ObjectNat 1.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. objectnat/__init__.py +9 -0
  2. objectnat/_api.py +14 -0
  3. objectnat/_config.py +43 -0
  4. objectnat/_version.py +1 -0
  5. objectnat/methods/__init__.py +0 -0
  6. objectnat/methods/coverage_zones/__init__.py +3 -0
  7. objectnat/methods/coverage_zones/graph_coverage.py +105 -0
  8. objectnat/methods/coverage_zones/radius_voronoi_coverage.py +39 -0
  9. objectnat/methods/coverage_zones/stepped_coverage.py +136 -0
  10. objectnat/methods/isochrones/__init__.py +1 -0
  11. objectnat/methods/isochrones/isochrone_utils.py +167 -0
  12. objectnat/methods/isochrones/isochrones.py +282 -0
  13. objectnat/methods/noise/__init__.py +3 -0
  14. objectnat/methods/noise/noise_init_data.py +10 -0
  15. objectnat/methods/noise/noise_reduce.py +155 -0
  16. objectnat/methods/noise/noise_simulation.py +453 -0
  17. objectnat/methods/noise/noise_simulation_simplified.py +222 -0
  18. objectnat/methods/point_clustering/__init__.py +1 -0
  19. objectnat/methods/point_clustering/cluster_points_in_polygons.py +115 -0
  20. objectnat/methods/provision/__init__.py +1 -0
  21. objectnat/methods/provision/provision.py +213 -0
  22. objectnat/methods/provision/provision_exceptions.py +59 -0
  23. objectnat/methods/provision/provision_model.py +323 -0
  24. objectnat/methods/utils/__init__.py +1 -0
  25. objectnat/methods/utils/geom_utils.py +173 -0
  26. objectnat/methods/utils/graph_utils.py +306 -0
  27. objectnat/methods/utils/math_utils.py +32 -0
  28. objectnat/methods/visibility/__init__.py +6 -0
  29. objectnat/methods/visibility/visibility_analysis.py +485 -0
  30. objectnat-1.3.3.dist-info/METADATA +202 -0
  31. objectnat-1.3.3.dist-info/RECORD +33 -0
  32. objectnat-1.3.3.dist-info/WHEEL +4 -0
  33. objectnat-1.3.3.dist-info/licenses/LICENSE.txt +28 -0
objectnat/__init__.py ADDED
@@ -0,0 +1,9 @@
1
+ """
2
+ ObjectNat is an open-source library created for geospatial analysis created by IDU team.
3
+
4
+ Homepage https://github.com/DDonnyy/ObjectNat.
5
+ """
6
+
7
+ from ._config import config
8
+ from ._api import *
9
+ from ._version import VERSION as __version__
objectnat/_api.py ADDED
@@ -0,0 +1,14 @@
1
+ # pylint: disable=unused-import,wildcard-import,unused-wildcard-import
2
+
3
+ from .methods.coverage_zones import get_graph_coverage, get_radius_coverage, get_stepped_graph_coverage
4
+ from .methods.isochrones import get_accessibility_isochrone_stepped, get_accessibility_isochrones
5
+ from .methods.noise import calculate_simplified_noise_frame, simulate_noise
6
+ from .methods.point_clustering import get_clusters_polygon
7
+ from .methods.provision import clip_provision, get_service_provision, recalculate_links
8
+ from .methods.utils import gdf_to_graph, graph_to_gdf
9
+ from .methods.visibility import (
10
+ calculate_visibility_catchment_area,
11
+ get_visibilities_from_points,
12
+ get_visibility,
13
+ get_visibility_accurate,
14
+ )
objectnat/_config.py ADDED
@@ -0,0 +1,43 @@
1
+ import sys
2
+ from typing import Literal
3
+
4
+ from loguru import logger
5
+
6
+
7
+ class Config:
8
+ """
9
+ A configuration class to manage global settings for the application, such as Overpass API URL,
10
+ timeouts, and logging options.
11
+
12
+ Attributes
13
+ ----------
14
+ enable_tqdm_bar : bool
15
+ Enables or disables progress bars (via tqdm). Defaults to True.
16
+ logger : Logger
17
+ Logging instance to handle application logging.
18
+
19
+ Methods
20
+ -------
21
+ change_logger_lvl(lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"])
22
+ Changes the logging level to the specified value.
23
+ set_enable_tqdm(enable: bool)
24
+ Enables or disables progress bars in the application.
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ enable_tqdm_bar=True,
30
+ ):
31
+ self.enable_tqdm_bar = enable_tqdm_bar
32
+ self.logger = logger
33
+
34
+ def change_logger_lvl(self, lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"]):
35
+ self.logger.remove()
36
+ self.logger.add(sys.stderr, level=lvl)
37
+
38
+ def set_enable_tqdm(self, enable: bool):
39
+ self.enable_tqdm_bar = enable
40
+
41
+
42
+ config = Config()
43
+ config.change_logger_lvl("INFO")
objectnat/_version.py ADDED
@@ -0,0 +1 @@
1
+ VERSION = "1.3.3"
File without changes
@@ -0,0 +1,3 @@
1
+ from .graph_coverage import get_graph_coverage
2
+ from .radius_voronoi_coverage import get_radius_coverage
3
+ from .stepped_coverage import get_stepped_graph_coverage
@@ -0,0 +1,105 @@
1
+ from typing import Literal
2
+
3
+ import geopandas as gpd
4
+ import networkx as nx
5
+ import pandas as pd
6
+ from pyproj.exceptions import CRSError
7
+ from shapely import Point, concave_hull
8
+
9
+ from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, reverse_graph
10
+
11
+
12
+ def get_graph_coverage(
13
+ gdf_to: gpd.GeoDataFrame,
14
+ nx_graph: nx.Graph,
15
+ weight_type: Literal["time_min", "length_meter"],
16
+ weight_value_cutoff: float = None,
17
+ zone: gpd.GeoDataFrame = None,
18
+ ):
19
+ """
20
+ Calculate coverage zones from source points through a graph network using Dijkstra's algorithm
21
+ and Voronoi diagrams.
22
+
23
+ The function works by:
24
+ 1. Finding nearest graph nodes for each input point
25
+ 2. Calculating all reachable nodes within cutoff distance using Dijkstra
26
+ 3. Creating Voronoi polygons around graph nodes
27
+ 4. Combining reachability information with Voronoi cells
28
+ 5. Clipping results to specified zone boundary
29
+
30
+ Args:
31
+ gdf_to (gpd.GeoDataFrame):
32
+ Source points to which coverage is calculated.
33
+
34
+ nx_graph (nx.Graph):
35
+ NetworkX graph representing the transportation network.
36
+
37
+ weight_type:
38
+ Type of edge weight to use for path calculation:
39
+
40
+ - ``"time_min"``: Edge travel time in minutes
41
+ - ``"length_meter"``: Edge length in meters
42
+
43
+ weight_value_cutoff (float):
44
+ Maximum weight value for path calculations (e.g., max travel time/distance).
45
+
46
+ zone (gpd.GeoDataFrame):
47
+ Boundary polygon to clip the resulting coverage zones. If None, concave hull of reachable nodes will be used.
48
+
49
+ Returns:
50
+ gpd.GeoDataFrame:
51
+ GeoDataFrame with coverage zones polygons, each associated with its source point, returns in the same CRS
52
+ as original gdf_from.
53
+
54
+ Notes:
55
+ - The graph must have a valid CRS attribute in its graph properties
56
+ - MultiGraph/MultiDiGraph inputs will be converted to simple Graph/DiGraph
57
+ """
58
+ original_crs = gdf_to.crs
59
+ try:
60
+ local_crs = nx_graph.graph["crs"]
61
+ except KeyError as exc:
62
+ raise ValueError("Graph does not have crs attribute") from exc
63
+
64
+ try:
65
+ points = gdf_to.copy()
66
+ points.to_crs(local_crs, inplace=True)
67
+ except CRSError as e:
68
+ raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
69
+
70
+ nx_graph, reversed_graph = reverse_graph(nx_graph, weight_type)
71
+
72
+ points.geometry = points.representative_point()
73
+
74
+ _, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
75
+
76
+ points["nearest_node"] = nearest_nodes
77
+
78
+ nearest_paths = nx.multi_source_dijkstra_path(
79
+ reversed_graph, nearest_nodes, weight=weight_type, cutoff=weight_value_cutoff
80
+ )
81
+ reachable_nodes = list(nearest_paths.keys())
82
+ graph_points = pd.DataFrame(
83
+ data=[{"node": node, "geometry": Point(data["x"], data["y"])} for node, data in nx_graph.nodes(data=True)]
84
+ ).set_index("node")
85
+ nearest_nodes = pd.DataFrame(
86
+ data=[path[0] for path in nearest_paths.values()], index=reachable_nodes, columns=["node_to"]
87
+ )
88
+ graph_nodes_gdf = gpd.GeoDataFrame(
89
+ graph_points.merge(nearest_nodes, left_index=True, right_index=True, how="left"),
90
+ geometry="geometry",
91
+ crs=local_crs,
92
+ )
93
+ graph_nodes_gdf["node_to"] = graph_nodes_gdf["node_to"].fillna("non_reachable")
94
+ voronois = gpd.GeoDataFrame(geometry=graph_nodes_gdf.voronoi_polygons(), crs=local_crs)
95
+ graph_nodes_gdf = graph_nodes_gdf[graph_nodes_gdf["node_to"] != "non_reachable"]
96
+ zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="node_to").reset_index().drop(columns=["node"])
97
+ zone_coverages = zone_coverages.merge(
98
+ points.drop(columns="geometry"), left_on="node_to", right_on="nearest_node", how="inner"
99
+ ).reset_index(drop=True)
100
+ zone_coverages.drop(columns=["node_to", "nearest_node"], inplace=True)
101
+ if zone is None:
102
+ zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
103
+ else:
104
+ zone = zone.to_crs(local_crs)
105
+ return zone_coverages.clip(zone).to_crs(original_crs)
@@ -0,0 +1,39 @@
1
+ import geopandas as gpd
2
+ import numpy as np
3
+
4
+
5
+ def get_radius_coverage(gdf_from: gpd.GeoDataFrame, radius: float, resolution: int = 32):
6
+ """
7
+ Calculate radius-based coverage zones using Voronoi polygons.
8
+
9
+ Args:
10
+ gdf_from (gpd.GeoDataFrame):
11
+ Source points for which coverage zones are calculated.
12
+
13
+ radius (float):
14
+ Maximum coverage radius in meters.
15
+
16
+ resolution (int):
17
+ Number of segments used to approximate quarter-circle in buffer (default=32).
18
+
19
+ Returns:
20
+ gpd.GeoDataFrame:
21
+ GeoDataFrame with smoothed coverage zone polygons in the same CRS as original gdf_from.
22
+
23
+ Notes:
24
+ - Automatically converts to local UTM CRS for accurate distance measurements
25
+ - Final zones are slightly contracted then expanded for smoothing effect
26
+ """
27
+ original_crs = gdf_from.crs
28
+ local_crs = gdf_from.estimate_utm_crs()
29
+ gdf_from = gdf_from.to_crs(local_crs)
30
+ bounds = gdf_from.buffer(radius).union_all()
31
+ coverage_polys = gpd.GeoDataFrame(geometry=gdf_from.voronoi_polygons().clip(bounds, keep_geom_type=True))
32
+ coverage_polys = coverage_polys.sjoin(gdf_from)
33
+ coverage_polys["area"] = coverage_polys.area
34
+ coverage_polys["buffer"] = np.pow(coverage_polys["area"], 1 / 3)
35
+ coverage_polys.geometry = coverage_polys.buffer(-coverage_polys["buffer"], resolution=1, join_style="mitre").buffer(
36
+ coverage_polys["buffer"] * 0.9, resolution=resolution
37
+ )
38
+ coverage_polys.drop(columns=["buffer", "area"], inplace=True)
39
+ return coverage_polys.to_crs(original_crs)
@@ -0,0 +1,136 @@
1
+ from typing import Literal
2
+
3
+ import geopandas as gpd
4
+ import networkx as nx
5
+ import numpy as np
6
+ import pandas as pd
7
+ from pyproj.exceptions import CRSError
8
+ from shapely import Point, concave_hull
9
+
10
+ from objectnat.methods.isochrones.isochrone_utils import create_separated_dist_polygons
11
+ from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, reverse_graph
12
+
13
+
14
+ def get_stepped_graph_coverage(
15
+ gdf_to: gpd.GeoDataFrame,
16
+ nx_graph: nx.Graph,
17
+ weight_type: Literal["time_min", "length_meter"],
18
+ step_type: Literal["voronoi", "separate"],
19
+ weight_value_cutoff: float = None,
20
+ zone: gpd.GeoDataFrame = None,
21
+ step: float = None,
22
+ ):
23
+ """
24
+ Calculate stepped coverage zones from source points through a graph network using Dijkstra's algorithm
25
+ and Voronoi-based or buffer-based isochrone steps.
26
+
27
+ This function combines graph-based accessibility with stepped isochrone logic. It:
28
+ 1. Finds nearest graph nodes for each input point
29
+ 2. Computes reachability for increasing weights (e.g. time or distance) in defined steps
30
+ 3. Generates Voronoi-based or separate buffer zones around network nodes
31
+ 4. Aggregates zones into stepped coverage layers
32
+ 5. Optionally clips results to a boundary zone
33
+
34
+ Args:
35
+ gdf_to (gpd.GeoDataFrame):
36
+ Source points from which stepped coverage is calculated.
37
+
38
+ nx_graph (nx.Graph):
39
+ NetworkX graph representing the transportation network.
40
+
41
+ weight_type:
42
+ Type of edge weight to use for path calculation:
43
+
44
+ - ``"time_min"``: Edge travel time in minutes
45
+ - ``"length_meter"``: Edge length in meters
46
+
47
+ step_type:
48
+ Method for generating stepped zones:
49
+
50
+ - ``"voronoi"``: Stepped zones based on Voronoi polygons around graph nodes
51
+ - ``"separate"``: Independent buffer zones per step
52
+
53
+ weight_value_cutoff (float, optional):
54
+ Maximum weight value (e.g., max travel time or distance) to limit the coverage extent.
55
+
56
+ zone (gpd.GeoDataFrame, optional):
57
+ Optional boundary polygon to clip resulting stepped zones. If None, concave hull of reachable area is used.
58
+
59
+ step (float, optional):
60
+ Step interval for coverage zone construction. Defaults to:
61
+
62
+ - 100 meters for distance-based weight
63
+ - 1 minute for time-based weight
64
+
65
+ Returns:
66
+ gpd.GeoDataFrame:
67
+ GeoDataFrame with polygons representing stepped coverage zones for each input point,
68
+ annotated by step range.
69
+
70
+ Notes:
71
+ - Input graph must have a valid CRS defined.
72
+ - MultiGraph or MultiDiGraph inputs will be simplified to Graph/DiGraph.
73
+ - Designed for accessibility and spatial equity analyses over multimodal networks.
74
+ """
75
+ if step is None:
76
+ if weight_type == "length_meter":
77
+ step = 100
78
+ else:
79
+ step = 1
80
+ original_crs = gdf_to.crs
81
+ try:
82
+ local_crs = nx_graph.graph["crs"]
83
+ except KeyError as exc:
84
+ raise ValueError("Graph does not have crs attribute") from exc
85
+
86
+ try:
87
+ points = gdf_to.copy()
88
+ points.to_crs(local_crs, inplace=True)
89
+ except CRSError as e:
90
+ raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
91
+
92
+ nx_graph, reversed_graph = reverse_graph(nx_graph, weight_type)
93
+
94
+ points.geometry = points.representative_point()
95
+
96
+ distances, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
97
+
98
+ points["nearest_node"] = nearest_nodes
99
+ points["distance"] = distances
100
+
101
+ dist = nx.multi_source_dijkstra_path_length(
102
+ reversed_graph, nearest_nodes, weight=weight_type, cutoff=weight_value_cutoff
103
+ )
104
+
105
+ graph_points = pd.DataFrame(
106
+ data=[{"node": node, "geometry": Point(data["x"], data["y"])} for node, data in nx_graph.nodes(data=True)]
107
+ )
108
+
109
+ nearest_nodes = pd.DataFrame.from_dict(dist, orient="index", columns=["dist"]).reset_index()
110
+
111
+ graph_nodes_gdf = gpd.GeoDataFrame(
112
+ graph_points.merge(nearest_nodes, left_on="node", right_on="index", how="left").reset_index(drop=True),
113
+ geometry="geometry",
114
+ crs=local_crs,
115
+ )
116
+ graph_nodes_gdf.drop(columns=["index", "node"], inplace=True)
117
+ if weight_value_cutoff is None:
118
+ weight_value_cutoff = max(nearest_nodes["dist"])
119
+ if step_type == "voronoi":
120
+ graph_nodes_gdf["dist"] = np.minimum(np.ceil(graph_nodes_gdf["dist"] / step) * step, weight_value_cutoff)
121
+ voronois = gpd.GeoDataFrame(geometry=graph_nodes_gdf.voronoi_polygons(), crs=local_crs)
122
+ zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="dist", as_index=False, dropna=False)
123
+ zone_coverages = zone_coverages[["dist", "geometry"]].explode(ignore_index=True)
124
+ if zone is None:
125
+ zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
126
+ else:
127
+ zone = zone.to_crs(local_crs)
128
+ zone_coverages = zone_coverages.clip(zone).to_crs(original_crs)
129
+ else: # step_type == 'separate':
130
+ speed = 83.33 # TODO HARDCODED WALK SPEED
131
+ weight_value = weight_value_cutoff
132
+ zone_coverages = create_separated_dist_polygons(graph_nodes_gdf, weight_value, weight_type, step, speed)
133
+ if zone is not None:
134
+ zone = zone.to_crs(local_crs)
135
+ zone_coverages = zone_coverages.clip(zone).to_crs(original_crs)
136
+ return zone_coverages
@@ -0,0 +1 @@
1
+ from .isochrones import get_accessibility_isochrones, get_accessibility_isochrone_stepped
@@ -0,0 +1,167 @@
1
+ from typing import Literal
2
+
3
+ import geopandas as gpd
4
+ import networkx as nx
5
+ import numpy as np
6
+ import pandas as pd
7
+ from pyproj.exceptions import CRSError
8
+ from shapely.ops import polygonize
9
+
10
+ from objectnat import config
11
+ from objectnat.methods.utils.geom_utils import polygons_to_multilinestring
12
+ from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, remove_weakly_connected_nodes
13
+
14
+ logger = config.logger
15
+
16
+
17
+ def _validate_inputs(
18
+ points: gpd.GeoDataFrame, weight_value: float, weight_type: Literal["time_min", "length_meter"], nx_graph: nx.Graph
19
+ ) -> tuple[str, str]:
20
+ """Validate common inputs for accessibility functions."""
21
+ if weight_value <= 0:
22
+ raise ValueError("Weight value must be greater than 0")
23
+ if weight_type not in ["time_min", "length_meter"]:
24
+ raise UserWarning("Weight type should be either 'time_min' or 'length_meter'")
25
+
26
+ try:
27
+ local_crs = nx_graph.graph["crs"]
28
+ except KeyError as exc:
29
+ raise ValueError("Graph does not have crs attribute") from exc
30
+ try:
31
+ graph_type = nx_graph.graph["type"]
32
+ except KeyError as exc:
33
+ raise ValueError("Graph does not have type attribute") from exc
34
+
35
+ try:
36
+ points.to_crs(local_crs, inplace=True)
37
+ except CRSError as e:
38
+ raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
39
+
40
+ return local_crs, graph_type
41
+
42
+
43
+ def _prepare_graph_and_nodes(
44
+ points: gpd.GeoDataFrame, nx_graph: nx.Graph, graph_type: str, weight_type: str, weight_value: float
45
+ ) -> tuple[nx.Graph, gpd.GeoDataFrame, pd.DataFrame, float]:
46
+ """Prepare graph and calculate nearest nodes with distances."""
47
+ nx_graph = remove_weakly_connected_nodes(nx_graph)
48
+ distances, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
49
+ points["nearest_node"] = nearest_nodes
50
+
51
+ dist_nearest = pd.DataFrame(data=distances, index=nearest_nodes, columns=["dist"]).drop_duplicates()
52
+
53
+ # Calculate speed adjustment if needed
54
+ speed = 0
55
+ if graph_type in ["walk", "intermodal"] and weight_type == "time_min":
56
+ try:
57
+ speed = nx_graph.graph["walk_speed"]
58
+ except KeyError:
59
+ logger.warning("There is no walk_speed in graph, set to the default speed - 83.33 m/min")
60
+ speed = 83.33
61
+ dist_nearest = dist_nearest / speed
62
+ elif weight_type == "time_min":
63
+ speed = 20 * 1000 / 60
64
+ dist_nearest = dist_nearest / speed
65
+
66
+ if (dist_nearest > weight_value).all().all():
67
+ raise RuntimeError(
68
+ "The point(s) lie further from the graph than weight_value, it's impossible to "
69
+ "construct isochrones. Check the coordinates of the point(s)/their projection"
70
+ )
71
+
72
+ return nx_graph, points, dist_nearest, speed
73
+
74
+
75
+ def _process_pt_data(
76
+ nodes: gpd.GeoDataFrame, edges: gpd.GeoDataFrame, graph_type: str
77
+ ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame] | tuple[None, None]:
78
+ """Process public transport data if available."""
79
+ if "type" in nodes.columns and "platform" in nodes["type"].unique():
80
+ pt_nodes = nodes[(nodes["type"] != "platform") & (~nodes["type"].isna())]
81
+ if graph_type == "intermodal":
82
+ edges = edges[~edges["type"].isin(["walk", "boarding"])]
83
+ pt_nodes = pt_nodes[["type", "route", "geometry"]]
84
+ edges = edges[["type", "route", "geometry"]]
85
+ return pt_nodes, edges
86
+ return None, None
87
+
88
+
89
+ def _calculate_distance_matrix(
90
+ nx_graph: nx.Graph,
91
+ nearest_nodes: np.ndarray,
92
+ weight_type: str,
93
+ weight_value: float,
94
+ dist_nearest: pd.DataFrame,
95
+ ) -> tuple[pd.DataFrame, nx.Graph]:
96
+ """Calculate distance matrix from nearest nodes."""
97
+
98
+ data = {}
99
+ for source in nearest_nodes:
100
+ dist = nx.single_source_dijkstra_path_length(nx_graph, source, weight=weight_type, cutoff=weight_value)
101
+ data.update({source: dist})
102
+
103
+ dist_matrix = pd.DataFrame.from_dict(data, orient="index")
104
+ dist_matrix = dist_matrix.add(dist_nearest.dist, axis=0)
105
+ dist_matrix = dist_matrix.mask(dist_matrix > weight_value, np.nan)
106
+ dist_matrix.dropna(how="all", inplace=True)
107
+ dist_matrix.dropna(how="all", axis=1, inplace=True)
108
+
109
+ subgraph = nx_graph.subgraph(dist_matrix.columns.to_list())
110
+
111
+ return dist_matrix, subgraph
112
+
113
+
114
+ def _create_isochrones_gdf(
115
+ points: gpd.GeoDataFrame,
116
+ results: list,
117
+ dist_matrix: pd.DataFrame,
118
+ local_crs: str,
119
+ weight_type: str,
120
+ weight_value: float,
121
+ ) -> gpd.GeoDataFrame:
122
+ """Create final isochrones GeoDataFrame."""
123
+ isochrones = gpd.GeoDataFrame(geometry=results, index=dist_matrix.index, crs=local_crs)
124
+ isochrones = (
125
+ points.drop(columns="geometry")
126
+ .merge(isochrones, left_on="nearest_node", right_index=True, how="left")
127
+ .drop(columns="nearest_node")
128
+ )
129
+ isochrones = gpd.GeoDataFrame(isochrones, geometry="geometry", crs=local_crs)
130
+ isochrones["weight_type"] = weight_type
131
+ isochrones["weight_value"] = weight_value
132
+ return isochrones
133
+
134
+
135
+ def create_separated_dist_polygons(
136
+ points: gpd.GeoDataFrame, weight_value, weight_type, step, speed
137
+ ) -> gpd.GeoDataFrame:
138
+ points["dist"] = points["dist"].clip(lower=0.1)
139
+ steps = np.arange(0, weight_value + step, step)
140
+ if steps[-1] > weight_value:
141
+ steps[-1] = weight_value # Ensure last step doesn't exceed weight_value
142
+ for i in range(len(steps) - 1):
143
+ min_dist = steps[i]
144
+ max_dist = steps[i + 1]
145
+ nodes_in_step = points["dist"].between(min_dist, max_dist, inclusive="left")
146
+ nodes_in_step = nodes_in_step[nodes_in_step].index
147
+ if not nodes_in_step.empty:
148
+ buffer_size = (max_dist - points.loc[nodes_in_step, "dist"]) * 0.7
149
+ if weight_type == "time_min":
150
+ buffer_size = buffer_size * speed
151
+ points.loc[nodes_in_step, "buffer_size"] = buffer_size
152
+ points.geometry = points.geometry.buffer(points["buffer_size"])
153
+ points["dist"] = np.minimum(np.ceil(points["dist"] / step) * step, weight_value)
154
+ points = points.dissolve(by="dist", as_index=False)
155
+ polygons = gpd.GeoDataFrame(
156
+ geometry=list(polygonize(points.geometry.apply(polygons_to_multilinestring).union_all())),
157
+ crs=points.crs,
158
+ )
159
+ polygons_points = polygons.copy()
160
+ polygons_points.geometry = polygons.representative_point()
161
+ stepped_polygons = polygons_points.sjoin(points, predicate="within").reset_index()
162
+ stepped_polygons = stepped_polygons.groupby("index").agg({"dist": "mean"})
163
+ stepped_polygons["dist"] = np.minimum(np.floor(stepped_polygons["dist"] / step) * step, weight_value)
164
+ stepped_polygons["geometry"] = polygons
165
+ stepped_polygons = gpd.GeoDataFrame(stepped_polygons, geometry="geometry", crs=points.crs).reset_index(drop=True)
166
+ stepped_polygons = stepped_polygons.dissolve(by="dist", as_index=False).explode(ignore_index=True)
167
+ return stepped_polygons