Myosotis-Researches 0.1.8__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. myosotis_researches/CcGAN/train/__init__.py +4 -0
  2. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_ccgan.py +4 -4
  3. myosotis_researches/CcGAN/{train_128 → train}/train_cgan.py +1 -3
  4. myosotis_researches/CcGAN/{train_128 → train}/train_cgan_concat.py +1 -3
  5. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/METADATA +1 -1
  6. myosotis_researches-0.1.9.dist-info/RECORD +24 -0
  7. myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py +0 -301
  8. myosotis_researches/CcGAN/models_128/ResNet_class_eval.py +0 -141
  9. myosotis_researches/CcGAN/models_128/ResNet_embed.py +0 -188
  10. myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py +0 -175
  11. myosotis_researches/CcGAN/models_128/__init__.py +0 -7
  12. myosotis_researches/CcGAN/models_128/autoencoder.py +0 -119
  13. myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py +0 -276
  14. myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py +0 -245
  15. myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py +0 -303
  16. myosotis_researches/CcGAN/models_256/ResNet_class_eval.py +0 -142
  17. myosotis_researches/CcGAN/models_256/ResNet_embed.py +0 -188
  18. myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py +0 -178
  19. myosotis_researches/CcGAN/models_256/__init__.py +0 -7
  20. myosotis_researches/CcGAN/models_256/autoencoder.py +0 -133
  21. myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py +0 -280
  22. myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py +0 -249
  23. myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py +0 -76
  24. myosotis_researches/CcGAN/train_128/__init__.py +0 -0
  25. myosotis_researches/CcGAN/train_128/eval_metrics.py +0 -205
  26. myosotis_researches/CcGAN/train_128/opts.py +0 -87
  27. myosotis_researches/CcGAN/train_128/pretrain_AE.py +0 -268
  28. myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py +0 -251
  29. myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py +0 -255
  30. myosotis_researches/CcGAN/train_128/train_ccgan.py +0 -303
  31. myosotis_researches/CcGAN/train_128/utils.py +0 -120
  32. myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py +0 -76
  33. myosotis_researches/CcGAN/train_128_output_10/__init__.py +0 -0
  34. myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py +0 -205
  35. myosotis_researches/CcGAN/train_128_output_10/opts.py +0 -87
  36. myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py +0 -268
  37. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py +0 -251
  38. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py +0 -255
  39. myosotis_researches/CcGAN/train_128_output_10/train_cgan.py +0 -254
  40. myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py +0 -242
  41. myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py +0 -181
  42. myosotis_researches/CcGAN/train_128_output_10/utils.py +0 -120
  43. myosotis_researches-0.1.8.dist-info/RECORD +0 -59
  44. /myosotis_researches/CcGAN/{train_128 → train}/train_net_for_label_embed.py +0 -0
  45. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/WHEEL +0 -0
  46. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/licenses/LICENSE +0 -0
  47. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,303 +0,0 @@
1
- '''
2
-
3
- Adapted from https://github.com/voletiv/self-attention-GAN-pytorch/blob/master/sagan_models.py
4
-
5
-
6
- '''
7
-
8
-
9
- import numpy as np
10
- import torch
11
- import torch.nn as nn
12
- import torch.nn.functional as F
13
-
14
- from torch.nn.utils import spectral_norm
15
- from torch.nn.init import xavier_uniform_
16
-
17
-
18
- def init_weights(m):
19
- if type(m) == nn.Linear or type(m) == nn.Conv2d:
20
- xavier_uniform_(m.weight)
21
- if m.bias is not None:
22
- m.bias.data.fill_(0.)
23
-
24
-
25
- def snconv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
26
- return spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
27
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias))
28
-
29
- def snlinear(in_features, out_features, bias=True):
30
- return spectral_norm(nn.Linear(in_features=in_features, out_features=out_features, bias=bias))
31
-
32
-
33
-
34
- class Self_Attn(nn.Module):
35
- """ Self attention Layer"""
36
-
37
- def __init__(self, in_channels):
38
- super(Self_Attn, self).__init__()
39
- self.in_channels = in_channels
40
- self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
41
- self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
42
- self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2, kernel_size=1, stride=1, padding=0)
43
- self.snconv1x1_attn = snconv2d(in_channels=in_channels//2, out_channels=in_channels, kernel_size=1, stride=1, padding=0)
44
- self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
45
- self.softmax = nn.Softmax(dim=-1)
46
- self.sigma = nn.Parameter(torch.zeros(1))
47
-
48
- def forward(self, x):
49
- """
50
- inputs :
51
- x : input feature maps(B X C X W X H)
52
- returns :
53
- out : self attention value + input feature
54
- attention: B X N X N (N is Width*Height)
55
- """
56
- _, ch, h, w = x.size()
57
- # Theta path
58
- theta = self.snconv1x1_theta(x)
59
- theta = theta.view(-1, ch//8, h*w)
60
- # Phi path
61
- phi = self.snconv1x1_phi(x)
62
- phi = self.maxpool(phi)
63
- phi = phi.view(-1, ch//8, h*w//4)
64
- # Attn map
65
- attn = torch.bmm(theta.permute(0, 2, 1), phi)
66
- attn = self.softmax(attn)
67
- # g path
68
- g = self.snconv1x1_g(x)
69
- g = self.maxpool(g)
70
- g = g.view(-1, ch//2, h*w//4)
71
- # Attn_g
72
- attn_g = torch.bmm(g, attn.permute(0, 2, 1))
73
- attn_g = attn_g.view(-1, ch//2, h, w)
74
- attn_g = self.snconv1x1_attn(attn_g)
75
- # Out
76
- out = x + self.sigma*attn_g
77
- return out
78
-
79
-
80
-
81
-
82
- '''
83
-
84
- Generator
85
-
86
- '''
87
-
88
-
89
- class ConditionalBatchNorm2d(nn.Module):
90
- def __init__(self, num_features, dim_embed):
91
- super().__init__()
92
- self.num_features = num_features
93
- self.bn = nn.BatchNorm2d(num_features, momentum=0.001, affine=False)
94
- self.embed_gamma = nn.Linear(dim_embed, num_features, bias=False)
95
- self.embed_beta = nn.Linear(dim_embed, num_features, bias=False)
96
-
97
- def forward(self, x, y):
98
- out = self.bn(x)
99
- gamma = self.embed_gamma(y).view(-1, self.num_features, 1, 1)
100
- beta = self.embed_beta(y).view(-1, self.num_features, 1, 1)
101
- out = out + gamma*out + beta
102
- return out
103
-
104
-
105
- class GenBlock(nn.Module):
106
- def __init__(self, in_channels, out_channels, dim_embed):
107
- super(GenBlock, self).__init__()
108
- self.cond_bn1 = ConditionalBatchNorm2d(in_channels, dim_embed)
109
- self.relu = nn.ReLU(inplace=True)
110
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
111
- self.cond_bn2 = ConditionalBatchNorm2d(out_channels, dim_embed)
112
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
113
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
114
-
115
- def forward(self, x, labels):
116
- x0 = x
117
-
118
- x = self.cond_bn1(x, labels)
119
- x = self.relu(x)
120
- x = F.interpolate(x, scale_factor=2, mode='nearest') # upsample
121
- x = self.snconv2d1(x)
122
- x = self.cond_bn2(x, labels)
123
- x = self.relu(x)
124
- x = self.snconv2d2(x)
125
-
126
- x0 = F.interpolate(x0, scale_factor=2, mode='nearest') # upsample
127
- x0 = self.snconv2d0(x0)
128
-
129
- out = x + x0
130
- return out
131
-
132
-
133
- class CcGAN_SAGAN_Generator(nn.Module):
134
- """Generator."""
135
-
136
- def __init__(self, dim_z, dim_embed=128, nc=3, gene_ch=64):
137
- super(CcGAN_SAGAN_Generator, self).__init__()
138
-
139
- self.dim_z = dim_z
140
- self.gene_ch = gene_ch
141
-
142
- self.snlinear0 = snlinear(in_features=dim_z, out_features=gene_ch*16*4*4)
143
- self.block1 = GenBlock(gene_ch*16, gene_ch*16, dim_embed)
144
- self.block2 = GenBlock(gene_ch*16, gene_ch*8, dim_embed)
145
- self.block3 = GenBlock(gene_ch*8, gene_ch*4, dim_embed)
146
- self.block4 = GenBlock(gene_ch*4, gene_ch*2, dim_embed)
147
- self.self_attn = Self_Attn(gene_ch*2)
148
- self.block5 = GenBlock(gene_ch*2, gene_ch*2, dim_embed)
149
- self.block6 = GenBlock(gene_ch*2, gene_ch, dim_embed)
150
- self.bn = nn.BatchNorm2d(gene_ch, eps=1e-5, momentum=0.0001, affine=True)
151
- self.relu = nn.ReLU(inplace=True)
152
- self.snconv2d1 = snconv2d(in_channels=gene_ch, out_channels=nc, kernel_size=3, stride=1, padding=1)
153
- self.tanh = nn.Tanh()
154
-
155
- # Weight init
156
- self.apply(init_weights)
157
-
158
- def forward(self, z, labels):
159
- # n x dim_z
160
- out = self.snlinear0(z) # 4*4
161
- out = out.view(-1, self.gene_ch*16, 4, 4) # 4 x 4
162
- out = self.block1(out, labels) # 8 x 8
163
- out = self.block2(out, labels) # 16 x 16
164
- out = self.block3(out, labels) # 32 x 32
165
- out = self.block4(out, labels) # 64 x 64
166
- out = self.self_attn(out) # 64 x 64
167
- out = self.block5(out, labels) # 128 x 128
168
- out = self.block6(out, labels) # 256 x 256
169
- out = self.bn(out)
170
- out = self.relu(out)
171
- out = self.snconv2d1(out)
172
- out = self.tanh(out)
173
- return out
174
-
175
-
176
-
177
- '''
178
-
179
- Discriminator
180
-
181
- '''
182
-
183
- class DiscOptBlock(nn.Module):
184
- def __init__(self, in_channels, out_channels):
185
- super(DiscOptBlock, self).__init__()
186
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
187
- self.relu = nn.ReLU(inplace=True)
188
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
189
- self.downsample = nn.AvgPool2d(2)
190
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
191
-
192
- def forward(self, x):
193
- x0 = x
194
-
195
- x = self.snconv2d1(x)
196
- x = self.relu(x)
197
- x = self.snconv2d2(x)
198
- x = self.downsample(x)
199
-
200
- x0 = self.downsample(x0)
201
- x0 = self.snconv2d0(x0)
202
-
203
- out = x + x0
204
- return out
205
-
206
-
207
- class DiscBlock(nn.Module):
208
- def __init__(self, in_channels, out_channels):
209
- super(DiscBlock, self).__init__()
210
- self.relu = nn.ReLU(inplace=True)
211
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
212
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
213
- self.downsample = nn.AvgPool2d(2)
214
- self.ch_mismatch = False
215
- if in_channels != out_channels:
216
- self.ch_mismatch = True
217
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
218
-
219
- def forward(self, x, downsample=True):
220
- x0 = x
221
-
222
- x = self.relu(x)
223
- x = self.snconv2d1(x)
224
- x = self.relu(x)
225
- x = self.snconv2d2(x)
226
- if downsample:
227
- x = self.downsample(x)
228
-
229
- if downsample or self.ch_mismatch:
230
- x0 = self.snconv2d0(x0)
231
- if downsample:
232
- x0 = self.downsample(x0)
233
-
234
- out = x + x0
235
- return out
236
-
237
-
238
- class CcGAN_SAGAN_Discriminator(nn.Module):
239
- """Discriminator."""
240
-
241
- def __init__(self, dim_embed=128, nc=3, disc_ch=64):
242
- super(CcGAN_SAGAN_Discriminator, self).__init__()
243
- self.disc_ch = disc_ch
244
- self.opt_block1 = DiscOptBlock(nc, disc_ch)
245
- self.block1 = DiscBlock(disc_ch, disc_ch*2)
246
- self.self_attn = Self_Attn(disc_ch*2)
247
- self.block2 = DiscBlock(disc_ch*2, disc_ch*4)
248
- self.block3 = DiscBlock(disc_ch*4, disc_ch*6)
249
- self.block4 = DiscBlock(disc_ch*6, disc_ch*12)
250
- self.block5 = DiscBlock(disc_ch*12, disc_ch*12)
251
- self.block6 = DiscBlock(disc_ch*12, disc_ch*16)
252
- self.relu = nn.ReLU(inplace=True)
253
- self.snlinear1 = snlinear(in_features=disc_ch*16*4*4, out_features=1)
254
- self.sn_embedding1 = snlinear(dim_embed, disc_ch*16*4*4, bias=False)
255
-
256
- # Weight init
257
- self.apply(init_weights)
258
- xavier_uniform_(self.sn_embedding1.weight)
259
-
260
- def forward(self, x, labels):
261
- # 256x256
262
- out = self.opt_block1(x) # 128 x 128
263
- out = self.block1(out) # 64 x 64
264
- out = self.self_attn(out) # 64 x 64
265
- out = self.block2(out) # 32 x 32
266
- out = self.block3(out) # 16 x 16
267
- out = self.block4(out) # 8 x 8
268
- out = self.block5(out) # 4 x 4
269
- out = self.block6(out, downsample=False) # 4 x 4
270
- out = self.relu(out) # n x disc_ch*16 x 4 x 4
271
- out = out.view(-1, self.disc_ch*16*4*4)
272
- output1 = torch.squeeze(self.snlinear1(out)) # n
273
- # Projection
274
- h_labels = self.sn_embedding1(labels) # n x disc_ch*16 x 4 x 4
275
- proj = torch.mul(out, h_labels) # n x disc_ch*16 x 4 x 4
276
- output2 = torch.sum(proj, dim=[1]) # n
277
- # Out
278
- output = output1 + output2 # n
279
- return output
280
-
281
-
282
- if __name__ == "__main__":
283
- def get_parameter_number(net):
284
- total_num = sum(p.numel() for p in net.parameters())
285
- trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
286
- return {'Total': total_num, 'Trainable': trainable_num}
287
-
288
- netG = CcGAN_SAGAN_Generator(dim_z=256, dim_embed=128, gene_ch=128).cuda()
289
- netD = CcGAN_SAGAN_Discriminator(dim_embed=128, disc_ch=128).cuda()
290
-
291
- # netG = nn.DataParallel(netG)
292
- # netD = nn.DataParallel(netD)
293
-
294
- N=4
295
- z = torch.randn(N, 256).cuda()
296
- y = torch.randn(N, 128).cuda()
297
- x = netG(z,y)
298
- o = netD(x,y)
299
- print(x.size())
300
- print(o.size())
301
-
302
- print('G:', get_parameter_number(netG))
303
- print('D:', get_parameter_number(netD))
@@ -1,142 +0,0 @@
1
- '''
2
- Regular ResNet
3
-
4
- codes are based on
5
- @article{
6
- zhang2018mixup,
7
- title={mixup: Beyond Empirical Risk Minimization},
8
- author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
9
- journal={International Conference on Learning Representations},
10
- year={2018},
11
- url={https://openreview.net/forum?id=r1Ddp1-Rb},
12
- }
13
- '''
14
-
15
-
16
- import torch
17
- import torch.nn as nn
18
- import torch.nn.functional as F
19
-
20
- from torch.autograd import Variable
21
-
22
- IMG_SIZE=256
23
- NC=3
24
-
25
-
26
- class BasicBlock(nn.Module):
27
- expansion = 1
28
-
29
- def __init__(self, in_planes, planes, stride=1):
30
- super(BasicBlock, self).__init__()
31
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
32
- self.bn1 = nn.BatchNorm2d(planes)
33
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
34
- self.bn2 = nn.BatchNorm2d(planes)
35
-
36
- self.shortcut = nn.Sequential()
37
- if stride != 1 or in_planes != self.expansion*planes:
38
- self.shortcut = nn.Sequential(
39
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
40
- nn.BatchNorm2d(self.expansion*planes)
41
- )
42
-
43
- def forward(self, x):
44
- out = F.relu(self.bn1(self.conv1(x)))
45
- out = self.bn2(self.conv2(out))
46
- out += self.shortcut(x)
47
- out = F.relu(out)
48
- return out
49
-
50
-
51
- class Bottleneck(nn.Module):
52
- expansion = 4
53
-
54
- def __init__(self, in_planes, planes, stride=1):
55
- super(Bottleneck, self).__init__()
56
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
57
- self.bn1 = nn.BatchNorm2d(planes)
58
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
59
- self.bn2 = nn.BatchNorm2d(planes)
60
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
61
- self.bn3 = nn.BatchNorm2d(self.expansion*planes)
62
-
63
- self.shortcut = nn.Sequential()
64
- if stride != 1 or in_planes != self.expansion*planes:
65
- self.shortcut = nn.Sequential(
66
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
67
- nn.BatchNorm2d(self.expansion*planes)
68
- )
69
-
70
- def forward(self, x):
71
- out = F.relu(self.bn1(self.conv1(x)))
72
- out = F.relu(self.bn2(self.conv2(out)))
73
- out = self.bn3(self.conv3(out))
74
- out += self.shortcut(x)
75
- out = F.relu(out)
76
- return out
77
-
78
-
79
- class ResNet_class_eval(nn.Module):
80
- def __init__(self, block, num_blocks, num_classes=49, nc=NC, ngpu = 1):
81
- super(ResNet_class_eval, self).__init__()
82
- self.in_planes = 64
83
- self.ngpu = ngpu
84
-
85
- self.main = nn.Sequential(
86
- nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h #256
87
- nn.BatchNorm2d(64),
88
- nn.ReLU(),
89
- nn.MaxPool2d(2,2), #h=h/2 128
90
- # self._make_layer(block, 64, num_blocks[0], stride=1), # h=h
91
- self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 64
92
- nn.MaxPool2d(2,2), #h=h/2 32
93
- self._make_layer(block, 128, num_blocks[1], stride=2),
94
- self._make_layer(block, 256, num_blocks[2], stride=2),
95
- self._make_layer(block, 512, num_blocks[3], stride=2),
96
- nn.AvgPool2d(kernel_size=4)
97
- )
98
- self.classifier = nn.Linear(512*block.expansion, num_classes)
99
-
100
- def _make_layer(self, block, planes, num_blocks, stride):
101
- strides = [stride] + [1]*(num_blocks-1)
102
- layers = []
103
- for stride in strides:
104
- layers.append(block(self.in_planes, planes, stride))
105
- self.in_planes = planes * block.expansion
106
- return nn.Sequential(*layers)
107
-
108
- def forward(self, x):
109
-
110
- if x.is_cuda and self.ngpu > 1:
111
- features = nn.parallel.data_parallel(self.main, x, range(self.ngpu))
112
- features = features.view(features.size(0), -1)
113
- out = nn.parallel.data_parallel(self.classifier, features, range(self.ngpu))
114
- else:
115
- features = self.main(x)
116
- features = features.view(features.size(0), -1)
117
- out = self.classifier(features)
118
- return out, features
119
-
120
-
121
- def ResNet18_class_eval(num_classes=49, ngpu = 1):
122
- return ResNet_class_eval(BasicBlock, [2,2,2,2], num_classes=num_classes, ngpu = ngpu)
123
-
124
- def ResNet34_class_eval(num_classes=49, ngpu = 1):
125
- return ResNet_class_eval(BasicBlock, [3,4,6,3], num_classes=num_classes, ngpu = ngpu)
126
-
127
- def ResNet50_class_eval(num_classes=49, ngpu = 1):
128
- return ResNet_class_eval(Bottleneck, [3,4,6,3], num_classes=num_classes, ngpu = ngpu)
129
-
130
- def ResNet101_class_eval(num_classes=49, ngpu = 1):
131
- return ResNet_class_eval(Bottleneck, [3,4,23,3], num_classes=num_classes, ngpu = ngpu)
132
-
133
- def ResNet152_class_eval(num_classes=49, ngpu = 1):
134
- return ResNet_class_eval(Bottleneck, [3,8,36,3], num_classes=num_classes, ngpu = ngpu)
135
-
136
-
137
- if __name__ == "__main__":
138
- net = ResNet50_class_eval(num_classes=5, ngpu = 1).cuda()
139
- x = torch.randn(16,NC,IMG_SIZE,IMG_SIZE).cuda()
140
- out, features = net(x)
141
- print(out.size())
142
- print(features.size())
@@ -1,188 +0,0 @@
1
- '''
2
- ResNet-based model to map an image from pixel space to a features space.
3
- Need to be pretrained on the dataset.
4
-
5
- if isometric_map = True, there is an extra step (elf.classifier_1 = nn.Linear(512, 32*32*3)) to increase the dimension of the feature map from 512 to 32*32*3. This selection is for desity-ratio estimation in feature space.
6
-
7
- codes are based on
8
- @article{
9
- zhang2018mixup,
10
- title={mixup: Beyond Empirical Risk Minimization},
11
- author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
12
- journal={International Conference on Learning Representations},
13
- year={2018},
14
- url={https://openreview.net/forum?id=r1Ddp1-Rb},
15
- }
16
- '''
17
-
18
-
19
- import torch
20
- import torch.nn as nn
21
- import torch.nn.functional as F
22
-
23
- NC = 3
24
- IMG_SIZE = 256
25
- DIM_EMBED = 128
26
-
27
-
28
- #------------------------------------------------------------------------------
29
- class BasicBlock(nn.Module):
30
- expansion = 1
31
-
32
- def __init__(self, in_planes, planes, stride=1):
33
- super(BasicBlock, self).__init__()
34
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
35
- self.bn1 = nn.BatchNorm2d(planes)
36
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
37
- self.bn2 = nn.BatchNorm2d(planes)
38
-
39
- self.shortcut = nn.Sequential()
40
- if stride != 1 or in_planes != self.expansion*planes:
41
- self.shortcut = nn.Sequential(
42
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
43
- nn.BatchNorm2d(self.expansion*planes)
44
- )
45
-
46
- def forward(self, x):
47
- out = F.relu(self.bn1(self.conv1(x)))
48
- out = self.bn2(self.conv2(out))
49
- out += self.shortcut(x)
50
- out = F.relu(out)
51
- return out
52
-
53
-
54
- class Bottleneck(nn.Module):
55
- expansion = 4
56
-
57
- def __init__(self, in_planes, planes, stride=1):
58
- super(Bottleneck, self).__init__()
59
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
60
- self.bn1 = nn.BatchNorm2d(planes)
61
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
62
- self.bn2 = nn.BatchNorm2d(planes)
63
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
64
- self.bn3 = nn.BatchNorm2d(self.expansion*planes)
65
-
66
- self.shortcut = nn.Sequential()
67
- if stride != 1 or in_planes != self.expansion*planes:
68
- self.shortcut = nn.Sequential(
69
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
70
- nn.BatchNorm2d(self.expansion*planes)
71
- )
72
-
73
- def forward(self, x):
74
- out = F.relu(self.bn1(self.conv1(x)))
75
- out = F.relu(self.bn2(self.conv2(out)))
76
- out = self.bn3(self.conv3(out))
77
- out += self.shortcut(x)
78
- out = F.relu(out)
79
- return out
80
-
81
-
82
- class ResNet_embed(nn.Module):
83
- def __init__(self, block, num_blocks, nc=NC, dim_embed=DIM_EMBED):
84
- super(ResNet_embed, self).__init__()
85
- self.in_planes = 64
86
-
87
- self.main = nn.Sequential(
88
- nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h 256
89
- nn.BatchNorm2d(64),
90
- nn.ReLU(),
91
- nn.MaxPool2d(2,2), #h=h/2 128
92
- # self._make_layer(block, 64, num_blocks[0], stride=1), # h=h
93
- self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 64
94
- nn.MaxPool2d(2,2), # 32
95
- self._make_layer(block, 128, num_blocks[1], stride=2), # h=h/2 16
96
- self._make_layer(block, 256, num_blocks[2], stride=2), # h=h/2 8
97
- self._make_layer(block, 512, num_blocks[3], stride=2), # h=h/2 4
98
- # nn.AvgPool2d(kernel_size=4)
99
- nn.AdaptiveAvgPool2d((1, 1))
100
- )
101
-
102
- self.x2h_res = nn.Sequential(
103
- nn.Linear(512, 512),
104
- nn.BatchNorm1d(512),
105
- nn.ReLU(),
106
-
107
- nn.Linear(512, dim_embed),
108
- nn.BatchNorm1d(dim_embed),
109
- nn.ReLU(),
110
- )
111
-
112
- self.h2y = nn.Sequential(
113
- nn.Linear(dim_embed, 1),
114
- nn.ReLU()
115
- )
116
-
117
- def _make_layer(self, block, planes, num_blocks, stride):
118
- strides = [stride] + [1]*(num_blocks-1)
119
- layers = []
120
- for stride in strides:
121
- layers.append(block(self.in_planes, planes, stride))
122
- self.in_planes = planes * block.expansion
123
- return nn.Sequential(*layers)
124
-
125
- def forward(self, x):
126
-
127
- features = self.main(x)
128
- features = features.view(features.size(0), -1)
129
- features = self.x2h_res(features)
130
- out = self.h2y(features)
131
-
132
- return out, features
133
-
134
-
135
- def ResNet18_embed(dim_embed=DIM_EMBED):
136
- return ResNet_embed(BasicBlock, [2,2,2,2], dim_embed=dim_embed)
137
-
138
- def ResNet34_embed(dim_embed=DIM_EMBED):
139
- return ResNet_embed(BasicBlock, [3,4,6,3], dim_embed=dim_embed)
140
-
141
- def ResNet50_embed(dim_embed=DIM_EMBED):
142
- return ResNet_embed(Bottleneck, [3,4,6,3], dim_embed=dim_embed)
143
-
144
- #------------------------------------------------------------------------------
145
- # map labels to the embedding space
146
- class model_y2h(nn.Module):
147
- def __init__(self, dim_embed=DIM_EMBED):
148
- super(model_y2h, self).__init__()
149
- self.main = nn.Sequential(
150
- nn.Linear(1, dim_embed),
151
- # nn.BatchNorm1d(dim_embed),
152
- nn.GroupNorm(8, dim_embed),
153
- nn.ReLU(),
154
-
155
- nn.Linear(dim_embed, dim_embed),
156
- # nn.BatchNorm1d(dim_embed),
157
- nn.GroupNorm(8, dim_embed),
158
- nn.ReLU(),
159
-
160
- nn.Linear(dim_embed, dim_embed),
161
- # nn.BatchNorm1d(dim_embed),
162
- nn.GroupNorm(8, dim_embed),
163
- nn.ReLU(),
164
-
165
- nn.Linear(dim_embed, dim_embed),
166
- # nn.BatchNorm1d(dim_embed),
167
- nn.GroupNorm(8, dim_embed),
168
- nn.ReLU(),
169
-
170
- nn.Linear(dim_embed, dim_embed),
171
- nn.ReLU()
172
- )
173
-
174
- def forward(self, y):
175
- y = y.view(-1, 1) +1e-8
176
- # y = torch.exp(y.view(-1, 1))
177
- return self.main(y)
178
-
179
-
180
-
181
- if __name__ == "__main__":
182
- net = ResNet34_embed(dim_embed=128).cuda()
183
- x = torch.randn(16,NC,IMG_SIZE,IMG_SIZE).cuda()
184
- out, features = net(x)
185
- print(out.size())
186
- print(features.size())
187
-
188
- net_y2h = model_y2h()