_type == "LineString"]
137
+ original_crs = lines.crs
138
+ lines = lines.to_crs(crs=lines.estimate_utm_crs())
139
+ lines = lines.reset_index(drop=True)
140
+ lines = lines[["geometry"]]
141
+ radius = radius * 1.1
142
+ segmentized = lines.geometry.apply(lambda x: x.simplify(radius).segmentize(radius))
143
+ points = [Point(pt) for line in segmentized for pt in line.coords]
144
+
145
+ points = gpd.GeoDataFrame(geometry=points, crs=lines.crs)
146
+ lines["lines"] = lines.geometry
147
+ geom_concave = lines.buffer(5, resolution=1).union_all()
148
+
149
+ for i in range(lloyd_relax_n):
150
+ points.geometry = points.voronoi_polygons().clip(geom_concave).centroid
151
+ points = points.sjoin_nearest(lines, how="left")
152
+ points = points[~points.index.duplicated(keep="first")]
153
+ points["geometry"] = points["lines"].interpolate(points["lines"].project(points.geometry))
154
+ points.drop(columns=["lines", "index_right"], inplace=True)
155
+
156
+ return points.dropna().to_crs(original_crs)
157
+
158
+
159
+ def distribute_points_on_polygons(
160
+ polygons: gpd.GeoDataFrame, radius, only_exterior=True, lloyd_relax_n=2
161
+ ) -> gpd.GeoDataFrame:
162
+ polygons = polygons.copy()
163
+ polygons = polygons.explode(ignore_index=True)
164
+ polygons = polygons[polygons.geom_type == "Polygon"]
165
+
166
+ if only_exterior:
167
+ polygons.geometry = polygons.geometry.apply(lambda x: LineString(x.exterior))
168
+ else:
169
+ polygons = gpd.GeoDataFrame(
170
+ geometry=list(polygons.geometry.apply(polygons_to_multilinestring)), crs=polygons.crs
171
+ )
172
+
173
+ return distribute_points_on_linestrings(polygons, radius, lloyd_relax_n=lloyd_relax_n)