Myosotis-Researches 0.1.8__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. myosotis_researches/CcGAN/train/__init__.py +4 -0
  2. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_ccgan.py +4 -4
  3. myosotis_researches/CcGAN/{train_128 → train}/train_cgan.py +1 -3
  4. myosotis_researches/CcGAN/{train_128 → train}/train_cgan_concat.py +1 -3
  5. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/METADATA +1 -1
  6. myosotis_researches-0.1.9.dist-info/RECORD +24 -0
  7. myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py +0 -301
  8. myosotis_researches/CcGAN/models_128/ResNet_class_eval.py +0 -141
  9. myosotis_researches/CcGAN/models_128/ResNet_embed.py +0 -188
  10. myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py +0 -175
  11. myosotis_researches/CcGAN/models_128/__init__.py +0 -7
  12. myosotis_researches/CcGAN/models_128/autoencoder.py +0 -119
  13. myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py +0 -276
  14. myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py +0 -245
  15. myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py +0 -303
  16. myosotis_researches/CcGAN/models_256/ResNet_class_eval.py +0 -142
  17. myosotis_researches/CcGAN/models_256/ResNet_embed.py +0 -188
  18. myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py +0 -178
  19. myosotis_researches/CcGAN/models_256/__init__.py +0 -7
  20. myosotis_researches/CcGAN/models_256/autoencoder.py +0 -133
  21. myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py +0 -280
  22. myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py +0 -249
  23. myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py +0 -76
  24. myosotis_researches/CcGAN/train_128/__init__.py +0 -0
  25. myosotis_researches/CcGAN/train_128/eval_metrics.py +0 -205
  26. myosotis_researches/CcGAN/train_128/opts.py +0 -87
  27. myosotis_researches/CcGAN/train_128/pretrain_AE.py +0 -268
  28. myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py +0 -251
  29. myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py +0 -255
  30. myosotis_researches/CcGAN/train_128/train_ccgan.py +0 -303
  31. myosotis_researches/CcGAN/train_128/utils.py +0 -120
  32. myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py +0 -76
  33. myosotis_researches/CcGAN/train_128_output_10/__init__.py +0 -0
  34. myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py +0 -205
  35. myosotis_researches/CcGAN/train_128_output_10/opts.py +0 -87
  36. myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py +0 -268
  37. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py +0 -251
  38. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py +0 -255
  39. myosotis_researches/CcGAN/train_128_output_10/train_cgan.py +0 -254
  40. myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py +0 -242
  41. myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py +0 -181
  42. myosotis_researches/CcGAN/train_128_output_10/utils.py +0 -120
  43. myosotis_researches-0.1.8.dist-info/RECORD +0 -59
  44. /myosotis_researches/CcGAN/{train_128 → train}/train_net_for_label_embed.py +0 -0
  45. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/WHEEL +0 -0
  46. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/licenses/LICENSE +0 -0
  47. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.9.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,4 @@
1
+ from .train_ccgan import *
2
+ from .train_cgan import *
3
+ from .train_cgan_concat import *
4
+ from .train_net_for_label_embed import *
@@ -5,10 +5,9 @@ import timeit
5
5
  from PIL import Image
6
6
  from torchvision.utils import save_image
7
7
  import torch.cuda as cutorch
8
+ import sys
8
9
 
9
- from .utils import SimpleProgressBar, IMGs_dataset
10
- from .opts import parse_opts
11
- from .DiffAugment_pytorch import DiffAugment
10
+ from myosotis_researches.CcGAN.utils import *
12
11
 
13
12
  ''' Settings '''
14
13
  args = parse_opts()
@@ -79,7 +78,8 @@ def train_ccgan(kernel_sigma, kappa, train_images, train_labels, netG, netD, net
79
78
  # printed images with labels between the 5-th quantile and 95-th quantile of training labels
80
79
  n_row=10; n_col = 1
81
80
  z_fixed = torch.randn(n_row*n_col, dim_gan, dtype=torch.float).cuda()
82
- selected_labels = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
81
+
82
+ selected_labels = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
83
83
 
84
84
  y_fixed = np.zeros(n_row*n_col)
85
85
  for i in range(n_row):
@@ -6,9 +6,7 @@ import numpy as np
6
6
  import os
7
7
  import timeit
8
8
 
9
- from .utils import IMGs_dataset, SimpleProgressBar
10
- from .opts import parse_opts
11
- from .DiffAugment_pytorch import DiffAugment
9
+ from myosotis_researches.CcGAN.utils import *
12
10
 
13
11
  ''' Settings '''
14
12
  args = parse_opts()
@@ -6,9 +6,7 @@ import numpy as np
6
6
  import os
7
7
  import timeit
8
8
 
9
- from .utils import IMGs_dataset, SimpleProgressBar
10
- from .opts import parse_opts
11
- from .DiffAugment_pytorch import DiffAugment
9
+ from myosotis_researches.CcGAN.utils import *
12
10
 
13
11
  ''' Settings '''
14
12
  args = parse_opts()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.8
3
+ Version: 0.1.9
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -0,0 +1,24 @@
1
+ myosotis_researches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ myosotis_researches/CcGAN/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ myosotis_researches/CcGAN/internal/__init__.py,sha256=b-63yANNRQXgLF9k9yGdrm7mlULqGic1HTQTzg9wIME,209
4
+ myosotis_researches/CcGAN/internal/install_datasets.py,sha256=jJwLOZrDnHMrJSUhXxSIFobdeWK5N6eitPmjeBW9FyA,1144
5
+ myosotis_researches/CcGAN/internal/show_datasets.py,sha256=BWtQ6vdiEUOTrOs8aMBv6utuUN0IiaLKcK5iXq9y2qI,363
6
+ myosotis_researches/CcGAN/internal/uninstall_datasets.py,sha256=7pxPZcSe9RHncF0I_4rf8ZdI7eQwv-sFVfxzSVZfYHQ,297
7
+ myosotis_researches/CcGAN/train/__init__.py,sha256=-55Ccov89II6Yuaiszi8ziw9EoVQr7OJR0bQfPAE_10,127
8
+ myosotis_researches/CcGAN/train/train_ccgan.py,sha256=0Qxibgd2-WaYgbyYeeOyiMkdcwkd_M1m1gSqoHTjN0w,13268
9
+ myosotis_researches/CcGAN/train/train_cgan.py,sha256=sxMzvlmdjmqufwJFxBwatcoJecYqn2Uidedu15CL9ws,9619
10
+ myosotis_researches/CcGAN/train/train_cgan_concat.py,sha256=OrQbwdU_ujUeKFGixUUpnini6rURtbuHv9NDrP6g0X0,8861
11
+ myosotis_researches/CcGAN/train/train_net_for_label_embed.py,sha256=4j6r4_o4rXgAN4MdUQL-TXqZJpbhH7d9gWQR8YzBlXw,6976
12
+ myosotis_researches/CcGAN/utils/IMGs_dataset.py,sha256=i45PBNSCeAEB5uUG0SluYRTuHWZwH_5ldz2wm6afkYs,927
13
+ myosotis_researches/CcGAN/utils/SimpleProgressBar.py,sha256=S4eD_m6ysHRMHAmRtkTXVRNfXTR8kuHv-d3lUN0BVn4,546
14
+ myosotis_researches/CcGAN/utils/__init__.py,sha256=em3aB0C-V230NQtT64hyuHGo4CjV6p2DwIdtNM0dk4k,516
15
+ myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
16
+ myosotis_researches/CcGAN/utils/make_h5.py,sha256=VtFYjr_i-JktsEW_BvofpilcDmChRmyLykv0VvlMuY0,963
17
+ myosotis_researches/CcGAN/utils/opts.py,sha256=pd7-wknNPBO5hWRpO3YAPmmAsPKgZUUpKc4gWMs6Wto,5397
18
+ myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
19
+ myosotis_researches/CcGAN/utils/train.py,sha256=5ZXgkGesuInqUooJRpLej_KHqYQtlSDq90_5wig5elQ,5152
20
+ myosotis_researches-0.1.9.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
21
+ myosotis_researches-0.1.9.dist-info/METADATA,sha256=F0XMimBS26-MprX3UHMvW1KtXOuMF4FZQlTw9L3L0mc,2663
22
+ myosotis_researches-0.1.9.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
23
+ myosotis_researches-0.1.9.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
24
+ myosotis_researches-0.1.9.dist-info/RECORD,,
@@ -1,301 +0,0 @@
1
- '''
2
-
3
- Adapted from https://github.com/voletiv/self-attention-GAN-pytorch/blob/master/sagan_models.py
4
-
5
-
6
- '''
7
-
8
-
9
- import numpy as np
10
- import torch
11
- import torch.nn as nn
12
- import torch.nn.functional as F
13
-
14
- from torch.nn.utils import spectral_norm
15
- from torch.nn.init import xavier_uniform_
16
-
17
-
18
- def init_weights(m):
19
- if type(m) == nn.Linear or type(m) == nn.Conv2d:
20
- xavier_uniform_(m.weight)
21
- if m.bias is not None:
22
- m.bias.data.fill_(0.)
23
-
24
-
25
- def snconv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
26
- return spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
27
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias))
28
-
29
- def snlinear(in_features, out_features, bias=True):
30
- return spectral_norm(nn.Linear(in_features=in_features, out_features=out_features, bias=bias))
31
-
32
-
33
-
34
- class Self_Attn(nn.Module):
35
- """ Self attention Layer"""
36
-
37
- def __init__(self, in_channels):
38
- super(Self_Attn, self).__init__()
39
- self.in_channels = in_channels
40
- self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
41
- self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
42
- self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2, kernel_size=1, stride=1, padding=0)
43
- self.snconv1x1_attn = snconv2d(in_channels=in_channels//2, out_channels=in_channels, kernel_size=1, stride=1, padding=0)
44
- self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
45
- self.softmax = nn.Softmax(dim=-1)
46
- self.sigma = nn.Parameter(torch.zeros(1))
47
-
48
- def forward(self, x):
49
- """
50
- inputs :
51
- x : input feature maps(B X C X W X H)
52
- returns :
53
- out : self attention value + input feature
54
- attention: B X N X N (N is Width*Height)
55
- """
56
- _, ch, h, w = x.size()
57
- # Theta path
58
- theta = self.snconv1x1_theta(x)
59
- theta = theta.view(-1, ch//8, h*w)
60
- # Phi path
61
- phi = self.snconv1x1_phi(x)
62
- phi = self.maxpool(phi)
63
- phi = phi.view(-1, ch//8, h*w//4)
64
- # Attn map
65
- attn = torch.bmm(theta.permute(0, 2, 1), phi)
66
- attn = self.softmax(attn)
67
- # g path
68
- g = self.snconv1x1_g(x)
69
- g = self.maxpool(g)
70
- g = g.view(-1, ch//2, h*w//4)
71
- # Attn_g
72
- attn_g = torch.bmm(g, attn.permute(0, 2, 1))
73
- attn_g = attn_g.view(-1, ch//2, h, w)
74
- attn_g = self.snconv1x1_attn(attn_g)
75
- # Out
76
- out = x + self.sigma*attn_g
77
- return out
78
-
79
-
80
-
81
-
82
- '''
83
-
84
- Generator
85
-
86
- '''
87
-
88
-
89
- class ConditionalBatchNorm2d(nn.Module):
90
- def __init__(self, num_features, dim_embed):
91
- super().__init__()
92
- self.num_features = num_features
93
- self.bn = nn.BatchNorm2d(num_features, momentum=0.001, affine=False)
94
- self.embed_gamma = nn.Linear(dim_embed, num_features, bias=False)
95
- self.embed_beta = nn.Linear(dim_embed, num_features, bias=False)
96
-
97
- def forward(self, x, y):
98
- out = self.bn(x)
99
- gamma = self.embed_gamma(y).view(-1, self.num_features, 1, 1)
100
- beta = self.embed_beta(y).view(-1, self.num_features, 1, 1)
101
- out = out + gamma*out + beta
102
- return out
103
-
104
-
105
- class GenBlock(nn.Module):
106
- def __init__(self, in_channels, out_channels, dim_embed):
107
- super(GenBlock, self).__init__()
108
- self.cond_bn1 = ConditionalBatchNorm2d(in_channels, dim_embed)
109
- self.relu = nn.ReLU(inplace=True)
110
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
111
- self.cond_bn2 = ConditionalBatchNorm2d(out_channels, dim_embed)
112
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
113
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
114
-
115
- def forward(self, x, labels):
116
- x0 = x
117
-
118
- x = self.cond_bn1(x, labels)
119
- x = self.relu(x)
120
- x = F.interpolate(x, scale_factor=2, mode='nearest') # upsample
121
- x = self.snconv2d1(x)
122
- x = self.cond_bn2(x, labels)
123
- x = self.relu(x)
124
- x = self.snconv2d2(x)
125
-
126
- x0 = F.interpolate(x0, scale_factor=2, mode='nearest') # upsample
127
- x0 = self.snconv2d0(x0)
128
-
129
- out = x + x0
130
- return out
131
-
132
-
133
- class CcGAN_SAGAN_Generator(nn.Module):
134
- """Generator."""
135
-
136
- def __init__(self, dim_z, dim_embed=128, nc=3, gene_ch=64):
137
- super(CcGAN_SAGAN_Generator, self).__init__()
138
-
139
- self.dim_z = dim_z
140
- self.gene_ch = gene_ch
141
-
142
- self.snlinear0 = snlinear(in_features=dim_z, out_features=gene_ch*16*4*4)
143
- self.block1 = GenBlock(gene_ch*16, gene_ch*16, dim_embed)
144
- self.block2 = GenBlock(gene_ch*16, gene_ch*8, dim_embed)
145
- self.block3 = GenBlock(gene_ch*8, gene_ch*4, dim_embed)
146
- self.self_attn = Self_Attn(gene_ch*4)
147
- self.block4 = GenBlock(gene_ch*4, gene_ch*2, dim_embed)
148
- self.block5 = GenBlock(gene_ch*2, gene_ch, dim_embed)
149
- self.bn = nn.BatchNorm2d(gene_ch, eps=1e-5, momentum=0.0001, affine=True)
150
- self.relu = nn.ReLU(inplace=True)
151
- self.snconv2d1 = snconv2d(in_channels=gene_ch, out_channels=nc, kernel_size=3, stride=1, padding=1)
152
- self.tanh = nn.Tanh()
153
-
154
- # Weight init
155
- self.apply(init_weights)
156
-
157
- def forward(self, z, labels):
158
- # n x dim_z
159
- out = self.snlinear0(z) # 4*4
160
- out = out.view(-1, self.gene_ch*16, 4, 4) # 4 x 4
161
- out = self.block1(out, labels) # 8 x 8
162
- out = self.block2(out, labels) # 16 x 16
163
- out = self.block3(out, labels) # 32 x 32
164
- out = self.self_attn(out) # 32 x 32
165
- out = self.block4(out, labels) # 64 x 64
166
- out = self.block5(out, labels) # 128 x 128
167
- out = self.bn(out)
168
- out = self.relu(out)
169
- out = self.snconv2d1(out)
170
- out = self.tanh(out)
171
- return out
172
-
173
-
174
-
175
- '''
176
-
177
- Discriminator
178
-
179
- '''
180
-
181
- class DiscOptBlock(nn.Module):
182
- def __init__(self, in_channels, out_channels):
183
- super(DiscOptBlock, self).__init__()
184
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
185
- self.relu = nn.ReLU(inplace=True)
186
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
187
- self.downsample = nn.AvgPool2d(2)
188
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
189
-
190
- def forward(self, x):
191
- x0 = x
192
-
193
- x = self.snconv2d1(x)
194
- x = self.relu(x)
195
- x = self.snconv2d2(x)
196
- x = self.downsample(x)
197
-
198
- x0 = self.downsample(x0)
199
- x0 = self.snconv2d0(x0)
200
-
201
- out = x + x0
202
- return out
203
-
204
-
205
- class DiscBlock(nn.Module):
206
- def __init__(self, in_channels, out_channels):
207
- super(DiscBlock, self).__init__()
208
- self.relu = nn.ReLU(inplace=True)
209
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
210
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
211
- self.downsample = nn.AvgPool2d(2)
212
- self.ch_mismatch = False
213
- if in_channels != out_channels:
214
- self.ch_mismatch = True
215
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
216
-
217
- def forward(self, x, downsample=True):
218
- x0 = x
219
-
220
- x = self.relu(x)
221
- x = self.snconv2d1(x)
222
- x = self.relu(x)
223
- x = self.snconv2d2(x)
224
- if downsample:
225
- x = self.downsample(x)
226
-
227
- if downsample or self.ch_mismatch:
228
- x0 = self.snconv2d0(x0)
229
- if downsample:
230
- x0 = self.downsample(x0)
231
-
232
- out = x + x0
233
- return out
234
-
235
-
236
- class CcGAN_SAGAN_Discriminator(nn.Module):
237
- """Discriminator."""
238
-
239
- def __init__(self, dim_embed=128, nc=3, disc_ch=64):
240
- super(CcGAN_SAGAN_Discriminator, self).__init__()
241
- self.disc_ch = disc_ch
242
- self.opt_block1 = DiscOptBlock(nc, disc_ch)
243
- self.block1 = DiscBlock(disc_ch, disc_ch*2)
244
- self.self_attn = Self_Attn(disc_ch*2)
245
- self.block2 = DiscBlock(disc_ch*2, disc_ch*4)
246
- self.block3 = DiscBlock(disc_ch*4, disc_ch*8)
247
- self.block4 = DiscBlock(disc_ch*8, disc_ch*16)
248
- self.block5 = DiscBlock(disc_ch*16, disc_ch*16)
249
- self.relu = nn.ReLU(inplace=True)
250
- self.snlinear1 = snlinear(in_features=disc_ch*16*4*4, out_features=1)
251
- self.sn_embedding1 = snlinear(dim_embed, disc_ch*16*4*4, bias=False)
252
-
253
- # Weight init
254
- self.apply(init_weights)
255
- xavier_uniform_(self.sn_embedding1.weight)
256
-
257
- def forward(self, x, labels):
258
- # 128x128
259
- out = self.opt_block1(x) # 128x128
260
- out = self.block1(out) # 64 x 64
261
- out = self.self_attn(out) # 64 x 64
262
- out = self.block2(out) # 32 x 32
263
- out = self.block3(out) # 16 x 16
264
- out = self.block4(out) # 8 x 8
265
- out = self.block5(out, downsample=False) # 4 x 4
266
- out = self.relu(out) # n x disc_ch*16 x 4 x 4
267
- out = out.view(-1, self.disc_ch*16*4*4)
268
- output1 = torch.squeeze(self.snlinear1(out)) # n
269
- # Projection
270
- h_labels = self.sn_embedding1(labels) # n x disc_ch*16
271
- proj = torch.mul(out, h_labels) # n x disc_ch*16
272
- output2 = torch.sum(proj, dim=[1]) # n
273
- # Out
274
- output = output1 + output2 # n
275
- return output
276
-
277
-
278
- if __name__ == "__main__":
279
-
280
- def get_parameter_number(net):
281
- total_num = sum(p.numel() for p in net.parameters())
282
- trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
283
- return {'Total': total_num, 'Trainable': trainable_num}
284
-
285
-
286
- netG = CcGAN_SAGAN_Generator(dim_z=256, dim_embed=128, gene_ch=128).cuda()
287
- netD = CcGAN_SAGAN_Discriminator(dim_embed=128, disc_ch=128).cuda()
288
-
289
- # netG = nn.DataParallel(netG)
290
- # netD = nn.DataParallel(netD)
291
-
292
- N=4
293
- z = torch.randn(N, 256).cuda()
294
- y = torch.randn(N, 128).cuda()
295
- x = netG(z,y)
296
- o = netD(x,y)
297
- print(x.size())
298
- print(o.size())
299
-
300
- print('G:', get_parameter_number(netG))
301
- print('D:', get_parameter_number(netD))
@@ -1,141 +0,0 @@
1
- '''
2
- Regular ResNet
3
-
4
- codes are based on
5
- @article{
6
- zhang2018mixup,
7
- title={mixup: Beyond Empirical Risk Minimization},
8
- author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
9
- journal={International Conference on Learning Representations},
10
- year={2018},
11
- url={https://openreview.net/forum?id=r1Ddp1-Rb},
12
- }
13
- '''
14
-
15
-
16
- import torch
17
- import torch.nn as nn
18
- import torch.nn.functional as F
19
-
20
- from torch.autograd import Variable
21
-
22
- IMG_SIZE=128
23
- NC=3
24
-
25
-
26
- class BasicBlock(nn.Module):
27
- expansion = 1
28
-
29
- def __init__(self, in_planes, planes, stride=1):
30
- super(BasicBlock, self).__init__()
31
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
32
- self.bn1 = nn.BatchNorm2d(planes)
33
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
34
- self.bn2 = nn.BatchNorm2d(planes)
35
-
36
- self.shortcut = nn.Sequential()
37
- if stride != 1 or in_planes != self.expansion*planes:
38
- self.shortcut = nn.Sequential(
39
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
40
- nn.BatchNorm2d(self.expansion*planes)
41
- )
42
-
43
- def forward(self, x):
44
- out = F.relu(self.bn1(self.conv1(x)))
45
- out = self.bn2(self.conv2(out))
46
- out += self.shortcut(x)
47
- out = F.relu(out)
48
- return out
49
-
50
-
51
- class Bottleneck(nn.Module):
52
- expansion = 4
53
-
54
- def __init__(self, in_planes, planes, stride=1):
55
- super(Bottleneck, self).__init__()
56
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
57
- self.bn1 = nn.BatchNorm2d(planes)
58
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
59
- self.bn2 = nn.BatchNorm2d(planes)
60
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
61
- self.bn3 = nn.BatchNorm2d(self.expansion*planes)
62
-
63
- self.shortcut = nn.Sequential()
64
- if stride != 1 or in_planes != self.expansion*planes:
65
- self.shortcut = nn.Sequential(
66
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
67
- nn.BatchNorm2d(self.expansion*planes)
68
- )
69
-
70
- def forward(self, x):
71
- out = F.relu(self.bn1(self.conv1(x)))
72
- out = F.relu(self.bn2(self.conv2(out)))
73
- out = self.bn3(self.conv3(out))
74
- out += self.shortcut(x)
75
- out = F.relu(out)
76
- return out
77
-
78
-
79
- class ResNet_class_eval(nn.Module):
80
- def __init__(self, block, num_blocks, num_classes=49, nc=NC, ngpu = 1):
81
- super(ResNet_class_eval, self).__init__()
82
- self.in_planes = 64
83
- self.ngpu = ngpu
84
-
85
- self.main = nn.Sequential(
86
- nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h
87
- nn.BatchNorm2d(64),
88
- nn.ReLU(),
89
- nn.MaxPool2d(2,2), #h=h/2 64
90
- # self._make_layer(block, 64, num_blocks[0], stride=1), # h=h
91
- self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 32
92
- self._make_layer(block, 128, num_blocks[1], stride=2),
93
- self._make_layer(block, 256, num_blocks[2], stride=2),
94
- self._make_layer(block, 512, num_blocks[3], stride=2),
95
- nn.AvgPool2d(kernel_size=4)
96
- )
97
- self.classifier = nn.Linear(512*block.expansion, num_classes)
98
-
99
- def _make_layer(self, block, planes, num_blocks, stride):
100
- strides = [stride] + [1]*(num_blocks-1)
101
- layers = []
102
- for stride in strides:
103
- layers.append(block(self.in_planes, planes, stride))
104
- self.in_planes = planes * block.expansion
105
- return nn.Sequential(*layers)
106
-
107
- def forward(self, x):
108
-
109
- if x.is_cuda and self.ngpu > 1:
110
- features = nn.parallel.data_parallel(self.main, x, range(self.ngpu))
111
- features = features.view(features.size(0), -1)
112
- out = nn.parallel.data_parallel(self.classifier, features, range(self.ngpu))
113
- else:
114
- features = self.main(x)
115
- features = features.view(features.size(0), -1)
116
- out = self.classifier(features)
117
- return out, features
118
-
119
-
120
- def ResNet18_class_eval(num_classes=49, ngpu = 1):
121
- return ResNet_class_eval(BasicBlock, [2,2,2,2], num_classes=num_classes, ngpu = ngpu)
122
-
123
- def ResNet34_class_eval(num_classes=49, ngpu = 1):
124
- return ResNet_class_eval(BasicBlock, [3,4,6,3], num_classes=num_classes, ngpu = ngpu)
125
-
126
- def ResNet50_class_eval(num_classes=49, ngpu = 1):
127
- return ResNet_class_eval(Bottleneck, [3,4,6,3], num_classes=num_classes, ngpu = ngpu)
128
-
129
- def ResNet101_class_eval(num_classes=49, ngpu = 1):
130
- return ResNet_class_eval(Bottleneck, [3,4,23,3], num_classes=num_classes, ngpu = ngpu)
131
-
132
- def ResNet152_class_eval(num_classes=49, ngpu = 1):
133
- return ResNet_class_eval(Bottleneck, [3,8,36,3], num_classes=num_classes, ngpu = ngpu)
134
-
135
-
136
- if __name__ == "__main__":
137
- net = ResNet50_class_eval(num_classes=5, ngpu = 1).cuda()
138
- x = torch.randn(16,NC,IMG_SIZE,IMG_SIZE).cuda()
139
- out, features = net(x)
140
- print(out.size())
141
- print(features.size())