Myosotis-Researches 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. myosotis_researches/CcGAN/train/__init__.py +4 -0
  2. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_ccgan.py +4 -4
  3. myosotis_researches/CcGAN/{train_128 → train}/train_cgan.py +1 -3
  4. myosotis_researches/CcGAN/{train_128 → train}/train_cgan_concat.py +1 -3
  5. myosotis_researches/CcGAN/utils/__init__.py +2 -1
  6. myosotis_researches/CcGAN/utils/train.py +94 -3
  7. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/METADATA +1 -1
  8. myosotis_researches-0.1.9.dist-info/RECORD +24 -0
  9. myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py +0 -301
  10. myosotis_researches/CcGAN/models_128/ResNet_class_eval.py +0 -141
  11. myosotis_researches/CcGAN/models_128/ResNet_embed.py +0 -188
  12. myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py +0 -175
  13. myosotis_researches/CcGAN/models_128/__init__.py +0 -7
  14. myosotis_researches/CcGAN/models_128/autoencoder.py +0 -119
  15. myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py +0 -276
  16. myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py +0 -245
  17. myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py +0 -303
  18. myosotis_researches/CcGAN/models_256/ResNet_class_eval.py +0 -142
  19. myosotis_researches/CcGAN/models_256/ResNet_embed.py +0 -188
  20. myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py +0 -178
  21. myosotis_researches/CcGAN/models_256/__init__.py +0 -7
  22. myosotis_researches/CcGAN/models_256/autoencoder.py +0 -133
  23. myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py +0 -280
  24. myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py +0 -249
  25. myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py +0 -76
  26. myosotis_researches/CcGAN/train_128/__init__.py +0 -0
  27. myosotis_researches/CcGAN/train_128/eval_metrics.py +0 -205
  28. myosotis_researches/CcGAN/train_128/opts.py +0 -87
  29. myosotis_researches/CcGAN/train_128/pretrain_AE.py +0 -268
  30. myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py +0 -251
  31. myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py +0 -255
  32. myosotis_researches/CcGAN/train_128/train_ccgan.py +0 -303
  33. myosotis_researches/CcGAN/train_128/utils.py +0 -120
  34. myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py +0 -76
  35. myosotis_researches/CcGAN/train_128_output_10/__init__.py +0 -0
  36. myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py +0 -205
  37. myosotis_researches/CcGAN/train_128_output_10/opts.py +0 -87
  38. myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py +0 -268
  39. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py +0 -251
  40. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py +0 -255
  41. myosotis_researches/CcGAN/train_128_output_10/train_cgan.py +0 -254
  42. myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py +0 -242
  43. myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py +0 -181
  44. myosotis_researches/CcGAN/train_128_output_10/utils.py +0 -120
  45. myosotis_researches-0.1.7.dist-info/RECORD +0 -59
  46. /myosotis_researches/CcGAN/{train_128 → train}/train_net_for_label_embed.py +0 -0
  47. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/WHEEL +0 -0
  48. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/licenses/LICENSE +0 -0
  49. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,188 +0,0 @@
1
- '''
2
- ResNet-based model to map an image from pixel space to a features space.
3
- Need to be pretrained on the dataset.
4
-
5
- if isometric_map = True, there is an extra step (elf.classifier_1 = nn.Linear(512, 32*32*3)) to increase the dimension of the feature map from 512 to 32*32*3. This selection is for desity-ratio estimation in feature space.
6
-
7
- codes are based on
8
- @article{
9
- zhang2018mixup,
10
- title={mixup: Beyond Empirical Risk Minimization},
11
- author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
12
- journal={International Conference on Learning Representations},
13
- year={2018},
14
- url={https://openreview.net/forum?id=r1Ddp1-Rb},
15
- }
16
- '''
17
-
18
-
19
- import torch
20
- import torch.nn as nn
21
- import torch.nn.functional as F
22
-
23
- NC = 3
24
- IMG_SIZE = 128
25
- DIM_EMBED = 128
26
-
27
-
28
- #------------------------------------------------------------------------------
29
- class BasicBlock(nn.Module):
30
- expansion = 1
31
-
32
- def __init__(self, in_planes, planes, stride=1):
33
- super(BasicBlock, self).__init__()
34
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
35
- self.bn1 = nn.BatchNorm2d(planes)
36
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
37
- self.bn2 = nn.BatchNorm2d(planes)
38
-
39
- self.shortcut = nn.Sequential()
40
- if stride != 1 or in_planes != self.expansion*planes:
41
- self.shortcut = nn.Sequential(
42
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
43
- nn.BatchNorm2d(self.expansion*planes)
44
- )
45
-
46
- def forward(self, x):
47
- out = F.relu(self.bn1(self.conv1(x)))
48
- out = self.bn2(self.conv2(out))
49
- out += self.shortcut(x)
50
- out = F.relu(out)
51
- return out
52
-
53
-
54
- class Bottleneck(nn.Module):
55
- expansion = 4
56
-
57
- def __init__(self, in_planes, planes, stride=1):
58
- super(Bottleneck, self).__init__()
59
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
60
- self.bn1 = nn.BatchNorm2d(planes)
61
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
62
- self.bn2 = nn.BatchNorm2d(planes)
63
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
64
- self.bn3 = nn.BatchNorm2d(self.expansion*planes)
65
-
66
- self.shortcut = nn.Sequential()
67
- if stride != 1 or in_planes != self.expansion*planes:
68
- self.shortcut = nn.Sequential(
69
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
70
- nn.BatchNorm2d(self.expansion*planes)
71
- )
72
-
73
- def forward(self, x):
74
- out = F.relu(self.bn1(self.conv1(x)))
75
- out = F.relu(self.bn2(self.conv2(out)))
76
- out = self.bn3(self.conv3(out))
77
- out += self.shortcut(x)
78
- out = F.relu(out)
79
- return out
80
-
81
-
82
- class ResNet_embed(nn.Module):
83
- def __init__(self, block, num_blocks, nc=NC, dim_embed=DIM_EMBED):
84
- super(ResNet_embed, self).__init__()
85
- self.in_planes = 64
86
-
87
- self.main = nn.Sequential(
88
- nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h
89
- # nn.Conv2d(nc, 64, kernel_size=4, stride=2, padding=1, bias=False), # h=h/2
90
- nn.BatchNorm2d(64),
91
- nn.ReLU(),
92
- nn.MaxPool2d(2,2), #h=h/2 64
93
- # self._make_layer(block, 64, num_blocks[0], stride=1), # h=h
94
- self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 32
95
- self._make_layer(block, 128, num_blocks[1], stride=2), # h=h/2 16
96
- self._make_layer(block, 256, num_blocks[2], stride=2), # h=h/2 8
97
- self._make_layer(block, 512, num_blocks[3], stride=2), # h=h/2 4
98
- # nn.AvgPool2d(kernel_size=4)
99
- nn.AdaptiveAvgPool2d((1, 1))
100
- )
101
-
102
- self.x2h_res = nn.Sequential(
103
- nn.Linear(512, 512),
104
- nn.BatchNorm1d(512),
105
- nn.ReLU(),
106
-
107
- nn.Linear(512, dim_embed),
108
- nn.BatchNorm1d(dim_embed),
109
- nn.ReLU(),
110
- )
111
-
112
- self.h2y = nn.Sequential(
113
- nn.Linear(dim_embed, 1),
114
- nn.ReLU()
115
- )
116
-
117
- def _make_layer(self, block, planes, num_blocks, stride):
118
- strides = [stride] + [1]*(num_blocks-1)
119
- layers = []
120
- for stride in strides:
121
- layers.append(block(self.in_planes, planes, stride))
122
- self.in_planes = planes * block.expansion
123
- return nn.Sequential(*layers)
124
-
125
- def forward(self, x):
126
-
127
- features = self.main(x)
128
- features = features.view(features.size(0), -1)
129
- features = self.x2h_res(features)
130
- out = self.h2y(features)
131
-
132
- return out, features
133
-
134
-
135
- def ResNet18_embed(dim_embed=DIM_EMBED):
136
- return ResNet_embed(BasicBlock, [2,2,2,2], dim_embed=dim_embed)
137
-
138
- def ResNet34_embed(dim_embed=DIM_EMBED):
139
- return ResNet_embed(BasicBlock, [3,4,6,3], dim_embed=dim_embed)
140
-
141
- def ResNet50_embed(dim_embed=DIM_EMBED):
142
- return ResNet_embed(Bottleneck, [3,4,6,3], dim_embed=dim_embed)
143
-
144
- #------------------------------------------------------------------------------
145
- # map labels to the embedding space
146
- class model_y2h(nn.Module):
147
- def __init__(self, dim_embed=DIM_EMBED):
148
- super(model_y2h, self).__init__()
149
- self.main = nn.Sequential(
150
- nn.Linear(1, dim_embed),
151
- # nn.BatchNorm1d(dim_embed),
152
- nn.GroupNorm(8, dim_embed),
153
- nn.ReLU(),
154
-
155
- nn.Linear(dim_embed, dim_embed),
156
- # nn.BatchNorm1d(dim_embed),
157
- nn.GroupNorm(8, dim_embed),
158
- nn.ReLU(),
159
-
160
- nn.Linear(dim_embed, dim_embed),
161
- # nn.BatchNorm1d(dim_embed),
162
- nn.GroupNorm(8, dim_embed),
163
- nn.ReLU(),
164
-
165
- nn.Linear(dim_embed, dim_embed),
166
- # nn.BatchNorm1d(dim_embed),
167
- nn.GroupNorm(8, dim_embed),
168
- nn.ReLU(),
169
-
170
- nn.Linear(dim_embed, dim_embed),
171
- nn.ReLU()
172
- )
173
-
174
- def forward(self, y):
175
- y = y.view(-1, 1) +1e-8
176
- # y = torch.exp(y.view(-1, 1))
177
- return self.main(y)
178
-
179
-
180
-
181
- if __name__ == "__main__":
182
- net = ResNet34_embed(dim_embed=128).cuda()
183
- x = torch.randn(16,NC,IMG_SIZE,IMG_SIZE).cuda()
184
- out, features = net(x)
185
- print(out.size())
186
- print(features.size())
187
-
188
- net_y2h = model_y2h()
@@ -1,175 +0,0 @@
1
- '''
2
- codes are based on
3
- @article{
4
- zhang2018mixup,
5
- title={mixup: Beyond Empirical Risk Minimization},
6
- author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
7
- journal={International Conference on Learning Representations},
8
- year={2018},
9
- url={https://openreview.net/forum?id=r1Ddp1-Rb},
10
- }
11
- '''
12
-
13
-
14
- import torch
15
- import torch.nn as nn
16
- import torch.nn.functional as F
17
-
18
- NC = 3
19
- IMG_SIZE = 128
20
-
21
-
22
- class BasicBlock(nn.Module):
23
- expansion = 1
24
-
25
- def __init__(self, in_planes, planes, stride=1):
26
- super(BasicBlock, self).__init__()
27
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
28
- self.bn1 = nn.BatchNorm2d(planes)
29
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
30
- self.bn2 = nn.BatchNorm2d(planes)
31
-
32
- self.shortcut = nn.Sequential()
33
- if stride != 1 or in_planes != self.expansion*planes:
34
- self.shortcut = nn.Sequential(
35
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
36
- nn.BatchNorm2d(self.expansion*planes)
37
- )
38
-
39
- def forward(self, x):
40
- out = F.relu(self.bn1(self.conv1(x)))
41
- out = self.bn2(self.conv2(out))
42
- out += self.shortcut(x)
43
- out = F.relu(out)
44
- return out
45
-
46
-
47
- class Bottleneck(nn.Module):
48
- expansion = 4
49
-
50
- def __init__(self, in_planes, planes, stride=1):
51
- super(Bottleneck, self).__init__()
52
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
53
- self.bn1 = nn.BatchNorm2d(planes)
54
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
55
- self.bn2 = nn.BatchNorm2d(planes)
56
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
57
- self.bn3 = nn.BatchNorm2d(self.expansion*planes)
58
-
59
- self.shortcut = nn.Sequential()
60
- if stride != 1 or in_planes != self.expansion*planes:
61
- self.shortcut = nn.Sequential(
62
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
63
- nn.BatchNorm2d(self.expansion*planes)
64
- )
65
-
66
- def forward(self, x):
67
- out = F.relu(self.bn1(self.conv1(x)))
68
- out = F.relu(self.bn2(self.conv2(out)))
69
- out = self.bn3(self.conv3(out))
70
- out += self.shortcut(x)
71
- out = F.relu(out)
72
- return out
73
-
74
-
75
- class ResNet_regre_eval(nn.Module):
76
- def __init__(self, block, num_blocks, nc=NC, ngpu = 1, feature_layer='f3'):
77
- super(ResNet_regre_eval, self).__init__()
78
- self.in_planes = 64
79
- self.ngpu = ngpu
80
- self.feature_layer=feature_layer
81
-
82
- self.block1 = nn.Sequential(
83
- nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h
84
- nn.BatchNorm2d(64),
85
- nn.ReLU(),
86
- nn.MaxPool2d(2,2), #h=h/2 64
87
- self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 32
88
- )
89
- self.block2 = self._make_layer(block, 128, num_blocks[1], stride=2) # h=h/2 16
90
- self.block3 = self._make_layer(block, 256, num_blocks[2], stride=2) # h=h/2 8
91
- self.block4 = self._make_layer(block, 512, num_blocks[3], stride=2) # h=h/2 4
92
-
93
- self.pool1 = nn.AvgPool2d(kernel_size=4)
94
- if self.feature_layer == 'f2':
95
- self.pool2 = nn.AdaptiveAvgPool2d((2,2))
96
- elif self.feature_layer == 'f3':
97
- self.pool2 = nn.AdaptiveAvgPool2d((2,2))
98
- else:
99
- self.pool2 = nn.AdaptiveAvgPool2d((1,1))
100
-
101
- linear_layers = [
102
- nn.Linear(512*block.expansion, 128),
103
- nn.BatchNorm1d(128),
104
- nn.ReLU(),
105
- nn.Linear(128, 128),
106
- nn.BatchNorm1d(128),
107
- nn.ReLU(),
108
- nn.Linear(128, 1),
109
- # nn.Sigmoid()
110
- nn.ReLU(),
111
- ]
112
- self.linear = nn.Sequential(*linear_layers)
113
-
114
-
115
- def _make_layer(self, block, planes, num_blocks, stride):
116
- strides = [stride] + [1]*(num_blocks-1)
117
- layers = []
118
- for stride in strides:
119
- layers.append(block(self.in_planes, planes, stride))
120
- self.in_planes = planes * block.expansion
121
- return nn.Sequential(*layers)
122
-
123
- def forward(self, x):
124
-
125
- if x.is_cuda and self.ngpu > 1:
126
- ft1 = nn.parallel.data_parallel(self.block1, x, range(self.ngpu))
127
- ft2 = nn.parallel.data_parallel(self.block2, ft1, range(self.ngpu))
128
- ft3 = nn.parallel.data_parallel(self.block3, ft2, range(self.ngpu))
129
- ft4 = nn.parallel.data_parallel(self.block4, ft3, range(self.ngpu))
130
- out = nn.parallel.data_parallel(self.pool1, ft4, range(self.ngpu))
131
- out = out.view(out.size(0), -1)
132
- out = nn.parallel.data_parallel(self.linear, out, range(self.ngpu))
133
- else:
134
- ft1 = self.block1(x)
135
- ft2 = self.block2(ft1)
136
- ft3 = self.block3(ft2)
137
- ft4 = self.block4(ft3)
138
- out = self.pool1(ft4)
139
- out = out.view(out.size(0), -1)
140
- out = self.linear(out)
141
-
142
- if self.feature_layer == 'f2':
143
- ext_features = self.pool2(ft2)
144
- elif self.feature_layer == 'f3':
145
- ext_features = self.pool2(ft3)
146
- else:
147
- ext_features = self.pool2(ft4)
148
-
149
- ext_features = ext_features.view(ext_features.size(0), -1)
150
-
151
- return out, ext_features
152
-
153
-
154
- def ResNet18_regre_eval(ngpu = 1):
155
- return ResNet_regre_eval(BasicBlock, [2,2,2,2], ngpu = ngpu)
156
-
157
- def ResNet34_regre_eval(ngpu = 1):
158
- return ResNet_regre_eval(BasicBlock, [3,4,6,3], ngpu = ngpu)
159
-
160
- def ResNet50_regre_eval(ngpu = 1):
161
- return ResNet_regre_eval(Bottleneck, [3,4,6,3], ngpu = ngpu)
162
-
163
- def ResNet101_regre_eval(ngpu = 1):
164
- return ResNet_regre_eval(Bottleneck, [3,4,23,3], ngpu = ngpu)
165
-
166
- def ResNet152_regre_eval(ngpu = 1):
167
- return ResNet_regre_eval(Bottleneck, [3,8,36,3], ngpu = ngpu)
168
-
169
-
170
- if __name__ == "__main__":
171
- net = ResNet34_regre_eval(ngpu = 1).cuda()
172
- x = torch.randn(4,NC,IMG_SIZE,IMG_SIZE).cuda()
173
- out, features = net(x)
174
- print(out.size())
175
- print(features.size())
@@ -1,7 +0,0 @@
1
- from .autoencoder import *
2
- from .cGAN_SAGAN import cGAN_SAGAN_Generator, cGAN_SAGAN_Discriminator
3
- from .cGAN_concat_SAGAN import cGAN_concat_SAGAN_Generator, cGAN_concat_SAGAN_Discriminator
4
- from .CcGAN_SAGAN import CcGAN_SAGAN_Generator, CcGAN_SAGAN_Discriminator
5
- from .ResNet_embed import ResNet18_embed, ResNet34_embed, ResNet50_embed, model_y2h
6
- from .ResNet_regre_eval import ResNet34_regre_eval
7
- from .ResNet_class_eval import ResNet34_class_eval
@@ -1,119 +0,0 @@
1
- import torch
2
- from torch import nn
3
-
4
-
5
-
6
- class encoder(nn.Module):
7
- def __init__(self, dim_bottleneck=512, ch=64):
8
- super(encoder, self).__init__()
9
- self.ch = ch
10
- self.dim_bottleneck = dim_bottleneck
11
-
12
- self.conv = nn.Sequential(
13
- nn.Conv2d(3, ch, kernel_size=4, stride=2, padding=1), #h=h/2; 64
14
- nn.BatchNorm2d(ch),
15
- nn.ReLU(),
16
- nn.MaxPool2d(2,2), #h=h/2; 32
17
- nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), #h=h
18
- nn.BatchNorm2d(ch),
19
- nn.ReLU(),
20
-
21
- nn.Conv2d(ch, ch*2, kernel_size=4, stride=2, padding=1), #h=h/2; 16
22
- nn.BatchNorm2d(ch*2),
23
- nn.ReLU(),
24
- nn.Conv2d(ch*2, ch*2, kernel_size=3, stride=1, padding=1), #h=h
25
- nn.BatchNorm2d(ch*2),
26
- nn.ReLU(),
27
-
28
- nn.Conv2d(ch*2, ch*4, kernel_size=4, stride=2, padding=1), #h=h/2; 8
29
- nn.BatchNorm2d(ch*4),
30
- nn.ReLU(),
31
- nn.Conv2d(ch*4, ch*4, kernel_size=3, stride=1, padding=1), #h=h
32
- nn.BatchNorm2d(ch*4),
33
- nn.ReLU(),
34
-
35
- nn.Conv2d(ch*4, ch*8, kernel_size=4, stride=2, padding=1), #h=h/2; 4
36
- nn.BatchNorm2d(ch*8),
37
- nn.ReLU(),
38
- nn.Conv2d(ch*8, ch*8, kernel_size=3, stride=1, padding=1), #h=h
39
- nn.BatchNorm2d(ch*8),
40
- nn.ReLU(),
41
- )
42
-
43
- self.linear = nn.Sequential(
44
- nn.Linear(ch*8*4*4, dim_bottleneck),
45
- # nn.ReLU()
46
- )
47
-
48
- def forward(self, x):
49
- feature = self.conv(x)
50
- feature = feature.view(-1, self.ch*8*4*4)
51
- feature = self.linear(feature)
52
- return feature
53
-
54
-
55
-
56
- class decoder(nn.Module):
57
- def __init__(self, dim_bottleneck=512, ch=64):
58
- super(decoder, self).__init__()
59
- self.ch = ch
60
- self.dim_bottleneck = dim_bottleneck
61
-
62
- self.linear = nn.Sequential(
63
- nn.Linear(dim_bottleneck, ch*16*4*4)
64
- )
65
-
66
- self.deconv = nn.Sequential(
67
- nn.ConvTranspose2d(ch*16, ch*8, kernel_size=4, stride=2, padding=1), #h=2h; 8
68
- nn.BatchNorm2d(ch*8),
69
- nn.ReLU(True),
70
- nn.Conv2d(ch*8, ch*8, kernel_size=3, stride=1, padding=1), #h=h
71
- nn.BatchNorm2d(ch*8),
72
- nn.ReLU(),
73
-
74
- nn.ConvTranspose2d(ch*8, ch*4, kernel_size=4, stride=2, padding=1), #h=2h; 16
75
- nn.BatchNorm2d(ch*4),
76
- nn.ReLU(True),
77
- nn.Conv2d(ch*4, ch*4, kernel_size=3, stride=1, padding=1), #h=h
78
- nn.BatchNorm2d(ch*4),
79
- nn.ReLU(),
80
-
81
- nn.ConvTranspose2d(ch*4, ch*2, kernel_size=4, stride=2, padding=1), #h=2h; 32
82
- nn.BatchNorm2d(ch*2),
83
- nn.ReLU(True),
84
- nn.Conv2d(ch*2, ch*2, kernel_size=3, stride=1, padding=1), #h=h
85
- nn.BatchNorm2d(ch*2),
86
- nn.ReLU(),
87
-
88
- nn.ConvTranspose2d(ch*2, ch, kernel_size=4, stride=2, padding=1), #h=2h; 64
89
- nn.BatchNorm2d(ch),
90
- nn.ReLU(True),
91
- nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), #h=h
92
- nn.BatchNorm2d(ch),
93
- nn.ReLU(),
94
-
95
- nn.ConvTranspose2d(ch, ch, kernel_size=4, stride=2, padding=1), #h=2h; 128
96
- nn.BatchNorm2d(ch),
97
- nn.ReLU(True),
98
- nn.Conv2d(ch, 3, kernel_size=3, stride=1, padding=1), #h=h
99
- nn.Tanh()
100
- )
101
-
102
- def forward(self, feature):
103
- out = self.linear(feature)
104
- out = out.view(-1, self.ch*16, 4, 4)
105
- out = self.deconv(out)
106
- return out
107
-
108
-
109
- if __name__=="__main__":
110
- #test
111
-
112
- net_encoder = encoder(dim_bottleneck=512, ch=64).cuda()
113
- net_decoder = decoder(dim_bottleneck=512, ch=64).cuda()
114
-
115
- x = torch.randn(10, 3, 128, 128).cuda()
116
- f = net_encoder(x)
117
- xh = net_decoder(f)
118
- print(f.size())
119
- print(xh.size())