Myosotis-Researches 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. myosotis_researches/CcGAN/train/__init__.py +4 -0
  2. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_ccgan.py +4 -4
  3. myosotis_researches/CcGAN/{train_128 → train}/train_cgan.py +1 -3
  4. myosotis_researches/CcGAN/{train_128 → train}/train_cgan_concat.py +1 -3
  5. myosotis_researches/CcGAN/utils/__init__.py +2 -1
  6. myosotis_researches/CcGAN/utils/train.py +94 -3
  7. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/METADATA +1 -1
  8. myosotis_researches-0.1.9.dist-info/RECORD +24 -0
  9. myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py +0 -301
  10. myosotis_researches/CcGAN/models_128/ResNet_class_eval.py +0 -141
  11. myosotis_researches/CcGAN/models_128/ResNet_embed.py +0 -188
  12. myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py +0 -175
  13. myosotis_researches/CcGAN/models_128/__init__.py +0 -7
  14. myosotis_researches/CcGAN/models_128/autoencoder.py +0 -119
  15. myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py +0 -276
  16. myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py +0 -245
  17. myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py +0 -303
  18. myosotis_researches/CcGAN/models_256/ResNet_class_eval.py +0 -142
  19. myosotis_researches/CcGAN/models_256/ResNet_embed.py +0 -188
  20. myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py +0 -178
  21. myosotis_researches/CcGAN/models_256/__init__.py +0 -7
  22. myosotis_researches/CcGAN/models_256/autoencoder.py +0 -133
  23. myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py +0 -280
  24. myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py +0 -249
  25. myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py +0 -76
  26. myosotis_researches/CcGAN/train_128/__init__.py +0 -0
  27. myosotis_researches/CcGAN/train_128/eval_metrics.py +0 -205
  28. myosotis_researches/CcGAN/train_128/opts.py +0 -87
  29. myosotis_researches/CcGAN/train_128/pretrain_AE.py +0 -268
  30. myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py +0 -251
  31. myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py +0 -255
  32. myosotis_researches/CcGAN/train_128/train_ccgan.py +0 -303
  33. myosotis_researches/CcGAN/train_128/utils.py +0 -120
  34. myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py +0 -76
  35. myosotis_researches/CcGAN/train_128_output_10/__init__.py +0 -0
  36. myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py +0 -205
  37. myosotis_researches/CcGAN/train_128_output_10/opts.py +0 -87
  38. myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py +0 -268
  39. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py +0 -251
  40. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py +0 -255
  41. myosotis_researches/CcGAN/train_128_output_10/train_cgan.py +0 -254
  42. myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py +0 -242
  43. myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py +0 -181
  44. myosotis_researches/CcGAN/train_128_output_10/utils.py +0 -120
  45. myosotis_researches-0.1.7.dist-info/RECORD +0 -59
  46. /myosotis_researches/CcGAN/{train_128 → train}/train_net_for_label_embed.py +0 -0
  47. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/WHEEL +0 -0
  48. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/licenses/LICENSE +0 -0
  49. {myosotis_researches-0.1.7.dist-info → myosotis_researches-0.1.9.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,4 @@
1
+ from .train_ccgan import *
2
+ from .train_cgan import *
3
+ from .train_cgan_concat import *
4
+ from .train_net_for_label_embed import *
@@ -5,10 +5,9 @@ import timeit
5
5
  from PIL import Image
6
6
  from torchvision.utils import save_image
7
7
  import torch.cuda as cutorch
8
+ import sys
8
9
 
9
- from .utils import SimpleProgressBar, IMGs_dataset
10
- from .opts import parse_opts
11
- from .DiffAugment_pytorch import DiffAugment
10
+ from myosotis_researches.CcGAN.utils import *
12
11
 
13
12
  ''' Settings '''
14
13
  args = parse_opts()
@@ -79,7 +78,8 @@ def train_ccgan(kernel_sigma, kappa, train_images, train_labels, netG, netD, net
79
78
  # printed images with labels between the 5-th quantile and 95-th quantile of training labels
80
79
  n_row=10; n_col = 1
81
80
  z_fixed = torch.randn(n_row*n_col, dim_gan, dtype=torch.float).cuda()
82
- selected_labels = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
81
+
82
+ selected_labels = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
83
83
 
84
84
  y_fixed = np.zeros(n_row*n_col)
85
85
  for i in range(n_row):
@@ -6,9 +6,7 @@ import numpy as np
6
6
  import os
7
7
  import timeit
8
8
 
9
- from .utils import IMGs_dataset, SimpleProgressBar
10
- from .opts import parse_opts
11
- from .DiffAugment_pytorch import DiffAugment
9
+ from myosotis_researches.CcGAN.utils import *
12
10
 
13
11
  ''' Settings '''
14
12
  args = parse_opts()
@@ -6,9 +6,7 @@ import numpy as np
6
6
  import os
7
7
  import timeit
8
8
 
9
- from .utils import IMGs_dataset, SimpleProgressBar
10
- from .opts import parse_opts
11
- from .DiffAugment_pytorch import DiffAugment
9
+ from myosotis_researches.CcGAN.utils import *
12
10
 
13
11
  ''' Settings '''
14
12
  args = parse_opts()
@@ -3,7 +3,7 @@ from .concat_image import concat_image
3
3
  from .make_h5 import make_h5
4
4
  from .SimpleProgressBar import SimpleProgressBar
5
5
  from .IMGs_dataset import IMGs_dataset
6
- from .train import PlotLoss, compute_entropy, predict_class_labels
6
+ from .train import PlotLoss, compute_entropy, predict_class_labels, DiffAugment
7
7
  from .opts import parse_opts
8
8
 
9
9
  __all__ = [
@@ -15,5 +15,6 @@ __all__ = [
15
15
  "PlotLoss",
16
16
  "compute_entropy",
17
17
  "predict_class_labels",
18
+ "DiffAugment",
18
19
  "parse_opts"
19
20
  ]
@@ -1,7 +1,8 @@
1
+ import matplotlib as mpl
2
+ import matplotlib.pyplot as plt
1
3
  import numpy as np
2
4
  import torch
3
- import matplotlib.pyplot as plt
4
- import matplotlib as mpl
5
+ import torch.nn.functional as F
5
6
 
6
7
 
7
8
  def PlotLoss(loss, filename):
@@ -62,4 +63,94 @@ def predict_class_labels(net, images, batch_size=500, verbose=False, num_workers
62
63
  return class_labels_pred
63
64
 
64
65
 
65
- __all__ = ["PlotLoss", "compute_entropy", "predict_class_labels"]
66
+ def DiffAugment(x, policy="", channels_first=True):
67
+ if policy:
68
+ if not channels_first:
69
+ x = x.permute(0, 3, 1, 2)
70
+ for p in policy.split(","):
71
+ for f in AUGMENT_FNS[p]:
72
+ x = f(x)
73
+ if not channels_first:
74
+ x = x.permute(0, 2, 3, 1)
75
+ x = x.contiguous()
76
+ return x
77
+
78
+
79
+ def rand_brightness(x):
80
+ x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
81
+ return x
82
+
83
+
84
+ def rand_saturation(x):
85
+ x_mean = x.mean(dim=1, keepdim=True)
86
+ x = (x - x_mean) * (
87
+ torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2
88
+ ) + x_mean
89
+ return x
90
+
91
+
92
+ def rand_contrast(x):
93
+ x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
94
+ x = (x - x_mean) * (
95
+ torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5
96
+ ) + x_mean
97
+ return x
98
+
99
+
100
+ def rand_translation(x, ratio=0.125):
101
+ shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
102
+ translation_x = torch.randint(
103
+ -shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device
104
+ )
105
+ translation_y = torch.randint(
106
+ -shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device
107
+ )
108
+ grid_batch, grid_x, grid_y = torch.meshgrid(
109
+ torch.arange(x.size(0), dtype=torch.long, device=x.device),
110
+ torch.arange(x.size(2), dtype=torch.long, device=x.device),
111
+ torch.arange(x.size(3), dtype=torch.long, device=x.device),
112
+ )
113
+ grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
114
+ grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
115
+ x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
116
+ x = (
117
+ x_pad.permute(0, 2, 3, 1)
118
+ .contiguous()[grid_batch, grid_x, grid_y]
119
+ .permute(0, 3, 1, 2)
120
+ )
121
+ return x
122
+
123
+
124
+ def rand_cutout(x, ratio=0.5):
125
+ cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
126
+ offset_x = torch.randint(
127
+ 0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device
128
+ )
129
+ offset_y = torch.randint(
130
+ 0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device
131
+ )
132
+ grid_batch, grid_x, grid_y = torch.meshgrid(
133
+ torch.arange(x.size(0), dtype=torch.long, device=x.device),
134
+ torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
135
+ torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
136
+ )
137
+ grid_x = torch.clamp(
138
+ grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1
139
+ )
140
+ grid_y = torch.clamp(
141
+ grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1
142
+ )
143
+ mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
144
+ mask[grid_batch, grid_x, grid_y] = 0
145
+ x = x * mask.unsqueeze(1)
146
+ return x
147
+
148
+
149
+ AUGMENT_FNS = {
150
+ "color": [rand_brightness, rand_saturation, rand_contrast],
151
+ "translation": [rand_translation],
152
+ "cutout": [rand_cutout],
153
+ }
154
+
155
+
156
+ __all__ = ["PlotLoss", "compute_entropy", "predict_class_labels", "DiffAugment"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.7
3
+ Version: 0.1.9
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -0,0 +1,24 @@
1
+ myosotis_researches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ myosotis_researches/CcGAN/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ myosotis_researches/CcGAN/internal/__init__.py,sha256=b-63yANNRQXgLF9k9yGdrm7mlULqGic1HTQTzg9wIME,209
4
+ myosotis_researches/CcGAN/internal/install_datasets.py,sha256=jJwLOZrDnHMrJSUhXxSIFobdeWK5N6eitPmjeBW9FyA,1144
5
+ myosotis_researches/CcGAN/internal/show_datasets.py,sha256=BWtQ6vdiEUOTrOs8aMBv6utuUN0IiaLKcK5iXq9y2qI,363
6
+ myosotis_researches/CcGAN/internal/uninstall_datasets.py,sha256=7pxPZcSe9RHncF0I_4rf8ZdI7eQwv-sFVfxzSVZfYHQ,297
7
+ myosotis_researches/CcGAN/train/__init__.py,sha256=-55Ccov89II6Yuaiszi8ziw9EoVQr7OJR0bQfPAE_10,127
8
+ myosotis_researches/CcGAN/train/train_ccgan.py,sha256=0Qxibgd2-WaYgbyYeeOyiMkdcwkd_M1m1gSqoHTjN0w,13268
9
+ myosotis_researches/CcGAN/train/train_cgan.py,sha256=sxMzvlmdjmqufwJFxBwatcoJecYqn2Uidedu15CL9ws,9619
10
+ myosotis_researches/CcGAN/train/train_cgan_concat.py,sha256=OrQbwdU_ujUeKFGixUUpnini6rURtbuHv9NDrP6g0X0,8861
11
+ myosotis_researches/CcGAN/train/train_net_for_label_embed.py,sha256=4j6r4_o4rXgAN4MdUQL-TXqZJpbhH7d9gWQR8YzBlXw,6976
12
+ myosotis_researches/CcGAN/utils/IMGs_dataset.py,sha256=i45PBNSCeAEB5uUG0SluYRTuHWZwH_5ldz2wm6afkYs,927
13
+ myosotis_researches/CcGAN/utils/SimpleProgressBar.py,sha256=S4eD_m6ysHRMHAmRtkTXVRNfXTR8kuHv-d3lUN0BVn4,546
14
+ myosotis_researches/CcGAN/utils/__init__.py,sha256=em3aB0C-V230NQtT64hyuHGo4CjV6p2DwIdtNM0dk4k,516
15
+ myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
16
+ myosotis_researches/CcGAN/utils/make_h5.py,sha256=VtFYjr_i-JktsEW_BvofpilcDmChRmyLykv0VvlMuY0,963
17
+ myosotis_researches/CcGAN/utils/opts.py,sha256=pd7-wknNPBO5hWRpO3YAPmmAsPKgZUUpKc4gWMs6Wto,5397
18
+ myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
19
+ myosotis_researches/CcGAN/utils/train.py,sha256=5ZXgkGesuInqUooJRpLej_KHqYQtlSDq90_5wig5elQ,5152
20
+ myosotis_researches-0.1.9.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
21
+ myosotis_researches-0.1.9.dist-info/METADATA,sha256=F0XMimBS26-MprX3UHMvW1KtXOuMF4FZQlTw9L3L0mc,2663
22
+ myosotis_researches-0.1.9.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
23
+ myosotis_researches-0.1.9.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
24
+ myosotis_researches-0.1.9.dist-info/RECORD,,
@@ -1,301 +0,0 @@
1
- '''
2
-
3
- Adapted from https://github.com/voletiv/self-attention-GAN-pytorch/blob/master/sagan_models.py
4
-
5
-
6
- '''
7
-
8
-
9
- import numpy as np
10
- import torch
11
- import torch.nn as nn
12
- import torch.nn.functional as F
13
-
14
- from torch.nn.utils import spectral_norm
15
- from torch.nn.init import xavier_uniform_
16
-
17
-
18
- def init_weights(m):
19
- if type(m) == nn.Linear or type(m) == nn.Conv2d:
20
- xavier_uniform_(m.weight)
21
- if m.bias is not None:
22
- m.bias.data.fill_(0.)
23
-
24
-
25
- def snconv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
26
- return spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
27
- stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias))
28
-
29
- def snlinear(in_features, out_features, bias=True):
30
- return spectral_norm(nn.Linear(in_features=in_features, out_features=out_features, bias=bias))
31
-
32
-
33
-
34
- class Self_Attn(nn.Module):
35
- """ Self attention Layer"""
36
-
37
- def __init__(self, in_channels):
38
- super(Self_Attn, self).__init__()
39
- self.in_channels = in_channels
40
- self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
41
- self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
42
- self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2, kernel_size=1, stride=1, padding=0)
43
- self.snconv1x1_attn = snconv2d(in_channels=in_channels//2, out_channels=in_channels, kernel_size=1, stride=1, padding=0)
44
- self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
45
- self.softmax = nn.Softmax(dim=-1)
46
- self.sigma = nn.Parameter(torch.zeros(1))
47
-
48
- def forward(self, x):
49
- """
50
- inputs :
51
- x : input feature maps(B X C X W X H)
52
- returns :
53
- out : self attention value + input feature
54
- attention: B X N X N (N is Width*Height)
55
- """
56
- _, ch, h, w = x.size()
57
- # Theta path
58
- theta = self.snconv1x1_theta(x)
59
- theta = theta.view(-1, ch//8, h*w)
60
- # Phi path
61
- phi = self.snconv1x1_phi(x)
62
- phi = self.maxpool(phi)
63
- phi = phi.view(-1, ch//8, h*w//4)
64
- # Attn map
65
- attn = torch.bmm(theta.permute(0, 2, 1), phi)
66
- attn = self.softmax(attn)
67
- # g path
68
- g = self.snconv1x1_g(x)
69
- g = self.maxpool(g)
70
- g = g.view(-1, ch//2, h*w//4)
71
- # Attn_g
72
- attn_g = torch.bmm(g, attn.permute(0, 2, 1))
73
- attn_g = attn_g.view(-1, ch//2, h, w)
74
- attn_g = self.snconv1x1_attn(attn_g)
75
- # Out
76
- out = x + self.sigma*attn_g
77
- return out
78
-
79
-
80
-
81
-
82
- '''
83
-
84
- Generator
85
-
86
- '''
87
-
88
-
89
- class ConditionalBatchNorm2d(nn.Module):
90
- def __init__(self, num_features, dim_embed):
91
- super().__init__()
92
- self.num_features = num_features
93
- self.bn = nn.BatchNorm2d(num_features, momentum=0.001, affine=False)
94
- self.embed_gamma = nn.Linear(dim_embed, num_features, bias=False)
95
- self.embed_beta = nn.Linear(dim_embed, num_features, bias=False)
96
-
97
- def forward(self, x, y):
98
- out = self.bn(x)
99
- gamma = self.embed_gamma(y).view(-1, self.num_features, 1, 1)
100
- beta = self.embed_beta(y).view(-1, self.num_features, 1, 1)
101
- out = out + gamma*out + beta
102
- return out
103
-
104
-
105
- class GenBlock(nn.Module):
106
- def __init__(self, in_channels, out_channels, dim_embed):
107
- super(GenBlock, self).__init__()
108
- self.cond_bn1 = ConditionalBatchNorm2d(in_channels, dim_embed)
109
- self.relu = nn.ReLU(inplace=True)
110
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
111
- self.cond_bn2 = ConditionalBatchNorm2d(out_channels, dim_embed)
112
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
113
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
114
-
115
- def forward(self, x, labels):
116
- x0 = x
117
-
118
- x = self.cond_bn1(x, labels)
119
- x = self.relu(x)
120
- x = F.interpolate(x, scale_factor=2, mode='nearest') # upsample
121
- x = self.snconv2d1(x)
122
- x = self.cond_bn2(x, labels)
123
- x = self.relu(x)
124
- x = self.snconv2d2(x)
125
-
126
- x0 = F.interpolate(x0, scale_factor=2, mode='nearest') # upsample
127
- x0 = self.snconv2d0(x0)
128
-
129
- out = x + x0
130
- return out
131
-
132
-
133
- class CcGAN_SAGAN_Generator(nn.Module):
134
- """Generator."""
135
-
136
- def __init__(self, dim_z, dim_embed=128, nc=3, gene_ch=64):
137
- super(CcGAN_SAGAN_Generator, self).__init__()
138
-
139
- self.dim_z = dim_z
140
- self.gene_ch = gene_ch
141
-
142
- self.snlinear0 = snlinear(in_features=dim_z, out_features=gene_ch*16*4*4)
143
- self.block1 = GenBlock(gene_ch*16, gene_ch*16, dim_embed)
144
- self.block2 = GenBlock(gene_ch*16, gene_ch*8, dim_embed)
145
- self.block3 = GenBlock(gene_ch*8, gene_ch*4, dim_embed)
146
- self.self_attn = Self_Attn(gene_ch*4)
147
- self.block4 = GenBlock(gene_ch*4, gene_ch*2, dim_embed)
148
- self.block5 = GenBlock(gene_ch*2, gene_ch, dim_embed)
149
- self.bn = nn.BatchNorm2d(gene_ch, eps=1e-5, momentum=0.0001, affine=True)
150
- self.relu = nn.ReLU(inplace=True)
151
- self.snconv2d1 = snconv2d(in_channels=gene_ch, out_channels=nc, kernel_size=3, stride=1, padding=1)
152
- self.tanh = nn.Tanh()
153
-
154
- # Weight init
155
- self.apply(init_weights)
156
-
157
- def forward(self, z, labels):
158
- # n x dim_z
159
- out = self.snlinear0(z) # 4*4
160
- out = out.view(-1, self.gene_ch*16, 4, 4) # 4 x 4
161
- out = self.block1(out, labels) # 8 x 8
162
- out = self.block2(out, labels) # 16 x 16
163
- out = self.block3(out, labels) # 32 x 32
164
- out = self.self_attn(out) # 32 x 32
165
- out = self.block4(out, labels) # 64 x 64
166
- out = self.block5(out, labels) # 128 x 128
167
- out = self.bn(out)
168
- out = self.relu(out)
169
- out = self.snconv2d1(out)
170
- out = self.tanh(out)
171
- return out
172
-
173
-
174
-
175
- '''
176
-
177
- Discriminator
178
-
179
- '''
180
-
181
- class DiscOptBlock(nn.Module):
182
- def __init__(self, in_channels, out_channels):
183
- super(DiscOptBlock, self).__init__()
184
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
185
- self.relu = nn.ReLU(inplace=True)
186
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
187
- self.downsample = nn.AvgPool2d(2)
188
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
189
-
190
- def forward(self, x):
191
- x0 = x
192
-
193
- x = self.snconv2d1(x)
194
- x = self.relu(x)
195
- x = self.snconv2d2(x)
196
- x = self.downsample(x)
197
-
198
- x0 = self.downsample(x0)
199
- x0 = self.snconv2d0(x0)
200
-
201
- out = x + x0
202
- return out
203
-
204
-
205
- class DiscBlock(nn.Module):
206
- def __init__(self, in_channels, out_channels):
207
- super(DiscBlock, self).__init__()
208
- self.relu = nn.ReLU(inplace=True)
209
- self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
210
- self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
211
- self.downsample = nn.AvgPool2d(2)
212
- self.ch_mismatch = False
213
- if in_channels != out_channels:
214
- self.ch_mismatch = True
215
- self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
216
-
217
- def forward(self, x, downsample=True):
218
- x0 = x
219
-
220
- x = self.relu(x)
221
- x = self.snconv2d1(x)
222
- x = self.relu(x)
223
- x = self.snconv2d2(x)
224
- if downsample:
225
- x = self.downsample(x)
226
-
227
- if downsample or self.ch_mismatch:
228
- x0 = self.snconv2d0(x0)
229
- if downsample:
230
- x0 = self.downsample(x0)
231
-
232
- out = x + x0
233
- return out
234
-
235
-
236
- class CcGAN_SAGAN_Discriminator(nn.Module):
237
- """Discriminator."""
238
-
239
- def __init__(self, dim_embed=128, nc=3, disc_ch=64):
240
- super(CcGAN_SAGAN_Discriminator, self).__init__()
241
- self.disc_ch = disc_ch
242
- self.opt_block1 = DiscOptBlock(nc, disc_ch)
243
- self.block1 = DiscBlock(disc_ch, disc_ch*2)
244
- self.self_attn = Self_Attn(disc_ch*2)
245
- self.block2 = DiscBlock(disc_ch*2, disc_ch*4)
246
- self.block3 = DiscBlock(disc_ch*4, disc_ch*8)
247
- self.block4 = DiscBlock(disc_ch*8, disc_ch*16)
248
- self.block5 = DiscBlock(disc_ch*16, disc_ch*16)
249
- self.relu = nn.ReLU(inplace=True)
250
- self.snlinear1 = snlinear(in_features=disc_ch*16*4*4, out_features=1)
251
- self.sn_embedding1 = snlinear(dim_embed, disc_ch*16*4*4, bias=False)
252
-
253
- # Weight init
254
- self.apply(init_weights)
255
- xavier_uniform_(self.sn_embedding1.weight)
256
-
257
- def forward(self, x, labels):
258
- # 128x128
259
- out = self.opt_block1(x) # 128x128
260
- out = self.block1(out) # 64 x 64
261
- out = self.self_attn(out) # 64 x 64
262
- out = self.block2(out) # 32 x 32
263
- out = self.block3(out) # 16 x 16
264
- out = self.block4(out) # 8 x 8
265
- out = self.block5(out, downsample=False) # 4 x 4
266
- out = self.relu(out) # n x disc_ch*16 x 4 x 4
267
- out = out.view(-1, self.disc_ch*16*4*4)
268
- output1 = torch.squeeze(self.snlinear1(out)) # n
269
- # Projection
270
- h_labels = self.sn_embedding1(labels) # n x disc_ch*16
271
- proj = torch.mul(out, h_labels) # n x disc_ch*16
272
- output2 = torch.sum(proj, dim=[1]) # n
273
- # Out
274
- output = output1 + output2 # n
275
- return output
276
-
277
-
278
- if __name__ == "__main__":
279
-
280
- def get_parameter_number(net):
281
- total_num = sum(p.numel() for p in net.parameters())
282
- trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
283
- return {'Total': total_num, 'Trainable': trainable_num}
284
-
285
-
286
- netG = CcGAN_SAGAN_Generator(dim_z=256, dim_embed=128, gene_ch=128).cuda()
287
- netD = CcGAN_SAGAN_Discriminator(dim_embed=128, disc_ch=128).cuda()
288
-
289
- # netG = nn.DataParallel(netG)
290
- # netD = nn.DataParallel(netD)
291
-
292
- N=4
293
- z = torch.randn(N, 256).cuda()
294
- y = torch.randn(N, 128).cuda()
295
- x = netG(z,y)
296
- o = netD(x,y)
297
- print(x.size())
298
- print(o.size())
299
-
300
- print('G:', get_parameter_number(netG))
301
- print('D:', get_parameter_number(netD))
@@ -1,141 +0,0 @@
1
- '''
2
- Regular ResNet
3
-
4
- codes are based on
5
- @article{
6
- zhang2018mixup,
7
- title={mixup: Beyond Empirical Risk Minimization},
8
- author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
9
- journal={International Conference on Learning Representations},
10
- year={2018},
11
- url={https://openreview.net/forum?id=r1Ddp1-Rb},
12
- }
13
- '''
14
-
15
-
16
- import torch
17
- import torch.nn as nn
18
- import torch.nn.functional as F
19
-
20
- from torch.autograd import Variable
21
-
22
- IMG_SIZE=128
23
- NC=3
24
-
25
-
26
- class BasicBlock(nn.Module):
27
- expansion = 1
28
-
29
- def __init__(self, in_planes, planes, stride=1):
30
- super(BasicBlock, self).__init__()
31
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
32
- self.bn1 = nn.BatchNorm2d(planes)
33
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
34
- self.bn2 = nn.BatchNorm2d(planes)
35
-
36
- self.shortcut = nn.Sequential()
37
- if stride != 1 or in_planes != self.expansion*planes:
38
- self.shortcut = nn.Sequential(
39
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
40
- nn.BatchNorm2d(self.expansion*planes)
41
- )
42
-
43
- def forward(self, x):
44
- out = F.relu(self.bn1(self.conv1(x)))
45
- out = self.bn2(self.conv2(out))
46
- out += self.shortcut(x)
47
- out = F.relu(out)
48
- return out
49
-
50
-
51
- class Bottleneck(nn.Module):
52
- expansion = 4
53
-
54
- def __init__(self, in_planes, planes, stride=1):
55
- super(Bottleneck, self).__init__()
56
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
57
- self.bn1 = nn.BatchNorm2d(planes)
58
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
59
- self.bn2 = nn.BatchNorm2d(planes)
60
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
61
- self.bn3 = nn.BatchNorm2d(self.expansion*planes)
62
-
63
- self.shortcut = nn.Sequential()
64
- if stride != 1 or in_planes != self.expansion*planes:
65
- self.shortcut = nn.Sequential(
66
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
67
- nn.BatchNorm2d(self.expansion*planes)
68
- )
69
-
70
- def forward(self, x):
71
- out = F.relu(self.bn1(self.conv1(x)))
72
- out = F.relu(self.bn2(self.conv2(out)))
73
- out = self.bn3(self.conv3(out))
74
- out += self.shortcut(x)
75
- out = F.relu(out)
76
- return out
77
-
78
-
79
- class ResNet_class_eval(nn.Module):
80
- def __init__(self, block, num_blocks, num_classes=49, nc=NC, ngpu = 1):
81
- super(ResNet_class_eval, self).__init__()
82
- self.in_planes = 64
83
- self.ngpu = ngpu
84
-
85
- self.main = nn.Sequential(
86
- nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h
87
- nn.BatchNorm2d(64),
88
- nn.ReLU(),
89
- nn.MaxPool2d(2,2), #h=h/2 64
90
- # self._make_layer(block, 64, num_blocks[0], stride=1), # h=h
91
- self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 32
92
- self._make_layer(block, 128, num_blocks[1], stride=2),
93
- self._make_layer(block, 256, num_blocks[2], stride=2),
94
- self._make_layer(block, 512, num_blocks[3], stride=2),
95
- nn.AvgPool2d(kernel_size=4)
96
- )
97
- self.classifier = nn.Linear(512*block.expansion, num_classes)
98
-
99
- def _make_layer(self, block, planes, num_blocks, stride):
100
- strides = [stride] + [1]*(num_blocks-1)
101
- layers = []
102
- for stride in strides:
103
- layers.append(block(self.in_planes, planes, stride))
104
- self.in_planes = planes * block.expansion
105
- return nn.Sequential(*layers)
106
-
107
- def forward(self, x):
108
-
109
- if x.is_cuda and self.ngpu > 1:
110
- features = nn.parallel.data_parallel(self.main, x, range(self.ngpu))
111
- features = features.view(features.size(0), -1)
112
- out = nn.parallel.data_parallel(self.classifier, features, range(self.ngpu))
113
- else:
114
- features = self.main(x)
115
- features = features.view(features.size(0), -1)
116
- out = self.classifier(features)
117
- return out, features
118
-
119
-
120
- def ResNet18_class_eval(num_classes=49, ngpu = 1):
121
- return ResNet_class_eval(BasicBlock, [2,2,2,2], num_classes=num_classes, ngpu = ngpu)
122
-
123
- def ResNet34_class_eval(num_classes=49, ngpu = 1):
124
- return ResNet_class_eval(BasicBlock, [3,4,6,3], num_classes=num_classes, ngpu = ngpu)
125
-
126
- def ResNet50_class_eval(num_classes=49, ngpu = 1):
127
- return ResNet_class_eval(Bottleneck, [3,4,6,3], num_classes=num_classes, ngpu = ngpu)
128
-
129
- def ResNet101_class_eval(num_classes=49, ngpu = 1):
130
- return ResNet_class_eval(Bottleneck, [3,4,23,3], num_classes=num_classes, ngpu = ngpu)
131
-
132
- def ResNet152_class_eval(num_classes=49, ngpu = 1):
133
- return ResNet_class_eval(Bottleneck, [3,8,36,3], num_classes=num_classes, ngpu = ngpu)
134
-
135
-
136
- if __name__ == "__main__":
137
- net = ResNet50_class_eval(num_classes=5, ngpu = 1).cuda()
138
- x = torch.randn(16,NC,IMG_SIZE,IMG_SIZE).cuda()
139
- out, features = net(x)
140
- print(out.size())
141
- print(features.size())