ObjectNat 0.2.6__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ObjectNat might be problematic. Click here for more details.
- objectnat/_api.py +6 -8
- objectnat/_config.py +0 -24
- objectnat/_version.py +1 -1
- objectnat/methods/coverage_zones/__init__.py +2 -0
- objectnat/methods/coverage_zones/graph_coverage.py +118 -0
- objectnat/methods/coverage_zones/radius_voronoi.py +45 -0
- objectnat/methods/isochrones/__init__.py +1 -0
- objectnat/methods/isochrones/isochrone_utils.py +130 -0
- objectnat/methods/isochrones/isochrones.py +325 -0
- objectnat/methods/noise/__init__.py +3 -0
- objectnat/methods/noise/noise_exceptions.py +14 -0
- objectnat/methods/noise/noise_init_data.py +10 -0
- objectnat/methods/noise/noise_reduce.py +155 -0
- objectnat/methods/noise/noise_sim.py +423 -0
- objectnat/methods/point_clustering/__init__.py +1 -0
- objectnat/methods/{cluster_points_in_polygons.py → point_clustering/cluster_points_in_polygons.py} +22 -28
- objectnat/methods/provision/__init__.py +1 -0
- objectnat/methods/provision/provision.py +10 -7
- objectnat/methods/provision/provision_exceptions.py +4 -4
- objectnat/methods/provision/provision_model.py +21 -20
- objectnat/methods/utils/__init__.py +0 -0
- objectnat/methods/utils/geom_utils.py +130 -0
- objectnat/methods/utils/graph_utils.py +127 -0
- objectnat/methods/utils/math_utils.py +32 -0
- objectnat/methods/visibility/__init__.py +6 -0
- objectnat/methods/{visibility_analysis.py → visibility/visibility_analysis.py} +222 -243
- objectnat-1.0.0.dist-info/METADATA +143 -0
- objectnat-1.0.0.dist-info/RECORD +32 -0
- objectnat/methods/balanced_buildings.py +0 -69
- objectnat/methods/coverage_zones.py +0 -90
- objectnat/methods/isochrones.py +0 -143
- objectnat/methods/living_buildings_osm.py +0 -168
- objectnat-0.2.6.dist-info/METADATA +0 -113
- objectnat-0.2.6.dist-info/RECORD +0 -19
- {objectnat-0.2.6.dist-info → objectnat-1.0.0.dist-info}/LICENSE.txt +0 -0
- {objectnat-0.2.6.dist-info → objectnat-1.0.0.dist-info}/WHEEL +0 -0
objectnat/_api.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
|
1
1
|
# pylint: disable=unused-import,wildcard-import,unused-wildcard-import
|
|
2
|
-
from iduedu import *
|
|
3
2
|
|
|
4
|
-
from .methods.
|
|
5
|
-
from .methods.
|
|
6
|
-
from .methods.
|
|
7
|
-
from .methods.
|
|
8
|
-
from .methods.
|
|
9
|
-
from .methods.
|
|
10
|
-
from .methods.visibility_analysis import (
|
|
3
|
+
from .methods.coverage_zones import get_graph_coverage, get_radius_coverage
|
|
4
|
+
from .methods.isochrones import get_accessibility_isochrone_stepped, get_accessibility_isochrones
|
|
5
|
+
from .methods.noise import simulate_noise
|
|
6
|
+
from .methods.point_clustering import get_clusters_polygon
|
|
7
|
+
from .methods.provision import clip_provision, get_service_provision, recalculate_links
|
|
8
|
+
from .methods.visibility import (
|
|
11
9
|
calculate_visibility_catchment_area,
|
|
12
10
|
get_visibilities_from_points,
|
|
13
11
|
get_visibility,
|
objectnat/_config.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
|
1
1
|
import sys
|
|
2
2
|
from typing import Literal
|
|
3
3
|
|
|
4
|
-
from iduedu import config as iduedu_config
|
|
5
4
|
from loguru import logger
|
|
6
5
|
|
|
7
6
|
|
|
@@ -12,10 +11,6 @@ class Config:
|
|
|
12
11
|
|
|
13
12
|
Attributes
|
|
14
13
|
----------
|
|
15
|
-
overpass_url : str
|
|
16
|
-
URL for accessing the Overpass API. Defaults to "http://lz4.overpass-api.de/api/interpreter".
|
|
17
|
-
timeout : int or None
|
|
18
|
-
Timeout in seconds for API requests. If None, no timeout is applied.
|
|
19
14
|
enable_tqdm_bar : bool
|
|
20
15
|
Enables or disables progress bars (via tqdm). Defaults to True.
|
|
21
16
|
logger : Logger
|
|
@@ -25,43 +20,24 @@ class Config:
|
|
|
25
20
|
-------
|
|
26
21
|
change_logger_lvl(lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"])
|
|
27
22
|
Changes the logging level to the specified value.
|
|
28
|
-
set_overpass_url(url: str)
|
|
29
|
-
Sets a new Overpass API URL.
|
|
30
|
-
set_timeout(timeout: int)
|
|
31
|
-
Sets the timeout for API requests.
|
|
32
23
|
set_enable_tqdm(enable: bool)
|
|
33
24
|
Enables or disables progress bars in the application.
|
|
34
25
|
"""
|
|
35
26
|
|
|
36
27
|
def __init__(
|
|
37
28
|
self,
|
|
38
|
-
overpass_url="http://lz4.overpass-api.de/api/interpreter",
|
|
39
|
-
timeout=None,
|
|
40
29
|
enable_tqdm_bar=True,
|
|
41
30
|
):
|
|
42
|
-
self.overpass_url = overpass_url
|
|
43
|
-
self.timeout = timeout
|
|
44
31
|
self.enable_tqdm_bar = enable_tqdm_bar
|
|
45
32
|
self.logger = logger
|
|
46
|
-
self.iduedu_config = iduedu_config
|
|
47
33
|
self.pandarallel_use_file_system = False
|
|
48
34
|
|
|
49
35
|
def change_logger_lvl(self, lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"]):
|
|
50
36
|
self.logger.remove()
|
|
51
37
|
self.logger.add(sys.stderr, level=lvl)
|
|
52
|
-
self.iduedu_config.change_logger_lvl(lvl)
|
|
53
|
-
|
|
54
|
-
def set_overpass_url(self, url: str):
|
|
55
|
-
self.overpass_url = url
|
|
56
|
-
self.iduedu_config.set_overpass_url(url)
|
|
57
|
-
|
|
58
|
-
def set_timeout(self, timeout: int):
|
|
59
|
-
self.timeout = timeout
|
|
60
|
-
self.iduedu_config.set_timeout(timeout)
|
|
61
38
|
|
|
62
39
|
def set_enable_tqdm(self, enable: bool):
|
|
63
40
|
self.enable_tqdm_bar = enable
|
|
64
|
-
self.iduedu_config.set_enable_tqdm(enable)
|
|
65
41
|
|
|
66
42
|
def set_pandarallel_use_file_system(self, enable: bool):
|
|
67
43
|
self.pandarallel_use_file_system = enable
|
objectnat/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
VERSION = "0.
|
|
1
|
+
VERSION = "1.0.0"
|
|
@@ -0,0 +1,118 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
|
|
3
|
+
import geopandas as gpd
|
|
4
|
+
import networkx as nx
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from pyproj.exceptions import CRSError
|
|
7
|
+
from shapely import Point, concave_hull
|
|
8
|
+
|
|
9
|
+
from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, remove_weakly_connected_nodes
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def get_graph_coverage(
|
|
13
|
+
gdf_from: gpd.GeoDataFrame,
|
|
14
|
+
nx_graph: nx.Graph,
|
|
15
|
+
weight_type: Literal["time_min", "length_meter"],
|
|
16
|
+
weight_value_cutoff: float = None,
|
|
17
|
+
zone: gpd.GeoDataFrame = None,
|
|
18
|
+
):
|
|
19
|
+
"""
|
|
20
|
+
Calculate coverage zones from source points through a graph network using Dijkstra's algorithm
|
|
21
|
+
and Voronoi diagrams.
|
|
22
|
+
|
|
23
|
+
The function works by:
|
|
24
|
+
1. Finding nearest graph nodes for each input point
|
|
25
|
+
2. Calculating all reachable nodes within cutoff distance using Dijkstra
|
|
26
|
+
3. Creating Voronoi polygons around graph nodes
|
|
27
|
+
4. Combining reachability information with Voronoi cells
|
|
28
|
+
5. Clipping results to specified zone boundary
|
|
29
|
+
|
|
30
|
+
Parameters
|
|
31
|
+
----------
|
|
32
|
+
gdf_from : gpd.GeoDataFrame
|
|
33
|
+
Source points from which coverage is calculated.
|
|
34
|
+
nx_graph : nx.Graph
|
|
35
|
+
NetworkX graph representing the transportation network.
|
|
36
|
+
weight_type : Literal["time_min", "length_meter"]
|
|
37
|
+
Edge attribute to use as weight for path calculations.
|
|
38
|
+
weight_value_cutoff : float, optional
|
|
39
|
+
Maximum weight value for path calculations (e.g., max travel time/distance).
|
|
40
|
+
zone : gpd.GeoDataFrame, optional
|
|
41
|
+
Boundary polygon to clip the resulting coverage zones. If None, concave hull of reachable nodes will be used.
|
|
42
|
+
|
|
43
|
+
Returns
|
|
44
|
+
-------
|
|
45
|
+
gpd.GeoDataFrame
|
|
46
|
+
GeoDataFrame with coverage zones polygons, each associated with its source point, returns in the same CRS as
|
|
47
|
+
original gdf_from.
|
|
48
|
+
|
|
49
|
+
Notes
|
|
50
|
+
-----
|
|
51
|
+
- The graph must have a valid CRS attribute in its graph properties
|
|
52
|
+
- MultiGraph/MultiDiGraph inputs will be converted to simple Graph/DiGraph
|
|
53
|
+
|
|
54
|
+
Examples
|
|
55
|
+
--------
|
|
56
|
+
>>> from iduedu import get_intermodal_graph # pip install iduedu to get OSM city network graph
|
|
57
|
+
>>> points = gpd.read_file('points.geojson')
|
|
58
|
+
>>> graph = get_intermodal_graph(osm_id=1114252)
|
|
59
|
+
>>> coverage = get_graph_coverage(points, graph, "time_min", 15)
|
|
60
|
+
"""
|
|
61
|
+
original_crs = gdf_from.crs
|
|
62
|
+
try:
|
|
63
|
+
local_crs = nx_graph.graph["crs"]
|
|
64
|
+
except KeyError as exc:
|
|
65
|
+
raise ValueError("Graph does not have crs attribute") from exc
|
|
66
|
+
|
|
67
|
+
try:
|
|
68
|
+
points = gdf_from.copy()
|
|
69
|
+
points.to_crs(local_crs, inplace=True)
|
|
70
|
+
except CRSError as e:
|
|
71
|
+
raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
|
|
72
|
+
|
|
73
|
+
if nx_graph.is_multigraph():
|
|
74
|
+
if nx_graph.is_directed():
|
|
75
|
+
nx_graph = nx.DiGraph(nx_graph)
|
|
76
|
+
else:
|
|
77
|
+
nx_graph = nx.Graph(nx_graph)
|
|
78
|
+
nx_graph = remove_weakly_connected_nodes(nx_graph)
|
|
79
|
+
sparse_matrix = nx.to_scipy_sparse_array(nx_graph, weight=weight_type)
|
|
80
|
+
transposed_matrix = sparse_matrix.transpose()
|
|
81
|
+
reversed_graph = nx.from_scipy_sparse_array(
|
|
82
|
+
transposed_matrix, edge_attribute=weight_type, create_using=type(nx_graph)
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
points.geometry = points.representative_point()
|
|
86
|
+
|
|
87
|
+
_, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
|
|
88
|
+
|
|
89
|
+
points["nearest_node"] = nearest_nodes
|
|
90
|
+
|
|
91
|
+
_, nearest_paths = nx.multi_source_dijkstra(
|
|
92
|
+
reversed_graph, nearest_nodes, weight=weight_type, cutoff=weight_value_cutoff
|
|
93
|
+
)
|
|
94
|
+
reachable_nodes = list(nearest_paths.keys())
|
|
95
|
+
graph_points = pd.DataFrame(
|
|
96
|
+
data=[{"node": node, "geometry": Point(data["x"], data["y"])} for node, data in nx_graph.nodes(data=True)]
|
|
97
|
+
).set_index("node")
|
|
98
|
+
nearest_nodes = pd.DataFrame(
|
|
99
|
+
data=[path[0] for path in nearest_paths.values()], index=reachable_nodes, columns=["node_to"]
|
|
100
|
+
)
|
|
101
|
+
graph_nodes_gdf = gpd.GeoDataFrame(
|
|
102
|
+
graph_points.merge(nearest_nodes, left_index=True, right_index=True, how="left"),
|
|
103
|
+
geometry="geometry",
|
|
104
|
+
crs=local_crs,
|
|
105
|
+
)
|
|
106
|
+
graph_nodes_gdf["node_to"] = graph_nodes_gdf["node_to"].fillna("non_reachable")
|
|
107
|
+
voronois = gpd.GeoDataFrame(geometry=graph_nodes_gdf.voronoi_polygons(), crs=local_crs)
|
|
108
|
+
graph_nodes_gdf = graph_nodes_gdf[graph_nodes_gdf["node_to"] != "non_reachable"]
|
|
109
|
+
zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="node_to").reset_index().drop(columns=["node"])
|
|
110
|
+
zone_coverages = zone_coverages.merge(
|
|
111
|
+
points.drop(columns="geometry"), left_on="node_to", right_on="nearest_node", how="inner"
|
|
112
|
+
).reset_index(drop=True)
|
|
113
|
+
zone_coverages.drop(columns=["node_to", "nearest_node"], inplace=True)
|
|
114
|
+
if zone is None:
|
|
115
|
+
zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
|
|
116
|
+
else:
|
|
117
|
+
zone = zone.to_crs(local_crs)
|
|
118
|
+
return zone_coverages.clip(zone).to_crs(original_crs)
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
import geopandas as gpd
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def get_radius_coverage(gdf_from: gpd.GeoDataFrame, radius: float, resolution: int = 32):
|
|
6
|
+
"""
|
|
7
|
+
Calculate radius-based coverage zones using Voronoi polygons.
|
|
8
|
+
|
|
9
|
+
Parameters
|
|
10
|
+
----------
|
|
11
|
+
gdf_from : gpd.GeoDataFrame
|
|
12
|
+
Source points for which coverage zones are calculated.
|
|
13
|
+
radius : float
|
|
14
|
+
Maximum coverage radius in meters.
|
|
15
|
+
resolution : int, optional
|
|
16
|
+
Number of segments used to approximate quarter-circle in buffer (default=32).
|
|
17
|
+
|
|
18
|
+
Returns
|
|
19
|
+
-------
|
|
20
|
+
gpd.GeoDataFrame
|
|
21
|
+
GeoDataFrame with smoothed coverage zone polygons in the same CRS as original gdf_from.
|
|
22
|
+
|
|
23
|
+
Notes
|
|
24
|
+
-----
|
|
25
|
+
- Automatically converts to local UTM CRS for accurate distance measurements
|
|
26
|
+
- Final zones are slightly contracted then expanded for smoothing effect
|
|
27
|
+
|
|
28
|
+
Examples
|
|
29
|
+
--------
|
|
30
|
+
>>> facilities = gpd.read_file('healthcare.shp')
|
|
31
|
+
>>> coverage = get_radius_coverage(facilities, radius=500)
|
|
32
|
+
"""
|
|
33
|
+
original_crs = gdf_from.crs
|
|
34
|
+
local_crs = gdf_from.estimate_utm_crs()
|
|
35
|
+
gdf_from = gdf_from.to_crs(local_crs)
|
|
36
|
+
bounds = gdf_from.buffer(radius).union_all()
|
|
37
|
+
coverage_polys = gpd.GeoDataFrame(geometry=gdf_from.voronoi_polygons().clip(bounds, keep_geom_type=True))
|
|
38
|
+
coverage_polys = coverage_polys.sjoin(gdf_from)
|
|
39
|
+
coverage_polys["area"] = coverage_polys.area
|
|
40
|
+
coverage_polys["buffer"] = np.pow(coverage_polys["area"], 1 / 3)
|
|
41
|
+
coverage_polys.geometry = coverage_polys.buffer(-coverage_polys["buffer"], resolution=1, join_style="mitre").buffer(
|
|
42
|
+
coverage_polys["buffer"] * 0.9, resolution=resolution
|
|
43
|
+
)
|
|
44
|
+
coverage_polys.drop(columns=["buffer", "area"], inplace=True)
|
|
45
|
+
return coverage_polys.to_crs(original_crs)
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .isochrones import get_accessibility_isochrones, get_accessibility_isochrone_stepped
|
|
@@ -0,0 +1,130 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
|
|
3
|
+
import geopandas as gpd
|
|
4
|
+
import networkx as nx
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
from pyproj.exceptions import CRSError
|
|
8
|
+
|
|
9
|
+
from objectnat import config
|
|
10
|
+
from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, remove_weakly_connected_nodes
|
|
11
|
+
|
|
12
|
+
logger = config.logger
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def _validate_inputs(
|
|
16
|
+
points: gpd.GeoDataFrame, weight_value: float, weight_type: Literal["time_min", "length_meter"], nx_graph: nx.Graph
|
|
17
|
+
) -> tuple[str, str]:
|
|
18
|
+
"""Validate common inputs for accessibility functions."""
|
|
19
|
+
if weight_value <= 0:
|
|
20
|
+
raise ValueError("Weight value must be greater than 0")
|
|
21
|
+
if weight_type not in ["time_min", "length_meter"]:
|
|
22
|
+
raise UserWarning("Weight type should be either 'time_min' or 'length_meter'")
|
|
23
|
+
|
|
24
|
+
try:
|
|
25
|
+
local_crs = nx_graph.graph["crs"]
|
|
26
|
+
except KeyError as exc:
|
|
27
|
+
raise ValueError("Graph does not have crs attribute") from exc
|
|
28
|
+
try:
|
|
29
|
+
graph_type = nx_graph.graph["type"]
|
|
30
|
+
except KeyError as exc:
|
|
31
|
+
raise ValueError("Graph does not have type attribute") from exc
|
|
32
|
+
|
|
33
|
+
try:
|
|
34
|
+
points.to_crs(local_crs, inplace=True)
|
|
35
|
+
except CRSError as e:
|
|
36
|
+
raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
|
|
37
|
+
|
|
38
|
+
return local_crs, graph_type
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _prepare_graph_and_nodes(
|
|
42
|
+
points: gpd.GeoDataFrame, nx_graph: nx.Graph, graph_type: str, weight_type: str, weight_value: float
|
|
43
|
+
) -> tuple[nx.Graph, gpd.GeoDataFrame, pd.DataFrame, float]:
|
|
44
|
+
"""Prepare graph and calculate nearest nodes with distances."""
|
|
45
|
+
nx_graph = remove_weakly_connected_nodes(nx_graph)
|
|
46
|
+
distances, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
|
|
47
|
+
points["nearest_node"] = nearest_nodes
|
|
48
|
+
|
|
49
|
+
dist_nearest = pd.DataFrame(data=distances, index=nearest_nodes, columns=["dist"]).drop_duplicates()
|
|
50
|
+
|
|
51
|
+
# Calculate speed adjustment if needed
|
|
52
|
+
speed = 0
|
|
53
|
+
if graph_type in ["walk", "intermodal"] and weight_type == "time_min":
|
|
54
|
+
try:
|
|
55
|
+
speed = nx_graph.graph["walk_speed"]
|
|
56
|
+
except KeyError:
|
|
57
|
+
logger.warning("There is no walk_speed in graph, set to the default speed - 83.33 m/min")
|
|
58
|
+
speed = 83.33
|
|
59
|
+
dist_nearest = dist_nearest / speed
|
|
60
|
+
elif weight_type == "time_min":
|
|
61
|
+
speed = 20 * 1000 / 60
|
|
62
|
+
dist_nearest = dist_nearest / speed
|
|
63
|
+
|
|
64
|
+
if (dist_nearest > weight_value).all().all():
|
|
65
|
+
raise RuntimeError(
|
|
66
|
+
"The point(s) lie further from the graph than weight_value, it's impossible to "
|
|
67
|
+
"construct isochrones. Check the coordinates of the point(s)/their projection"
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
return nx_graph, points, dist_nearest, speed
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def _process_pt_data(
|
|
74
|
+
nodes: gpd.GeoDataFrame, edges: gpd.GeoDataFrame, graph_type: str
|
|
75
|
+
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame] | tuple[None, None]:
|
|
76
|
+
"""Process public transport data if available."""
|
|
77
|
+
if "desc" in nodes.columns and "stop" in nodes["desc"].unique():
|
|
78
|
+
pt_nodes = nodes[nodes["desc"] == "stop"]
|
|
79
|
+
if graph_type == "intermodal":
|
|
80
|
+
edges = edges[~edges["type"].isin(["walk", "boarding"])]
|
|
81
|
+
pt_nodes = pt_nodes[["desc", "route", "geometry"]]
|
|
82
|
+
edges = edges[["type", "route", "geometry"]]
|
|
83
|
+
return pt_nodes, edges
|
|
84
|
+
return None, None
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def _calculate_distance_matrix(
|
|
88
|
+
nx_graph: nx.Graph,
|
|
89
|
+
nearest_nodes: np.ndarray,
|
|
90
|
+
weight_type: str,
|
|
91
|
+
weight_value: float,
|
|
92
|
+
dist_nearest: pd.DataFrame,
|
|
93
|
+
) -> tuple[pd.DataFrame, nx.Graph]:
|
|
94
|
+
"""Calculate distance matrix from nearest nodes."""
|
|
95
|
+
|
|
96
|
+
data = {}
|
|
97
|
+
for source in nearest_nodes:
|
|
98
|
+
dist = nx.single_source_dijkstra_path_length(nx_graph, source, weight=weight_type, cutoff=weight_value)
|
|
99
|
+
data.update({source: dist})
|
|
100
|
+
|
|
101
|
+
dist_matrix = pd.DataFrame.from_dict(data, orient="index")
|
|
102
|
+
dist_matrix = dist_matrix.add(dist_nearest.dist, axis=0)
|
|
103
|
+
dist_matrix = dist_matrix.mask(dist_matrix > weight_value, np.nan)
|
|
104
|
+
dist_matrix.dropna(how="all", inplace=True)
|
|
105
|
+
dist_matrix.dropna(how="all", axis=1, inplace=True)
|
|
106
|
+
|
|
107
|
+
subgraph = nx_graph.subgraph(dist_matrix.columns.to_list())
|
|
108
|
+
|
|
109
|
+
return dist_matrix, subgraph
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def _create_isochrones_gdf(
|
|
113
|
+
points: gpd.GeoDataFrame,
|
|
114
|
+
results: list,
|
|
115
|
+
dist_matrix: pd.DataFrame,
|
|
116
|
+
local_crs: str,
|
|
117
|
+
weight_type: str,
|
|
118
|
+
weight_value: float,
|
|
119
|
+
) -> gpd.GeoDataFrame:
|
|
120
|
+
"""Create final isochrones GeoDataFrame."""
|
|
121
|
+
isochrones = gpd.GeoDataFrame(geometry=results, index=dist_matrix.index, crs=local_crs)
|
|
122
|
+
isochrones = (
|
|
123
|
+
points.drop(columns="geometry")
|
|
124
|
+
.merge(isochrones, left_on="nearest_node", right_index=True, how="left")
|
|
125
|
+
.drop(columns="nearest_node")
|
|
126
|
+
)
|
|
127
|
+
isochrones = gpd.GeoDataFrame(isochrones, geometry="geometry", crs=local_crs)
|
|
128
|
+
isochrones["weight_type"] = weight_type
|
|
129
|
+
isochrones["weight_value"] = weight_value
|
|
130
|
+
return isochrones
|