ObjectNat 0.2.6__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ObjectNat might be problematic. Click here for more details.

Files changed (36) hide show
  1. objectnat/_api.py +6 -8
  2. objectnat/_config.py +0 -24
  3. objectnat/_version.py +1 -1
  4. objectnat/methods/coverage_zones/__init__.py +2 -0
  5. objectnat/methods/coverage_zones/graph_coverage.py +118 -0
  6. objectnat/methods/coverage_zones/radius_voronoi.py +45 -0
  7. objectnat/methods/isochrones/__init__.py +1 -0
  8. objectnat/methods/isochrones/isochrone_utils.py +130 -0
  9. objectnat/methods/isochrones/isochrones.py +325 -0
  10. objectnat/methods/noise/__init__.py +3 -0
  11. objectnat/methods/noise/noise_exceptions.py +14 -0
  12. objectnat/methods/noise/noise_init_data.py +10 -0
  13. objectnat/methods/noise/noise_reduce.py +155 -0
  14. objectnat/methods/noise/noise_sim.py +423 -0
  15. objectnat/methods/point_clustering/__init__.py +1 -0
  16. objectnat/methods/{cluster_points_in_polygons.py → point_clustering/cluster_points_in_polygons.py} +22 -28
  17. objectnat/methods/provision/__init__.py +1 -0
  18. objectnat/methods/provision/provision.py +10 -7
  19. objectnat/methods/provision/provision_exceptions.py +4 -4
  20. objectnat/methods/provision/provision_model.py +21 -20
  21. objectnat/methods/utils/__init__.py +0 -0
  22. objectnat/methods/utils/geom_utils.py +130 -0
  23. objectnat/methods/utils/graph_utils.py +127 -0
  24. objectnat/methods/utils/math_utils.py +32 -0
  25. objectnat/methods/visibility/__init__.py +6 -0
  26. objectnat/methods/{visibility_analysis.py → visibility/visibility_analysis.py} +222 -243
  27. objectnat-1.0.0.dist-info/METADATA +143 -0
  28. objectnat-1.0.0.dist-info/RECORD +32 -0
  29. objectnat/methods/balanced_buildings.py +0 -69
  30. objectnat/methods/coverage_zones.py +0 -90
  31. objectnat/methods/isochrones.py +0 -143
  32. objectnat/methods/living_buildings_osm.py +0 -168
  33. objectnat-0.2.6.dist-info/METADATA +0 -113
  34. objectnat-0.2.6.dist-info/RECORD +0 -19
  35. {objectnat-0.2.6.dist-info → objectnat-1.0.0.dist-info}/LICENSE.txt +0 -0
  36. {objectnat-0.2.6.dist-info → objectnat-1.0.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,325 @@
1
+ from typing import Literal
2
+
3
+ import geopandas as gpd
4
+ import networkx as nx
5
+ import numpy as np
6
+ from shapely.ops import polygonize
7
+
8
+ from objectnat import config
9
+ from objectnat.methods.isochrones.isochrone_utils import (
10
+ _calculate_distance_matrix,
11
+ _create_isochrones_gdf,
12
+ _prepare_graph_and_nodes,
13
+ _process_pt_data,
14
+ _validate_inputs,
15
+ )
16
+ from objectnat.methods.utils.geom_utils import polygons_to_multilinestring, remove_inner_geom
17
+ from objectnat.methods.utils.graph_utils import graph_to_gdf
18
+
19
+ logger = config.logger
20
+
21
+
22
+ def get_accessibility_isochrone_stepped(
23
+ isochrone_type: Literal["radius", "ways", "separate"],
24
+ point: gpd.GeoDataFrame,
25
+ weight_value: float,
26
+ weight_type: Literal["time_min", "length_meter"],
27
+ nx_graph: nx.Graph,
28
+ step: float = None,
29
+ **kwargs,
30
+ ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame | None, gpd.GeoDataFrame | None]:
31
+ """
32
+ Calculate stepped accessibility isochrones for a single point with specified intervals.
33
+
34
+ Parameters
35
+ ----------
36
+ isochrone_type : Literal["radius", "ways", "separate"]
37
+ Visualization method for stepped isochrones:
38
+ - "radius": Voronoi-based in circular buffers
39
+ - "ways": Voronoi-based in road network polygons
40
+ - "separate": Circular buffers for each step
41
+ point : gpd.GeoDataFrame
42
+ Single source point for isochrone calculation (uses first geometry if multiple provided).
43
+ weight_value : float
44
+ Maximum travel time (minutes) or distance (meters) threshold.
45
+ weight_type : Literal["time_min", "length_meter"]
46
+ Type of weight calculation:
47
+ - "time_min": Time-based in minutes
48
+ - "length_meter": Distance-based in meters
49
+ nx_graph : nx.Graph
50
+ NetworkX graph representing the transportation network.
51
+ step : float, optional
52
+ Interval between isochrone steps. Defaults to:
53
+ - 100 meters for distance-based
54
+ - 1 minute for time-based
55
+ **kwargs
56
+ Additional buffer parameters:
57
+ - buffer_factor: Size multiplier for buffers (default: 0.7)
58
+ - road_buffer_size: Buffer size for road edges in meters (default: 5)
59
+
60
+ Returns
61
+ -------
62
+ tuple[gpd.GeoDataFrame, gpd.GeoDataFrame | None, gpd.GeoDataFrame | None]
63
+ Tuple containing:
64
+ - stepped_isochrones: GeoDataFrame with stepped polygons and distance/time attributes
65
+ - pt_stops: Public transport stops within isochrones (if available)
66
+ - pt_routes: Public transport routes within isochrones (if available)
67
+
68
+ Examples
69
+ --------
70
+ >>> from iduedu import get_intermodal_graph # pip install iduedu to get OSM city network graph
71
+ >>> graph = get_intermodal_graph(polygon=my_territory_polygon)
72
+ >>> point = gpd.GeoDataFrame(geometry=[Point(30.33, 59.95)], crs=4326)
73
+ >>> # Stepped radius isochrones with 5-minute intervals
74
+ >>> radius_stepped, stops, _ = get_accessibility_isochrone_stepped(
75
+ ... "radius", point, 30, "time_min", graph, step=5
76
+ ... )
77
+ >>> # Stepped road isochrones with 200m intervals
78
+ >>> ways_stepped, _, routes = get_accessibility_isochrone_stepped(
79
+ ... "ways", point, 1000, "length_meter", graph, step=200
80
+ ... )
81
+ >>> # Voronoi-based stepped isochrones
82
+ >>> separate_stepped, stops, _ = get_accessibility_isochrone_stepped(
83
+ ... "separate", point, 15, "time_min", graph
84
+ ... )
85
+ """
86
+ buffer_params = {
87
+ "buffer_factor": 0.7,
88
+ "road_buffer_size": 5,
89
+ }
90
+
91
+ buffer_params.update(kwargs)
92
+ original_crs = point.crs
93
+ point = point.copy()
94
+ if len(point) > 1:
95
+ logger.warning(
96
+ f"This method processes only single point. The GeoDataFrame contains {len(point)} points - "
97
+ "only the first geometry will be used for isochrone calculation. "
98
+ )
99
+ point = point.iloc[[0]]
100
+
101
+ local_crs, graph_type = _validate_inputs(point, weight_value, weight_type, nx_graph)
102
+
103
+ if step is None:
104
+ if weight_type == "length_meter":
105
+ step = 100
106
+ else:
107
+ step = 1
108
+ nx_graph, points, dist_nearest, speed = _prepare_graph_and_nodes(
109
+ point, nx_graph, graph_type, weight_type, weight_value
110
+ )
111
+
112
+ dist_matrix, subgraph = _calculate_distance_matrix(
113
+ nx_graph, points["nearest_node"].values, weight_type, weight_value, dist_nearest
114
+ )
115
+
116
+ logger.info("Building isochrones geometry...")
117
+ nodes, edges = graph_to_gdf(subgraph)
118
+ nodes.loc[dist_matrix.columns, "dist"] = dist_matrix.iloc[0]
119
+ steps = np.arange(0, weight_value + step, step)
120
+ if steps[-1] > weight_value:
121
+ steps[-1] = weight_value # Ensure last step doesn't exceed weight_value
122
+
123
+ if isochrone_type == "separate":
124
+ for i in range(len(steps) - 1):
125
+ min_dist = steps[i]
126
+ max_dist = steps[i + 1]
127
+ nodes_in_step = nodes["dist"].between(min_dist, max_dist, inclusive="left")
128
+ nodes_in_step = nodes_in_step[nodes_in_step].index
129
+ if not nodes_in_step.empty:
130
+ buffer_size = (max_dist - nodes.loc[nodes_in_step, "dist"]) * 0.7
131
+ if weight_type == "time_min":
132
+ buffer_size = buffer_size * speed
133
+ nodes.loc[nodes_in_step, "buffer_size"] = buffer_size
134
+ nodes.geometry = nodes.geometry.buffer(nodes["buffer_size"])
135
+ nodes["dist"] = np.round(nodes["dist"], 0)
136
+ nodes = nodes.dissolve(by="dist", as_index=False)
137
+ polygons = gpd.GeoDataFrame(
138
+ geometry=list(polygonize(nodes.geometry.apply(polygons_to_multilinestring).union_all())),
139
+ crs=local_crs,
140
+ )
141
+ polygons_points = polygons.copy()
142
+ polygons_points.geometry = polygons.representative_point()
143
+
144
+ stepped_iso = polygons_points.sjoin(nodes, predicate="within").reset_index()
145
+ stepped_iso = stepped_iso.groupby("index").agg({"dist": "mean"})
146
+ stepped_iso["geometry"] = polygons
147
+ stepped_iso = gpd.GeoDataFrame(stepped_iso, geometry="geometry", crs=local_crs).reset_index(drop=True)
148
+ else:
149
+ if isochrone_type == "radius":
150
+ isochrone_geoms = _build_radius_isochrones(
151
+ dist_matrix, weight_value, weight_type, speed, nodes, buffer_params["buffer_factor"]
152
+ )
153
+ else: # isochrone_type == 'ways':
154
+ if graph_type in ["intermodal", "walk"]:
155
+ isochrone_edges = edges[edges["type"] == "walk"]
156
+ else:
157
+ isochrone_edges = edges.copy()
158
+ all_isochrones_edges = isochrone_edges.buffer(buffer_params["road_buffer_size"], resolution=1).union_all()
159
+ all_isochrones_edges = gpd.GeoDataFrame(geometry=[all_isochrones_edges], crs=local_crs)
160
+ isochrone_geoms = _build_ways_isochrones(
161
+ dist_matrix=dist_matrix,
162
+ weight_value=weight_value,
163
+ weight_type=weight_type,
164
+ speed=speed,
165
+ nodes=nodes,
166
+ all_isochrones_edges=all_isochrones_edges,
167
+ buffer_factor=buffer_params["buffer_factor"],
168
+ )
169
+ nodes = nodes.clip(isochrone_geoms[0], keep_geom_type=True)
170
+ nodes["dist"] = np.minimum(np.ceil(nodes["dist"] / step) * step, weight_value)
171
+ voronois = gpd.GeoDataFrame(geometry=nodes.voronoi_polygons(), crs=local_crs)
172
+ stepped_iso = (
173
+ voronois.sjoin(nodes[["dist", "geometry"]]).dissolve(by="dist", as_index=False).drop(columns="index_right")
174
+ )
175
+ stepped_iso = stepped_iso.clip(isochrone_geoms[0], keep_geom_type=True)
176
+
177
+ pt_nodes, pt_edges = _process_pt_data(nodes, edges, graph_type)
178
+ if pt_nodes is not None:
179
+ pt_nodes.to_crs(original_crs, inplace=True)
180
+ if pt_edges is not None:
181
+ pt_edges.to_crs(original_crs, inplace=True)
182
+ return stepped_iso.to_crs(original_crs), pt_nodes, pt_edges
183
+
184
+
185
+ def get_accessibility_isochrones(
186
+ isochrone_type: Literal["radius", "ways"],
187
+ points: gpd.GeoDataFrame,
188
+ weight_value: float,
189
+ weight_type: Literal["time_min", "length_meter"],
190
+ nx_graph: nx.Graph,
191
+ **kwargs,
192
+ ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame | None, gpd.GeoDataFrame | None]:
193
+ """
194
+ Calculate accessibility isochrones from input points based on the provided city graph.
195
+
196
+ Supports two types of isochrones:
197
+ - 'radius': Circular buffer-based isochrones
198
+ - 'ways': Road network-based isochrones
199
+
200
+ Parameters
201
+ ----------
202
+ isochrone_type : Literal["radius", "ways"]
203
+ Type of isochrone to calculate:
204
+ - "radius": Creates circular buffers around reachable nodes
205
+ - "ways": Creates polygons based on reachable road network
206
+ points : gpd.GeoDataFrame
207
+ GeoDataFrame containing source points for isochrone calculation.
208
+ weight_value : float
209
+ Maximum travel time (minutes) or distance (meters) threshold.
210
+ weight_type : Literal["time_min", "length_meter"]
211
+ Type of weight calculation:
212
+ - "time_min": Time-based accessibility in minutes
213
+ - "length_meter": Distance-based accessibility in meters
214
+ nx_graph : nx.Graph
215
+ NetworkX graph representing the transportation network.
216
+ Must contain CRS and speed attributes for time calculations.
217
+ **kwargs
218
+ Additional buffer parameters:
219
+ - buffer_factor: Size multiplier for buffers (default: 0.7)
220
+ - road_buffer_size: Buffer size for road edges in meters (default: 5)
221
+
222
+ Returns
223
+ -------
224
+ tuple[gpd.GeoDataFrame, gpd.GeoDataFrame | None, gpd.GeoDataFrame | None]
225
+ Tuple containing:
226
+ - isochrones: GeoDataFrame with calculated isochrone polygons
227
+ - pt_stops: Public transport stops within isochrones (if available)
228
+ - pt_routes: Public transport routes within isochrones (if available)
229
+
230
+ Examples
231
+ --------
232
+ >>> from iduedu import get_intermodal_graph # pip install iduedu to get OSM city network graph
233
+ >>> graph = get_intermodal_graph(polygon=my_territory_polygon)
234
+ >>> points = gpd.GeoDataFrame(geometry=[Point(30.33, 59.95)], crs=4326)
235
+ >>> # Radius isochrones
236
+ >>> radius_iso, stops, routes = get_accessibility_isochrones(
237
+ ... "radius", points, 15, "time_min", graph, buffer_factor=0.8
238
+ ... )
239
+ >>> # Road network isochrones
240
+ >>> ways_iso, stops, routes = get_accessibility_isochrones(
241
+ ... "ways", points, 1000, "length_meter", graph, road_buffer_size=7
242
+ ... )
243
+ """
244
+
245
+ buffer_params = {
246
+ "buffer_factor": 0.7,
247
+ "road_buffer_size": 5,
248
+ }
249
+ original_crs = points.crs
250
+ buffer_params.update(kwargs)
251
+
252
+ points = points.copy()
253
+ local_crs, graph_type = _validate_inputs(points, weight_value, weight_type, nx_graph)
254
+
255
+ nx_graph, points, dist_nearest, speed = _prepare_graph_and_nodes(
256
+ points, nx_graph, graph_type, weight_type, weight_value
257
+ )
258
+
259
+ weight_cutoff = (
260
+ weight_value + (100 if weight_type == "length_meter" else 1) if isochrone_type == "ways" else weight_value
261
+ )
262
+
263
+ dist_matrix, subgraph = _calculate_distance_matrix(
264
+ nx_graph, points["nearest_node"].values, weight_type, weight_cutoff, dist_nearest
265
+ )
266
+
267
+ logger.info("Building isochrones geometry...")
268
+ nodes, edges = graph_to_gdf(subgraph)
269
+ if isochrone_type == "radius":
270
+ isochrone_geoms = _build_radius_isochrones(
271
+ dist_matrix, weight_value, weight_type, speed, nodes, buffer_params["buffer_factor"]
272
+ )
273
+ else: # isochrone_type == 'ways':
274
+ if graph_type in ["intermodal", "walk"]:
275
+ isochrone_edges = edges[edges["type"] == "walk"]
276
+ else:
277
+ isochrone_edges = edges.copy()
278
+ all_isochrones_edges = isochrone_edges.buffer(buffer_params["road_buffer_size"], resolution=1).union_all()
279
+ all_isochrones_edges = gpd.GeoDataFrame(geometry=[all_isochrones_edges], crs=local_crs)
280
+ isochrone_geoms = _build_ways_isochrones(
281
+ dist_matrix=dist_matrix,
282
+ weight_value=weight_value,
283
+ weight_type=weight_type,
284
+ speed=speed,
285
+ nodes=nodes,
286
+ all_isochrones_edges=all_isochrones_edges,
287
+ buffer_factor=buffer_params["buffer_factor"],
288
+ )
289
+ isochrones = _create_isochrones_gdf(points, isochrone_geoms, dist_matrix, local_crs, weight_type, weight_value)
290
+ pt_nodes, pt_edges = _process_pt_data(nodes, edges, graph_type)
291
+ if pt_nodes is not None:
292
+ pt_nodes.to_crs(original_crs, inplace=True)
293
+ if pt_edges is not None:
294
+ pt_edges.to_crs(original_crs, inplace=True)
295
+ return isochrones.to_crs(original_crs), pt_nodes, pt_edges
296
+
297
+
298
+ def _build_radius_isochrones(dist_matrix, weight_value, weight_type, speed, nodes, buffer_factor):
299
+ results = []
300
+ for source in dist_matrix.index:
301
+ buffers = (weight_value - dist_matrix.loc[source]) * buffer_factor
302
+ if weight_type == "time_min":
303
+ buffers = buffers * speed
304
+ buffers = nodes.merge(buffers, left_index=True, right_index=True)
305
+ buffers.geometry = buffers.geometry.buffer(buffers[source], resolution=8)
306
+ results.append(buffers.union_all())
307
+ return results
308
+
309
+
310
+ def _build_ways_isochrones(dist_matrix, weight_value, weight_type, speed, nodes, all_isochrones_edges, buffer_factor):
311
+ results = []
312
+ for source in dist_matrix.index:
313
+ reachable_nodes = dist_matrix.loc[source]
314
+ reachable_nodes = reachable_nodes[reachable_nodes <= weight_value]
315
+ reachable_nodes = (weight_value - reachable_nodes) * buffer_factor
316
+ if weight_type == "time_min":
317
+ reachable_nodes = reachable_nodes * speed
318
+ reachable_nodes = nodes.merge(reachable_nodes, left_index=True, right_index=True)
319
+ clip_zone = reachable_nodes.buffer(reachable_nodes[source], resolution=4).union_all()
320
+
321
+ isochrone_edges = all_isochrones_edges.clip(clip_zone, keep_geom_type=True).explode(ignore_index=True)
322
+ geom_to_keep = isochrone_edges.sjoin(reachable_nodes, how="inner").index.unique()
323
+ isochrone = remove_inner_geom(isochrone_edges.loc[geom_to_keep].union_all())
324
+ results.append(isochrone)
325
+ return results
@@ -0,0 +1,3 @@
1
+ from .noise_sim import simulate_noise
2
+ from .noise_reduce import dist_to_target_db, green_noise_reduce_db
3
+ from .noise_exceptions import InvalidStepError
@@ -0,0 +1,14 @@
1
+ class InvalidStepError(ValueError):
2
+ def __init__(self, source_noise_db, target_noise_db, db_sim_step, div_, *args):
3
+ if args:
4
+ self.message = args[0]
5
+ else:
6
+ self.message = (
7
+ f"The difference between `source_noise_db`({source_noise_db}) and `target_noise_db`({target_noise_db})"
8
+ f" is not divisible by the step size ({db_sim_step}, remainder = {div_})"
9
+ )
10
+
11
+ def __str__(self):
12
+ if self.message:
13
+ return self.message
14
+ return "The difference between `source_noise_db` and `target_noise_db` is not divisible by the step size"
@@ -0,0 +1,10 @@
1
+ import pandas as pd
2
+
3
+ data = {
4
+ 30: {63: 0, 125: 0.0002, 250: 0.0009, 500: 0.003, 1000: 0.0075, 2000: 0.014, 4000: 0.025, 8000: 0.064},
5
+ 20: {63: 0, 125: 0.0003, 250: 0.0011, 500: 0.0028, 1000: 0.0052, 2000: 0.0096, 4000: 0.025, 8000: 0.083},
6
+ 10: {63: 0, 125: 0.0004, 250: 0.001, 500: 0.002, 1000: 0.0039, 2000: 0.01, 4000: 0.035, 8000: 0.125},
7
+ 0: {63: 0, 125: 0.0004, 250: 0.0008, 500: 0.0017, 1000: 0.0049, 2000: 0.017, 4000: 0.058, 8000: 0.156},
8
+ }
9
+
10
+ air_resist_ratio = pd.DataFrame(data)
@@ -0,0 +1,155 @@
1
+ import numpy as np
2
+ from scipy.optimize import fsolve
3
+
4
+ from objectnat import config
5
+
6
+ from .noise_init_data import air_resist_ratio
7
+
8
+ logger = config.logger
9
+
10
+
11
+ def get_air_resist_ratio(temp, freq, check_temp_freq=False):
12
+ if check_temp_freq:
13
+ if temp > max(air_resist_ratio.columns) or temp < min(air_resist_ratio.columns):
14
+ logger.warning(
15
+ f"The specified temperature of {temp}°C is outside the tabulated data range. "
16
+ f"The air resistance coefficient for these values may be inaccurate. "
17
+ f"Recommended temperature range: {min(air_resist_ratio.columns)}°C "
18
+ f"to {max(air_resist_ratio.columns)}°C."
19
+ )
20
+
21
+ if freq > max(air_resist_ratio.index) or freq < min(air_resist_ratio.index):
22
+ logger.warning(
23
+ f"The specified geometric mean frequency of {freq} Hz is outside the tabulated data range."
24
+ f" The air resistance coefficient for these values may be inaccurate."
25
+ f" Recommended frequency range: {min(air_resist_ratio.index)} Hz to {max(air_resist_ratio.index)} Hz."
26
+ )
27
+
28
+ def get_nearest_values(array, value):
29
+ sorted_array = sorted(array)
30
+ if value in sorted_array:
31
+ return [value]
32
+ if value > max(sorted_array):
33
+ return [sorted_array[-1]]
34
+ if value < min(sorted_array):
35
+ return [sorted_array[0]]
36
+
37
+ for i, val in enumerate(sorted_array):
38
+ if value < val:
39
+ return sorted_array[max(i - 1, 0)], sorted_array[i]
40
+ return sorted_array[-2], sorted_array[-1]
41
+
42
+ nearest_temp = get_nearest_values(air_resist_ratio.columns, temp)
43
+ nearest_freq = get_nearest_values(air_resist_ratio.index, freq)
44
+
45
+ if len(nearest_temp) == 1 and len(nearest_freq) == 1:
46
+ return air_resist_ratio.loc[nearest_freq[0], nearest_temp[0]]
47
+
48
+ if len(nearest_temp) == 2 and len(nearest_freq) == 2:
49
+ freq1, freq2 = nearest_freq
50
+ temp1, temp2 = nearest_temp
51
+
52
+ coef_temp1_freq1 = air_resist_ratio.loc[freq1, temp1]
53
+ coef_temp1_freq2 = air_resist_ratio.loc[freq2, temp1]
54
+ coef_temp2_freq1 = air_resist_ratio.loc[freq1, temp2]
55
+ coef_temp2_freq2 = air_resist_ratio.loc[freq2, temp2]
56
+
57
+ weight_temp1 = (temp2 - temp) / (temp2 - temp1)
58
+ weight_temp2 = (temp - temp1) / (temp2 - temp1)
59
+ weight_freq1 = (freq2 - freq) / (freq2 - freq1)
60
+ weight_freq2 = (freq - freq1) / (freq2 - freq1)
61
+
62
+ coef_freq1 = coef_temp1_freq1 * weight_temp1 + coef_temp2_freq1 * weight_temp2
63
+ coef_freq2 = coef_temp1_freq2 * weight_temp1 + coef_temp2_freq2 * weight_temp2
64
+
65
+ final_coef = coef_freq1 * weight_freq1 + coef_freq2 * weight_freq2
66
+
67
+ return final_coef
68
+
69
+ if len(nearest_temp) == 2 and len(nearest_freq) == 1:
70
+ temp1, temp2 = nearest_temp
71
+ freq1 = nearest_freq[0]
72
+
73
+ coef_temp1 = air_resist_ratio.loc[freq1, temp1]
74
+ coef_temp2 = air_resist_ratio.loc[freq1, temp2]
75
+
76
+ weight_temp1 = (temp2 - temp) / (temp2 - temp1)
77
+ weight_temp2 = (temp - temp1) / (temp2 - temp1)
78
+
79
+ return coef_temp1 * weight_temp1 + coef_temp2 * weight_temp2
80
+
81
+ if len(nearest_temp) == 1 and len(nearest_freq) == 2:
82
+ temp1 = nearest_temp[0]
83
+ freq1, freq2 = nearest_freq
84
+
85
+ coef_freq1 = air_resist_ratio.loc[freq1, temp1]
86
+ coef_freq2 = air_resist_ratio.loc[freq2, temp1]
87
+
88
+ weight_freq1 = (freq2 - freq) / (freq2 - freq1)
89
+ weight_freq2 = (freq - freq1) / (freq2 - freq1)
90
+
91
+ return coef_freq1 * weight_freq1 + coef_freq2 * weight_freq2
92
+
93
+
94
+ def dist_to_target_db(
95
+ init_noise_db, target_noise_db, geometric_mean_freq_hz, air_temperature, return_desc=False, check_temp_freq=False
96
+ ) -> float | str:
97
+ """
98
+ Calculates the distance required for a sound wave to decay from an initial noise level to a target noise level,
99
+ based on the geometric mean frequency of the sound and the air temperature. Optionally, can return a description
100
+ of the sound propagation behavior.
101
+
102
+ Args:
103
+ init_noise_db (float): The initial noise level of the source in decibels (dB). This is the starting sound
104
+ intensity.
105
+ target_noise_db (float): The target noise level in decibels (dB), representing the level to which the sound
106
+ decays over distance.
107
+ geometric_mean_freq_hz (float): The geometric mean frequency of the sound (in Hz). This frequency influences
108
+ the attenuation of sound over distance. Higher frequencies decay faster than lower ones.
109
+ air_temperature (float): The temperature of the air in degrees Celsius. This influences the air's resistance
110
+ to sound propagation.
111
+ return_desc (bool, optional): If set to `True`, the function will return a description of the sound decay
112
+ process instead of the calculated distance.
113
+ check_temp_freq (bool, optional): If `True`, the function will check whether the temperature and frequency
114
+ are within valid ranges.
115
+
116
+ Returns:
117
+ float or str: If `return_desc` is `False`, the function returns the distance (in meters) over which the sound
118
+ decays from `init_noise_db` to `target_noise_db`. If `return_desc` is `True`, a descriptive string is returned
119
+ explaining the calculation and the conditions.
120
+ """
121
+
122
+ def equation(r):
123
+ return l - l_ist + 20 * np.log10(r) + k * r
124
+
125
+ l_ist = init_noise_db
126
+ l = target_noise_db
127
+ k = get_air_resist_ratio(air_temperature, geometric_mean_freq_hz, check_temp_freq)
128
+ initial_guess = 1
129
+ r_solution = fsolve(equation, initial_guess)
130
+ if return_desc:
131
+ string = (
132
+ f"Noise level of {init_noise_db} dB "
133
+ f"with a geometric mean frequency of {geometric_mean_freq_hz} Hz "
134
+ f"at an air temperature of {air_temperature}°C decays to {target_noise_db} dB "
135
+ f"over a distance of {r_solution[0]} meters. Air resistance coefficient: {k}."
136
+ )
137
+ return string
138
+ return r_solution[0]
139
+
140
+
141
+ def green_noise_reduce_db(geometric_mean_freq_hz, r_tree) -> float:
142
+ """
143
+ Calculates the amount of noise reduction (in dB) provided by vegetation of a given thickness at a specified
144
+ geometric mean frequency. The function models the reduction based on the interaction of the sound with trees or
145
+ vegetation.
146
+
147
+ Args:
148
+ geometric_mean_freq_hz (float): The geometric mean frequency of the sound (in Hz).
149
+ r_tree (float): The thickness or density of the vegetation (in meters).
150
+
151
+ Returns:
152
+ float: The noise reduction (in dB) achieved by the vegetation. This value indicates how much quieter the sound
153
+ will be after passing through or interacting with the vegetation of the specified thickness.
154
+ """
155
+ return round(0.08 * r_tree * ((geometric_mean_freq_hz ** (1 / 3)) / 8), 1)