Mesa 3.0.0__py3-none-any.whl → 3.0.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of Mesa might be problematic. Click here for more details.
- mesa/__init__.py +3 -3
- mesa/agent.py +114 -406
- mesa/batchrunner.py +27 -54
- mesa/cookiecutter-mesa/cookiecutter.json +8 -0
- mesa/cookiecutter-mesa/hooks/post_gen_project.py +11 -0
- mesa/cookiecutter-mesa/{{cookiecutter.snake}}/README.md +4 -0
- mesa/cookiecutter-mesa/{{cookiecutter.snake}}/app.pytemplate +27 -0
- mesa/cookiecutter-mesa/{{cookiecutter.snake}}/setup.pytemplate +11 -0
- mesa/cookiecutter-mesa/{{cookiecutter.snake}}/{{cookiecutter.snake}}/model.pytemplate +60 -0
- mesa/datacollection.py +29 -140
- mesa/experimental/__init__.py +1 -11
- mesa/experimental/cell_space/__init__.py +1 -16
- mesa/experimental/cell_space/cell.py +23 -93
- mesa/experimental/cell_space/cell_agent.py +21 -117
- mesa/experimental/cell_space/cell_collection.py +17 -54
- mesa/experimental/cell_space/discrete_space.py +8 -92
- mesa/experimental/cell_space/grid.py +8 -32
- mesa/experimental/cell_space/network.py +7 -12
- mesa/experimental/devs/__init__.py +0 -2
- mesa/experimental/devs/eventlist.py +14 -52
- mesa/experimental/devs/examples/epstein_civil_violence.py +39 -71
- mesa/experimental/devs/examples/wolf_sheep.py +45 -45
- mesa/experimental/devs/simulator.py +15 -55
- mesa/main.py +63 -0
- mesa/model.py +83 -211
- mesa/space.py +149 -215
- mesa/time.py +77 -62
- mesa/{experimental → visualization}/UserParam.py +6 -17
- mesa/visualization/__init__.py +2 -25
- mesa/{experimental → visualization}/components/altair.py +0 -10
- mesa/visualization/components/matplotlib.py +134 -0
- mesa/visualization/solara_viz.py +266 -267
- {mesa-3.0.0.dist-info → mesa-3.0.0a1.dist-info}/METADATA +13 -65
- mesa-3.0.0a1.dist-info/RECORD +38 -0
- mesa-3.0.0.dist-info/licenses/NOTICE → mesa-3.0.0a1.dist-info/licenses/LICENSE +2 -2
- mesa/examples/README.md +0 -37
- mesa/examples/__init__.py +0 -21
- mesa/examples/advanced/epstein_civil_violence/Epstein Civil Violence.ipynb +0 -116
- mesa/examples/advanced/epstein_civil_violence/Readme.md +0 -34
- mesa/examples/advanced/epstein_civil_violence/__init__.py +0 -0
- mesa/examples/advanced/epstein_civil_violence/agents.py +0 -164
- mesa/examples/advanced/epstein_civil_violence/app.py +0 -73
- mesa/examples/advanced/epstein_civil_violence/model.py +0 -114
- mesa/examples/advanced/pd_grid/Readme.md +0 -43
- mesa/examples/advanced/pd_grid/__init__.py +0 -0
- mesa/examples/advanced/pd_grid/agents.py +0 -50
- mesa/examples/advanced/pd_grid/analysis.ipynb +0 -228
- mesa/examples/advanced/pd_grid/app.py +0 -54
- mesa/examples/advanced/pd_grid/model.py +0 -71
- mesa/examples/advanced/sugarscape_g1mt/Readme.md +0 -64
- mesa/examples/advanced/sugarscape_g1mt/__init__.py +0 -0
- mesa/examples/advanced/sugarscape_g1mt/agents.py +0 -344
- mesa/examples/advanced/sugarscape_g1mt/app.py +0 -62
- mesa/examples/advanced/sugarscape_g1mt/model.py +0 -180
- mesa/examples/advanced/sugarscape_g1mt/sugar-map.txt +0 -50
- mesa/examples/advanced/sugarscape_g1mt/tests.py +0 -69
- mesa/examples/advanced/wolf_sheep/Readme.md +0 -57
- mesa/examples/advanced/wolf_sheep/__init__.py +0 -0
- mesa/examples/advanced/wolf_sheep/agents.py +0 -102
- mesa/examples/advanced/wolf_sheep/app.py +0 -84
- mesa/examples/advanced/wolf_sheep/model.py +0 -137
- mesa/examples/basic/__init__.py +0 -0
- mesa/examples/basic/boid_flockers/Readme.md +0 -22
- mesa/examples/basic/boid_flockers/__init__.py +0 -0
- mesa/examples/basic/boid_flockers/agents.py +0 -71
- mesa/examples/basic/boid_flockers/app.py +0 -58
- mesa/examples/basic/boid_flockers/model.py +0 -69
- mesa/examples/basic/boltzmann_wealth_model/Readme.md +0 -56
- mesa/examples/basic/boltzmann_wealth_model/__init__.py +0 -0
- mesa/examples/basic/boltzmann_wealth_model/agents.py +0 -31
- mesa/examples/basic/boltzmann_wealth_model/app.py +0 -74
- mesa/examples/basic/boltzmann_wealth_model/model.py +0 -43
- mesa/examples/basic/boltzmann_wealth_model/st_app.py +0 -115
- mesa/examples/basic/conways_game_of_life/Readme.md +0 -39
- mesa/examples/basic/conways_game_of_life/__init__.py +0 -0
- mesa/examples/basic/conways_game_of_life/agents.py +0 -47
- mesa/examples/basic/conways_game_of_life/app.py +0 -51
- mesa/examples/basic/conways_game_of_life/model.py +0 -31
- mesa/examples/basic/conways_game_of_life/st_app.py +0 -72
- mesa/examples/basic/schelling/Readme.md +0 -40
- mesa/examples/basic/schelling/__init__.py +0 -0
- mesa/examples/basic/schelling/agents.py +0 -26
- mesa/examples/basic/schelling/analysis.ipynb +0 -205
- mesa/examples/basic/schelling/app.py +0 -42
- mesa/examples/basic/schelling/model.py +0 -59
- mesa/examples/basic/virus_on_network/Readme.md +0 -61
- mesa/examples/basic/virus_on_network/__init__.py +0 -0
- mesa/examples/basic/virus_on_network/agents.py +0 -69
- mesa/examples/basic/virus_on_network/app.py +0 -114
- mesa/examples/basic/virus_on_network/model.py +0 -96
- mesa/experimental/cell_space/voronoi.py +0 -257
- mesa/experimental/components/matplotlib.py +0 -242
- mesa/experimental/solara_viz.py +0 -453
- mesa/visualization/components/__init__.py +0 -83
- mesa/visualization/components/altair_components.py +0 -188
- mesa/visualization/components/matplotlib_components.py +0 -175
- mesa/visualization/mpl_space_drawing.py +0 -593
- mesa/visualization/user_param.py +0 -69
- mesa/visualization/utils.py +0 -9
- mesa-3.0.0.dist-info/RECORD +0 -95
- mesa-3.0.0.dist-info/licenses/LICENSE +0 -202
- /mesa/{examples/advanced → cookiecutter-mesa/{{cookiecutter.snake}}/{{cookiecutter.snake}}}/__init__.py +0 -0
- {mesa-3.0.0.dist-info → mesa-3.0.0a1.dist-info}/WHEEL +0 -0
- {mesa-3.0.0.dist-info → mesa-3.0.0a1.dist-info}/entry_points.txt +0 -0
|
@@ -1,13 +1,12 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: Mesa
|
|
3
|
-
Version: 3.0.
|
|
3
|
+
Version: 3.0.0a1
|
|
4
4
|
Summary: Agent-based modeling (ABM) in Python
|
|
5
5
|
Project-URL: homepage, https://github.com/projectmesa/mesa
|
|
6
6
|
Project-URL: repository, https://github.com/projectmesa/mesa
|
|
7
7
|
Author-email: Project Mesa Team <projectmesa@googlegroups.com>
|
|
8
8
|
License: Apache 2.0
|
|
9
9
|
License-File: LICENSE
|
|
10
|
-
License-File: NOTICE
|
|
11
10
|
Keywords: ABM,agent,based,model,modeling,multi-agent,simulation
|
|
12
11
|
Classifier: Development Status :: 3 - Alpha
|
|
13
12
|
Classifier: Intended Audience :: Science/Research
|
|
@@ -18,63 +17,32 @@ Classifier: Programming Language :: Python :: 3 :: Only
|
|
|
18
17
|
Classifier: Programming Language :: Python :: 3.10
|
|
19
18
|
Classifier: Programming Language :: Python :: 3.11
|
|
20
19
|
Classifier: Programming Language :: Python :: 3.12
|
|
21
|
-
Classifier: Programming Language :: Python :: 3.13
|
|
22
20
|
Classifier: Topic :: Scientific/Engineering
|
|
23
21
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
24
22
|
Classifier: Topic :: Scientific/Engineering :: Artificial Life
|
|
25
23
|
Requires-Python: >=3.10
|
|
24
|
+
Requires-Dist: click
|
|
25
|
+
Requires-Dist: cookiecutter
|
|
26
|
+
Requires-Dist: matplotlib
|
|
27
|
+
Requires-Dist: networkx
|
|
26
28
|
Requires-Dist: numpy
|
|
27
29
|
Requires-Dist: pandas
|
|
30
|
+
Requires-Dist: solara
|
|
28
31
|
Requires-Dist: tqdm
|
|
29
|
-
Provides-Extra: all
|
|
30
|
-
Requires-Dist: ipython; extra == 'all'
|
|
31
|
-
Requires-Dist: matplotlib; extra == 'all'
|
|
32
|
-
Requires-Dist: myst-nb; extra == 'all'
|
|
33
|
-
Requires-Dist: myst-parser; extra == 'all'
|
|
34
|
-
Requires-Dist: networkx; extra == 'all'
|
|
35
|
-
Requires-Dist: pydata-sphinx-theme; extra == 'all'
|
|
36
|
-
Requires-Dist: pytest; extra == 'all'
|
|
37
|
-
Requires-Dist: pytest-cov; extra == 'all'
|
|
38
|
-
Requires-Dist: pytest-mock; extra == 'all'
|
|
39
|
-
Requires-Dist: ruff; extra == 'all'
|
|
40
|
-
Requires-Dist: scipy; extra == 'all'
|
|
41
|
-
Requires-Dist: seaborn; extra == 'all'
|
|
42
|
-
Requires-Dist: solara; extra == 'all'
|
|
43
|
-
Requires-Dist: sphinx; extra == 'all'
|
|
44
32
|
Provides-Extra: dev
|
|
45
|
-
Requires-Dist:
|
|
46
|
-
Requires-Dist: networkx; extra == 'dev'
|
|
47
|
-
Requires-Dist: pytest; extra == 'dev'
|
|
33
|
+
Requires-Dist: coverage; extra == 'dev'
|
|
48
34
|
Requires-Dist: pytest-cov; extra == 'dev'
|
|
49
35
|
Requires-Dist: pytest-mock; extra == 'dev'
|
|
50
|
-
Requires-Dist:
|
|
51
|
-
Requires-Dist:
|
|
36
|
+
Requires-Dist: pytest>=4.6; extra == 'dev'
|
|
37
|
+
Requires-Dist: ruff~=0.1.1; extra == 'dev'
|
|
52
38
|
Requires-Dist: sphinx; extra == 'dev'
|
|
53
39
|
Provides-Extra: docs
|
|
54
40
|
Requires-Dist: ipython; extra == 'docs'
|
|
55
|
-
Requires-Dist: matplotlib; extra == 'docs'
|
|
56
41
|
Requires-Dist: myst-nb; extra == 'docs'
|
|
57
42
|
Requires-Dist: myst-parser; extra == 'docs'
|
|
58
|
-
Requires-Dist: networkx; extra == 'docs'
|
|
59
43
|
Requires-Dist: pydata-sphinx-theme; extra == 'docs'
|
|
60
44
|
Requires-Dist: seaborn; extra == 'docs'
|
|
61
|
-
Requires-Dist: solara; extra == 'docs'
|
|
62
45
|
Requires-Dist: sphinx; extra == 'docs'
|
|
63
|
-
Provides-Extra: examples
|
|
64
|
-
Requires-Dist: matplotlib; extra == 'examples'
|
|
65
|
-
Requires-Dist: networkx; extra == 'examples'
|
|
66
|
-
Requires-Dist: pytest; extra == 'examples'
|
|
67
|
-
Requires-Dist: scipy; extra == 'examples'
|
|
68
|
-
Requires-Dist: solara; extra == 'examples'
|
|
69
|
-
Provides-Extra: network
|
|
70
|
-
Requires-Dist: networkx; extra == 'network'
|
|
71
|
-
Provides-Extra: rec
|
|
72
|
-
Requires-Dist: matplotlib; extra == 'rec'
|
|
73
|
-
Requires-Dist: networkx; extra == 'rec'
|
|
74
|
-
Requires-Dist: solara; extra == 'rec'
|
|
75
|
-
Provides-Extra: viz
|
|
76
|
-
Requires-Dist: matplotlib; extra == 'viz'
|
|
77
|
-
Requires-Dist: solara; extra == 'viz'
|
|
78
46
|
Description-Content-Type: text/markdown
|
|
79
47
|
|
|
80
48
|
# Mesa: Agent-based modeling in Python
|
|
@@ -107,30 +75,13 @@ can be displayed in browser windows or Jupyter.*
|
|
|
107
75
|
|
|
108
76
|
## Using Mesa
|
|
109
77
|
|
|
110
|
-
|
|
78
|
+
Getting started quickly:
|
|
111
79
|
|
|
112
80
|
``` bash
|
|
113
|
-
pip install
|
|
81
|
+
pip install mesa
|
|
114
82
|
```
|
|
115
83
|
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
``` bash
|
|
119
|
-
pip install -U --pre mesa
|
|
120
|
-
```
|
|
121
|
-
Starting with Mesa 3.0, we don't install all our dependencies anymore by default.
|
|
122
|
-
```bash
|
|
123
|
-
# You can customize the additional dependencies you need, if you want. Available are:
|
|
124
|
-
pip install -U --pre mesa[network,viz]
|
|
125
|
-
|
|
126
|
-
# This is equivalent to our recommended dependencies:
|
|
127
|
-
pip install -U --pre mesa[rec]
|
|
128
|
-
|
|
129
|
-
# To install all, including developer, dependencies:
|
|
130
|
-
pip install -U --pre mesa[all]
|
|
131
|
-
```
|
|
132
|
-
|
|
133
|
-
You can also use `pip` to install the latest GitHub version:
|
|
84
|
+
You can also use `pip` to install the github version:
|
|
134
85
|
|
|
135
86
|
``` bash
|
|
136
87
|
pip install -U -e git+https://github.com/projectmesa/mesa@main#egg=mesa
|
|
@@ -142,18 +93,15 @@ Or any other (development) branch on this repo or your own fork:
|
|
|
142
93
|
pip install -U -e git+https://github.com/YOUR_FORK/mesa@YOUR_BRANCH#egg=mesa
|
|
143
94
|
```
|
|
144
95
|
|
|
145
|
-
## Resources
|
|
146
96
|
For resources or help on using Mesa, check out the following:
|
|
147
97
|
|
|
148
98
|
- [Intro to Mesa Tutorial](http://mesa.readthedocs.org/en/stable/tutorials/intro_tutorial.html) (An introductory model, the Boltzmann
|
|
149
99
|
Wealth Model, for beginners or those new to Mesa.)
|
|
150
|
-
- [Visualization Tutorial](https://mesa.readthedocs.io/stable/tutorials/visualization_tutorial.html) (An introduction into our Solara visualization)
|
|
151
100
|
- [Complexity Explorer Tutorial](https://www.complexityexplorer.org/courses/172-agent-based-models-with-python-an-introduction-to-mesa) (An advanced-beginner model,
|
|
152
101
|
SugarScape with Traders, with instructional videos)
|
|
153
|
-
- [Mesa Examples](https://github.com/projectmesa/mesa-examples) (A repository of seminal ABMs using Mesa and
|
|
102
|
+
- [Mesa Examples](https://github.com/projectmesa/mesa-examples/tree/main/examples) (A repository of seminal ABMs using Mesa and
|
|
154
103
|
examples of employing specific Mesa Features)
|
|
155
104
|
- [Docs](http://mesa.readthedocs.org/) (Mesa's documentation, API and useful snippets)
|
|
156
|
-
- [Development version docs](https://mesa.readthedocs.io/latest/) (the latest version docs if you're using a pre-release Mesa version)
|
|
157
105
|
- [Discussions](https://github.com/projectmesa/mesa/discussions) (GitHub threaded discussions about Mesa)
|
|
158
106
|
- [Matrix Chat](https://matrix.to/#/#project-mesa:matrix.org) (Chat Forum via Matrix to talk about Mesa)
|
|
159
107
|
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
mesa/__init__.py,sha256=XNwJOFa_LglQJTMbYPWHXvartntKeOrSn9DGSbXj1rc,618
|
|
2
|
+
mesa/agent.py,sha256=fx_h8RnX5DJCmfJtloIb_fprXXp8bFzC3_RnLOLlOvY,12902
|
|
3
|
+
mesa/batchrunner.py,sha256=92MabDDR38XGTZw_IB7nNDNH0PX7zL_jGyZJ2grisaY,6023
|
|
4
|
+
mesa/datacollection.py,sha256=CQ2QsW-mkEVbDVTsOkLy8NAQEKeoILdLB0zWS2sxnyk,11444
|
|
5
|
+
mesa/main.py,sha256=7MovfNz88VWNnfXP0kcERB6C3GfkVOh0hb0o32hM9LU,1602
|
|
6
|
+
mesa/model.py,sha256=GqayRWhohSS96kMwHCNGI7XvEkwI8GHS2SRL6SZ9N5E,5810
|
|
7
|
+
mesa/space.py,sha256=9eDEUQBcck8QYWvRn3fDw2zS2bO1Yjc7VjvvrMikzPE,62447
|
|
8
|
+
mesa/time.py,sha256=9gNoyUqYkt_gUPFBMhm38pK87mcntwAZ1lJzxqW3BSA,15211
|
|
9
|
+
mesa/cookiecutter-mesa/cookiecutter.json,sha256=tBSWli39fOWUXGfiDCTKd92M7uKaBIswXbkOdbUufYY,337
|
|
10
|
+
mesa/cookiecutter-mesa/hooks/post_gen_project.py,sha256=8JoXZKIioRYEWJURC0udj8WS3rg0c4So62sOZSGbrMY,294
|
|
11
|
+
mesa/cookiecutter-mesa/{{cookiecutter.snake}}/README.md,sha256=Yji4lGY-NtQSnW-oBj0_Jhs-XhCfZA8R1mBBM_IllGs,80
|
|
12
|
+
mesa/cookiecutter-mesa/{{cookiecutter.snake}}/app.pytemplate,sha256=36f9k9CH6TK6VrXsPvTFXGUfCKzCLwgYTeK-Gt27GNg,584
|
|
13
|
+
mesa/cookiecutter-mesa/{{cookiecutter.snake}}/setup.pytemplate,sha256=UtRpLM_CkeUZRec-Ef_LiO_x7SKaWN11fOiH9T1UmTw,214
|
|
14
|
+
mesa/cookiecutter-mesa/{{cookiecutter.snake}}/{{cookiecutter.snake}}/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
15
|
+
mesa/cookiecutter-mesa/{{cookiecutter.snake}}/{{cookiecutter.snake}}/model.pytemplate,sha256=Aml4Z6E1yj7E7DtHNSUqnKNRUdkxG9WWtJyW8fkxCng,1870
|
|
16
|
+
mesa/experimental/__init__.py,sha256=MaSRE9cTFIWwMZsbRKfnCiCBkhvtzJdgWlg3Dls7Unw,67
|
|
17
|
+
mesa/experimental/cell_space/__init__.py,sha256=trFVKf2l5RbkCUyxP09Kox_J3ak2YdM4o3t40Tsjjm4,628
|
|
18
|
+
mesa/experimental/cell_space/cell.py,sha256=AUnvVnXWhdgzr0bLKDRDO9c93v22Zkw6W-tWxhEhGdQ,4578
|
|
19
|
+
mesa/experimental/cell_space/cell_agent.py,sha256=G4u9ht4gW9ns1y2L7pFumF3K4HiP6ROuxwrxHZ-mL1M,1107
|
|
20
|
+
mesa/experimental/cell_space/cell_collection.py,sha256=4FmfDEg9LoFiJ0mF_nC8KUt9fCJ7Q21erjWPeBTQ_lw,2293
|
|
21
|
+
mesa/experimental/cell_space/discrete_space.py,sha256=ta__YojsrrhWL4DgMzUqZpSgbeexKMrA6bxlYPJGfK0,1921
|
|
22
|
+
mesa/experimental/cell_space/grid.py,sha256=gYDExuFBMF3OThUkhbXmolQFKBOqTukcibjfgXicP00,6948
|
|
23
|
+
mesa/experimental/cell_space/network.py,sha256=mAaFHBdd4s9kxUWHbViovLW2-pU2yXH0dtY_vF8sCJg,1179
|
|
24
|
+
mesa/experimental/devs/__init__.py,sha256=CWam15vCj-RD_biMyqv4sJfos1fsL823P7MDEGrbwW8,174
|
|
25
|
+
mesa/experimental/devs/eventlist.py,sha256=AM-gpivXQ889Ewt66T_ai6Yy6ldx0G69Unu1lasSNxI,4907
|
|
26
|
+
mesa/experimental/devs/simulator.py,sha256=0SMC7daIOyL2rYfoQOOTaTOYDos0gLeBUbU1Krd42HA,9557
|
|
27
|
+
mesa/experimental/devs/examples/epstein_civil_violence.py,sha256=KqH9KI-A_BYt7oWi9kaOhTzjrf2pETqzSpAQG8ewud0,9667
|
|
28
|
+
mesa/experimental/devs/examples/wolf_sheep.py,sha256=h5z-eDqMpYeOjrq293N2BcQbs_LDVsgtg9vblXJM7XQ,7697
|
|
29
|
+
mesa/visualization/UserParam.py,sha256=WgnY3Q0padtGqUCaezgYzd6cZ7LziuIQnGKP3DBuHZY,1641
|
|
30
|
+
mesa/visualization/__init__.py,sha256=zsAzEY3-0O9CZUfiUL6p8zCR1mvvL5Sai2WzoiQ2pmY,127
|
|
31
|
+
mesa/visualization/solara_viz.py,sha256=POus4i1k2Z8fJpEXiXQvGupRsrRLRiG5qndwkaEQ53Y,15085
|
|
32
|
+
mesa/visualization/components/altair.py,sha256=V2CQ-Zr7PeijgWtYBNH3VklGVfrf1ee70XVh0DBBONQ,2366
|
|
33
|
+
mesa/visualization/components/matplotlib.py,sha256=lB9QKo6i_mI2iKCksyakOStqY8I6B3sv8SXcpmPgWEc,4289
|
|
34
|
+
mesa-3.0.0a1.dist-info/METADATA,sha256=QTL6KViiX07VnrkXi5hqG0nYYN_hyZaWo3_SckVvbIA,7771
|
|
35
|
+
mesa-3.0.0a1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
36
|
+
mesa-3.0.0a1.dist-info/entry_points.txt,sha256=IOcQtetGF8l4wHpOs_hGb19Rz-FS__BMXOJR10IBPsA,39
|
|
37
|
+
mesa-3.0.0a1.dist-info/licenses/LICENSE,sha256=OGUgret9fRrm8J3pdsPXETIjf0H8puK_Nmy970ZzT78,572
|
|
38
|
+
mesa-3.0.0a1.dist-info/RECORD,,
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
Copyright
|
|
1
|
+
Copyright 2023 Core Mesa Team and contributors
|
|
2
2
|
|
|
3
3
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
you may not use this file except in compliance with the License.
|
|
5
5
|
You may obtain a copy of the License at
|
|
6
6
|
|
|
7
|
-
|
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
8
8
|
|
|
9
9
|
Unless required by applicable law or agreed to in writing, software
|
|
10
10
|
distributed under the License is distributed on an "AS IS" BASIS,
|
mesa/examples/README.md
DELETED
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
# Mesa core examples
|
|
2
|
-
These examples are a collection of classic agent based models built using Mesa. These core examples are maintained by the Mesa team and are intended to demonstrate the capabilities of Mesa.
|
|
3
|
-
|
|
4
|
-
More user examples and showcases can be found in the [mesa-examples](https://github.com/projectmesa/mesa-examples) repository.
|
|
5
|
-
|
|
6
|
-
## Basic Examples
|
|
7
|
-
The basic examples are relatively simple and only use stable Mesa features. They are good starting points for learning how to use Mesa.
|
|
8
|
-
|
|
9
|
-
### [Boltzmann Wealth Model](examples/basic/boltzmann_wealth_model)
|
|
10
|
-
Completed code to go along with the [tutorial](https://mesa.readthedocs.io/latest/tutorials/intro_tutorial.html) on making a simple model of how a highly-skewed wealth distribution can emerge from simple rules.
|
|
11
|
-
|
|
12
|
-
### [Boids Flockers Model](examples/basic/boid_flockers)
|
|
13
|
-
[Boids](https://en.wikipedia.org/wiki/Boids)-style flocking model, demonstrating the use of agents moving through a continuous space following direction vectors.
|
|
14
|
-
|
|
15
|
-
### [Conway's Game of Life](examples/basic/conways_game_of_life)
|
|
16
|
-
Implementation of [Conway's Game of Life](https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life), a cellular automata where simple rules can give rise to complex patterns.
|
|
17
|
-
|
|
18
|
-
### [Schelling Segregation Model](examples/basic/schelling)
|
|
19
|
-
Mesa implementation of the classic [Schelling segregation](http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/) model.
|
|
20
|
-
|
|
21
|
-
### [Virus on a Network Model](examples/basic/virus_on_network)
|
|
22
|
-
This model is based on the NetLogo [Virus on a Network](https://ccl.northwestern.edu/netlogo/models/VirusonaNetwork) model.
|
|
23
|
-
|
|
24
|
-
## Advanced Examples
|
|
25
|
-
The advanced examples are more complex and may use experimental Mesa features. They are good starting points for learning how to build more complex models.
|
|
26
|
-
|
|
27
|
-
### [Epstein Civil Violence Model](examples/advanced/epstein_civil_violence)
|
|
28
|
-
Joshua Epstein's [model](https://www.pnas.org/doi/10.1073/pnas.092080199) of how a decentralized uprising can be suppressed or reach a critical mass of support.
|
|
29
|
-
|
|
30
|
-
### [Demographic Prisoner's Dilemma on a Grid](examples/advanced/pd_grid)
|
|
31
|
-
Grid-based demographic prisoner's dilemma model, demonstrating how simple rules can lead to the emergence of widespread cooperation -- and how a model activation regime can change its outcome.
|
|
32
|
-
|
|
33
|
-
### [Sugarscape Model with Traders](examples/advanced/sugarscape_g1mt)
|
|
34
|
-
This is Epstein & Axtell's Sugarscape model with Traders, a detailed description is in Chapter four of *Growing Artificial Societies: Social Science from the Bottom Up (1996)*. The model shows how emergent price equilibrium can happen via decentralized dynamics.
|
|
35
|
-
|
|
36
|
-
### [Wolf-Sheep Predation Model](examples/advanced/wolf_sheep)
|
|
37
|
-
Implementation of an ecological model of predation and reproduction, based on the NetLogo [Wolf Sheep Predation](http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation) model.
|
mesa/examples/__init__.py
DELETED
|
@@ -1,21 +0,0 @@
|
|
|
1
|
-
from mesa.examples.advanced.epstein_civil_violence.model import EpsteinCivilViolence
|
|
2
|
-
from mesa.examples.advanced.pd_grid.model import PdGrid
|
|
3
|
-
from mesa.examples.advanced.sugarscape_g1mt.model import SugarscapeG1mt
|
|
4
|
-
from mesa.examples.advanced.wolf_sheep.model import WolfSheep
|
|
5
|
-
from mesa.examples.basic.boid_flockers.model import BoidFlockers
|
|
6
|
-
from mesa.examples.basic.boltzmann_wealth_model.model import BoltzmannWealthModel
|
|
7
|
-
from mesa.examples.basic.conways_game_of_life.model import ConwaysGameOfLife
|
|
8
|
-
from mesa.examples.basic.schelling.model import Schelling
|
|
9
|
-
from mesa.examples.basic.virus_on_network.model import VirusOnNetwork
|
|
10
|
-
|
|
11
|
-
__all__ = [
|
|
12
|
-
"BoidFlockers",
|
|
13
|
-
"BoltzmannWealthModel",
|
|
14
|
-
"ConwaysGameOfLife",
|
|
15
|
-
"Schelling",
|
|
16
|
-
"VirusOnNetwork",
|
|
17
|
-
"EpsteinCivilViolence",
|
|
18
|
-
"PdGrid",
|
|
19
|
-
"SugarscapeG1mt",
|
|
20
|
-
"WolfSheep",
|
|
21
|
-
]
|
|
@@ -1,116 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "markdown",
|
|
5
|
-
"metadata": {},
|
|
6
|
-
"source": [
|
|
7
|
-
"This example implements the first model from \"Modeling civil violence: An agent-based computational approach,\" by Joshua Epstein. The paper (pdf) can be found [here](http://www.uvm.edu/~pdodds/files/papers/others/2002/epstein2002a.pdf).\n",
|
|
8
|
-
"\n",
|
|
9
|
-
"The model consists of two types of agents: \"Citizens\" (called \"Agents\" in the paper) and \"Cops.\" Agents decide whether or not to rebel by weighing their unhappiness ('grievance') against the risk of rebelling, which they estimate by comparing the local ratio of rebels to cops. \n",
|
|
10
|
-
"\n",
|
|
11
|
-
"\n"
|
|
12
|
-
]
|
|
13
|
-
},
|
|
14
|
-
{
|
|
15
|
-
"cell_type": "code",
|
|
16
|
-
"execution_count": 5,
|
|
17
|
-
"metadata": {},
|
|
18
|
-
"outputs": [],
|
|
19
|
-
"source": [
|
|
20
|
-
"%matplotlib inline\n",
|
|
21
|
-
"\n",
|
|
22
|
-
"from epstein_civil_violence.model import EpsteinCivilViolence"
|
|
23
|
-
]
|
|
24
|
-
},
|
|
25
|
-
{
|
|
26
|
-
"cell_type": "code",
|
|
27
|
-
"execution_count": 6,
|
|
28
|
-
"metadata": {},
|
|
29
|
-
"outputs": [],
|
|
30
|
-
"source": [
|
|
31
|
-
"model = EpsteinCivilViolence(\n",
|
|
32
|
-
" height=40,\n",
|
|
33
|
-
" width=40,\n",
|
|
34
|
-
" citizen_density=0.7,\n",
|
|
35
|
-
" cop_density=0.074,\n",
|
|
36
|
-
" citizen_vision=7,\n",
|
|
37
|
-
" cop_vision=7,\n",
|
|
38
|
-
" legitimacy=0.8,\n",
|
|
39
|
-
" max_jail_term=1000,\n",
|
|
40
|
-
" max_iters=1000,\n",
|
|
41
|
-
") # cap the number of steps the model takes\n",
|
|
42
|
-
"model.run_model()"
|
|
43
|
-
]
|
|
44
|
-
},
|
|
45
|
-
{
|
|
46
|
-
"cell_type": "markdown",
|
|
47
|
-
"metadata": {},
|
|
48
|
-
"source": [
|
|
49
|
-
"The model's data collector counts the number of citizens who are Active (in rebellion), Jailed, or Quiescent after each step."
|
|
50
|
-
]
|
|
51
|
-
},
|
|
52
|
-
{
|
|
53
|
-
"cell_type": "code",
|
|
54
|
-
"execution_count": 7,
|
|
55
|
-
"metadata": {},
|
|
56
|
-
"outputs": [],
|
|
57
|
-
"source": [
|
|
58
|
-
"model_out = model.datacollector.get_model_vars_dataframe()"
|
|
59
|
-
]
|
|
60
|
-
},
|
|
61
|
-
{
|
|
62
|
-
"cell_type": "code",
|
|
63
|
-
"execution_count": 8,
|
|
64
|
-
"metadata": {},
|
|
65
|
-
"outputs": [
|
|
66
|
-
{
|
|
67
|
-
"data": {
|
|
68
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAEWCAYAAABhUT6OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3gc1bn48e+7Vb3L6rLce8E2xmC68Q2mh5oQWoAQbiAhJL8ASUglySUJKeTSk5Bg4NJLKAYChBIMJsg2uMuWZVm9d620q909vz9mJcu2mm0Ve3k/z7OPd8+cmXlnLemdc+bMHDHGoJRSSqnwZRvrAJRSSik1sjTZK6WUUmFOk71SSikV5jTZK6WUUmFOk71SSikV5jTZK6WUUmFOk706ZCLyAxH5ywDLvyIi/xzNmEaTiFwlIh/0+twmIhMHqL9ZRE4eleAOIyLygIj8aKzjUOrzSJO9GhIRuVRE8kOJrFJEXhOR4wGMMb8yxlwbqpcnIkZEHN3rGmMeN8b81+EU80gyxsQYY4pCMfxdRH6xz/JZxph3R2LfInKWiPxHRNpFpF5EHheR7JHY1z77zQ19z90vE4qh+/MJxpjrjTF3jHQsSqn9abJXgxKR7wB/BH4FpAG5wH3AuWMZ10COxJgPlYhcCPwfcDeQAswCvMAHIpI4zPty9P5sjCkJneTEGGNiQsXzepX9ezj3r5Q6QMYYfemr3xcQD7QBFw1Q56fAY6H3JYAJrdMGHAtcBXwQWn5Lr2VtQBfw9177+itQCZQDvwDsoWVXAR8AdwGNwC5gxSHE7MY6GagIvf4IuEPLTgbKgO8CNaF4vtpr3WTgJaAF+A9wR/fxhZYbYDJwXej4fKF4Xg4tLwZOO9Q49jkeAXYDt+xTbgM2AT8P7asJmN1reSrQAYwLfT4L+DRU70Ngbq+6xcCtwAaskwjHAN+vASbvU/Z34Bf7HNstvY7tPOAMYDvQAPxgn+O4DdgJ1ANPA0lj/fuhL30dKS9t2avBHAtEAC8Msf6JoX8TjNWi+6j3QmPMb8ye1t8MoBbrDzfAI4AfK1EeBfwXcG2v1Y8BCrBarb8B/ioicpAx/xBYAswH5gGLgdt7LU/HOmnIAq4B7u3VOr4X6AQygKtDr/0YYx4CHge6j/nsYY6jt2lYvRfP7BNDEHgOWG6M8QLPA1/uVeVi4D1jTI2ILAAeBr6OdULzIPCSiLh71f8ycCbW/6+/r+M+AOlY/09ZwI+BPwOXAQuBE4Af9xr78C2sk4GTgEysE757D3H/Sn1uaLJXg0kG6obhD/teRCQSeBG42xizSkTSgBXAt40x7caYGuAPwJd6rbbbGPNnY0wA68QgA6uL/mBi/grwc2NMjTGmFvgZcHmv5V2h5V3GmFVYLfNpImIHLgB+HIpzUyiWg3VQcfSxnZTQv5V9LKvstfz/2DvZXxoqA/ga8KAx5mNjTMAY8whWC35Jr/p/MsaUGmM6hn6I/eoCfmmM6QKeDMV4tzGm1RizGdgMzA3V/TrwQ2NMWeik5afAhfteTlBK9U1/UdRg6oEUEXEMc8L/K1BgjPl16PN4wAlU9mqs24DSXutUdb8xxnhC9WLY31BizsTq9u62O1TWs4191vWE9pWK9XtTus+6B+tg49hXXejfDKxLHL1l9Fr+LyBSRI7B+j7ns6cHZDxwpYh8s9e6rn3i6X3ch6o+dOIG1qUEgOpeyzvYc6zjgRdEJNhreQDrZK98GGNSKixpy14N5iOsLuvzhlh/0GkUReQ2rNbpNb2KS7FakSnGmITQK84YM+tAA2ZoMVdgJZBuuaGywdRiXWrI2Wfd/gz2fRxsHPsqwLoGflHvQhGxYfVEvA093fpPY7XuLwVeMca0hqqXYrW0E3q9oowxTxzA8YyUUqwxGr1jizDGaKJXagg02asBGWOasa6n3isi54lIlIg4RWSFiPymj1VqgSDQ533mIrKC0PXX3l3BxphK4J/A70QkTkRsIjJJRE4aoZifAG4XkVQRSQnVf2wI2w5gXff+aWi7M4ErB1ilmn6+i0OJo4+4DPD/Qtu6VEQiRSQd+AsQh3VJpNv/AZdgXUL4v17lfwauF5FjxBItImeKSOyBxjMCHgB+KSLjAULfV9jeWaHUcNNkrwZljPk98B2sgWO1WK2sG7Guue9b1wP8ElgtIk0ismSfKpdgdYVv7XUP9gOhZVdgdRtvwRqA9SxWF/RIxPwLIB9rZPlGYF2obChuxOpersIaYf63Aer+FZgZ+i72+74OMY69GGOewrrefzNWt/0WIBJYaoyp71XvY6Adq3v+tV7l+VjX7e/B+v4Lse6COBzcjXUHxD9FpBVYgzVgUyk1BGI1CJRSSikVrrRlr5RSSoU5TfZKKaVUmNNkr5RSSoU5TfZKKaVUmAvLh+qkpKSYvLy8sQ5DKaWOKGvXrq0zxqSOwn7GORyOvwCz0UbncAgCm/x+/7ULFy6s6atCWCb7vLw88vPzxzoMpZQ6oojIoTwNcsgcDsdf0tPTZ6SmpjbabDa9JewQBYNBqa2tnVlVVfUX4Jy+6ozYGZWIPCwiNSKyqVfZb0Vkm4hsEJEXRCSh17Lvi0ihiBSIyBd6lZ8eKisMPXlNKaXUkW12ampqiyb64WGz2UxqamozVk9J33VGcP9/B07fp+xNrOk152JNY/l9gNBTyL6ENf/26cB9ImIPTTpyL9YEKTOBL4fqKqWUOnLZNNEPr9D32W9OH7Fkb4x5H2tO6t5l/+w1qccaIDv0/lzgSWOM1xizC+vJXYtDr0JjTJExxoc1M5Y+IlMppZQ6AGM5MOJq9jyqM4u9Z9MqC5X1V74fEblORPJFJL+2tnYEwlVKKRVOdu7c6Vy2bNmk8ePHz87Ozp5zxRVX5HZ0dMhA65x00kmT6+rq7KMV477+9Kc/JRcXFzsPdL0xSfYi8kOsmcMe7y7qo5oZoHz/QmMeMsYsMsYsSk0d8cGkSimljmDBYJDzzjtv8jnnnNO0e/fuTcXFxRs7OzvlG9/4RvZA67333nuFKSkpgYHqjKTHHnsspaSk5ICT/aiPxheRK4GzgGVmz4P5y9h7ytBs9kzz2V+5UkqpI9z3nv0sZ3tVa9RwbnNqeqzntxfOKx2ozssvvxzrdruDN910Uz2Aw+HggQceKM3Ly5s7ZcqUzm3btkWuXLmyBOCUU06Z/N3vfrf6rLPOas3KypqTn5+/NSMjw3/fffcl3X///WldXV2yYMGC9pUrV+4GuOSSS/I2bNgQLSLmK1/5St1PfvKTmk2bNrmvu+668fX19Q673W6eeeaZolmzZnl/9KMfpb3wwgtJPp9PzjzzzKY//OEPFQUFBa4VK1ZMWbx4cVt+fn5MWlqa74033ih85plnEjZt2hR1xRVXTIyIiAjm5+dvjYmJGdLYh1Ft2YvI6cCtwDmh2dG6vQR8SUTcIjIBmAL8B/gEmCIiE0TEhTWI76XRjFkppVT42bhxY+S8efN65yGSkpKCWVlZPr/fP2BXPsC6desinn322aT8/Pxt27Zt22Kz2cwDDzyQ/NFHH0VVVlY6d+zYsXn79u1bbrjhhnqASy+9dML1119fU1BQsCU/P39bbm5u1/PPPx9XWFgYsWHDhq1bt27d8umnn0a99tprMQAlJSUR3/rWt2oKCws3x8fHB1auXJn41a9+tXH27NmelStXFm3btm3LUBM9jGDLXkSeAE4GUkSkDPgJ1uh7N/CmiACsMcZcb4zZLCJPY03J6QduCM0bjojcCLwB2IGHjTGbB9t3dUsn1S2dpMVFjMCRKaWUGi6DtcBHijEGEdkvWQ51JtjXX389dtOmTVHz5s2bAdDZ2WkbN26c/5JLLmkqLS11X3nllTlnn3128xe/+MWWxsZGW3V1teuKK65oAoiKijKAef311+Pef//9uJkzZ84E8Hg8tm3btkVMnDjRl5WV5T3uuOM6AI466ihPcXGx+1COd8SSvTHmy30U/3WA+r/Emgd93/JVwKoD2XdNq5eaFq8me6WUUn2aM2dOxz/+8Y/E3mUNDQ22+vp6R3Jysn/79u095V6vd79ecGOMXHTRRfX33ntv+b7LNm3atOWFF16Iu++++8Y99dRTSQ8++GBJXzEYY/j2t79d+b3vfa+ud3lBQYHL5XL1nHXY7XbT0dFxSD3xYfuYQtP3OD6llFKKc845p7Wzs9N2zz33JAP4/X6+8Y1v5Fx99dU1kydP9m3evDkqEAhQWFjo3LBhQ/S+659++uktr7zySmJ5ebkDoLq62r59+3ZXZWWlIxAIcNVVVzX94he/KN+4cWNUUlJSMD093ffoo48mAHR0dEhra6ttxYoVLY8++mhKc3OzDWDXrl3O7u31JyYmJtDc3HzAdwOEbbIPaq5XSinVD5vNxosvvlj4/PPPJ44fP352YmLifJvNxq9//euq5cuXt+Xk5HinTZs266abbsqZOXOmZ9/1Fy5c2Hn77beXL1u2bOrUqVNnnnrqqVNLS0udxcXFzuOPP37a9OnTZ1599dUTfv7zn5cBPPbYY7vuvffecVOnTp25aNGi6aWlpY7zzz+/5aKLLmo4+uijp0+dOnXmF7/4xUlNTU0DJvIrrrii7pvf/Ob46dOnz2xraxt0bEE3Ger1iSOJO2OKWfPxfzgqN3HwykoppQAQkbXGmEUjvZ/PPvuseN68eXWD1xw9b775ZvSVV1458amnntp5wgkn7JfcjwSfffZZyrx58/L6WhaWE+FAPzfjK6WUUn1Yvnx5e0VFxcaxjmOkhG03fhh2WCillFIHJWyTvbbtlVJKKUvYJnsdoKeUUkpZwjbZaze+UkopZQnjZK/ZXimllIJwTvZjHYBSSqnD2sqVKxNEZOH69esHfNzqvtPKXnLJJePXrl17RD2iNWyTfVBb9koppQbw5JNPJi1YsKDt0UcfTRqo3r7Tyj711FO7Fy5c2DnyEQ6fsL3PXpv2Sil1BHjxhhxqtgzrFLeMm+nhvHsHnGCnubnZlp+fH/PWW28VnHvuuZN///vfVwDcfvvtaU8//XSyiLBs2bLmo48+2rPvtLKnnnrq1Lvuuqv0o48+it61a5f7gQceKAOrB2Dt2rVRjzzySGlf0986HGOXcsM22WuuV0op1Z/HH3884eSTT26eO3euNyEhIfDBBx9EVVRUOF599dXEtWvXbouNjQ1WV1fb09LSAvfff/+4u+66q/TEE0/c68l6l19+eeOSJUumA2UAzz77bNIPf/jDyt7T37rdbnPZZZflPvDAA8k33nhj/ZgcLOGc7DXbK6XU4W+QFvhIefrpp5NuuummGoALLrig4dFHH00KBoNcdtlldbGxsUGAtLS0wEDbyMzM9Ofk5Hjffvvt6FmzZnUWFRVFLF++vO3OO+9M7Wv625E/qv6Fb7LXtr1SSqk+VFVV2desWRO3ffv2yBtvvJFAICAiYs4444wmkSHPLQPAhRde2PjEE08kTp8+vXPFihWNNpttwOlvx0oYD9Ab6wiUUkodjh599NHE888/v76iomJjeXn5xqqqqg3Z2dm+pKQk/6OPPprS2tpqA2vaWhh4WtnLLrus8fXXX0985plnki699NIG6H/629E6vr6EbbLX++yVUkr15Zlnnkk+//zzG3uXnXvuuY0VFRXOFStWNM2fP3/G9OnTZ95xxx3pMPC0sqmpqYEpU6Z0lJeXu0855RQP9D/97egd4f7Cdorb199dzSnTxo11KEopdcT4PE9xGw4GmuI2bFv2esleKaWUsoRtsteH6iillFKWsE32muuVUkopS/gm+7EOQCmllDpMhG+y16a9UkopBYRzsh/rAJRSSqnDRPgme23ZK6WUGkBUVNRRAy0/6qijpgMUFBS4pkyZMutAtn3BBRfk/e1vf0s8lPiG04glexF5WERqRGRTr7IkEXlTRHaE/k0MlYuI/ElECkVkg4gs6LXOlaH6O0TkyqHuX3O9UkqpQ7F+/fptYx3DcBnJZ+P/HbgHWNmr7DbgbWPMnSJyW+jzrcAKYErodQxwP3CMiCQBPwEWYfXMrxWRl4wxez35qC+a65VS6vD3o9U/yilsLBzWKW4nJ0723LH0jiFNsNPc3Gw7/fTTJzc3N9v9fr/8+Mc/rrjsssuawGr5ezye9b3r+/1+brjhhuzVq1fH+nw++drXvlbzve99ry4YDHLVVVflrl69OjYnJ8d7uPUuj1iyN8a8LyJ5+xSfC5wcev8I8C5Wsj8XWGmsb2eNiCSISEao7pvGmAYAEXkTOB14YvD9H/IhKKWUCnNRUVHBV199tTApKSlYWVnpOOaYY6ZfeumlTTZb3x3ff/zjH1Pi4+MDmzZt2trR0SFHH3309LPPPrvl448/jiosLHQXFBRsLisrc86ZM2fWVVddNWZT2u5rtGe9SzPGVAIYYypFpPt5tllA77OwslBZf+X7EZHrgOsAXOmT9aE6Sil1BBhqC3ykBINB+fa3v529Zs2aGJvNRk1NjausrMyRm5vb55S0b731Vty2bduiXnrppUSA1tZW+5YtWyLee++92IsvvrjB4XCQl5fXdeyxx7aO7pEM7HCZ4ravOQXNAOX7FxrzEPAQWM/G11SvlFJqMA8++GBSfX29Y+PGjVvdbrfJysqa09HR0e94NmOM/O53vyu54IILWnqXv/LKK/EHOj3uaBrt0fjVoe55Qv/WhMrLgJxe9bKBigHKB3W4XS9RSil1+GlubranpKR0ud1u8/LLL8dWVFQMOBXt8uXLm++///5Ur9crABs2bHC3tLTYTjrppNZnnnkmye/3s3v3bueaNWtiR+cIhma0W/YvAVcCd4b+/Uev8htF5EmsAXrNoW7+N4BfdY/aB/4L+P4ox6yUUirMdHV14XK5zLXXXtuwYsWKybNnz54xa9Ysz4QJEzoHWu/mm2+uKy4uds+ZM2eGMUaSkpK6Vq1atfPyyy9vevvtt+OmTZs2a8KECZ2LFy/+fHTji8gTWAPsUkSkDGtU/Z3A0yJyDVACXBSqvgo4AygEPMBXAYwxDSJyB/BJqN7PuwfrDUYb9koppfqTn58fmZOT483IyPB/+umnfd5i1z0Sf9q0ab4dO3ZsBrDb7dxzzz3lQPm+9VeuXFkyokEfgpEcjf/lfhYt66OuAW7oZzsPAw8f6P51gJ5SSqm+/OY3v0l98MEHx/32t78d08GBo+lwGaA37DTXK6WU6sstt9xSe8stt9SOdRyjKXwflzvWASillOpPMBgMHr5D149Aoe8z2N/y8E322rRXSqnD1aba2tp4TfjDIxgMSm1tbTywqb862o2vlFJqVPn9/murqqr+UlVVNZswbnSOoiCwye/3X9tfhfBN9tqRr5RSh6WFCxfWAOeMdRyfJ2F7RqUte6WUUsoSvsl+rANQSimlDhPhm+w12yullFJAGCd7faiOUkopZQnbZK+pXimllLKEbbLXfnyllFLKErbJXlO9UkopZQnbZB8MarpXSimlIIyTvaZ6pZRSyhK+yV6zvVJKKQWEc7If6wCUUkqpw0T4Jntt2iullFJAWCf7sY5AKaWUOjyEb7LXjnyllFIKGEKyF5GLRCQ29P52EXleRBaMfGiHRlv2SimllGUoLfsfGWNaReR44AvAI8D9IxvWodNcr5RSSlmGkuwDoX/PBO43xvwDcI1cSMNDJ8JRSimlLENJ9uUi8iBwMbBKRNxDXG9Maa5XSimlLENJ2hcDbwCnG2OagCTgeyMalVJKKaWGzaDJ3hjjAf4BtItILuAEth3KTkXkZhHZLCKbROQJEYkQkQki8rGI7BCRp0TEFarrDn0uDC3PG8o+9D57pZRSyjKU0fjfBKqBN4FXQ69XDnaHIpIFfAtYZIyZDdiBLwG/Bv5gjJkCNALXhFa5Bmg0xkwG/hCqNyjN9UoppZRlKN34NwHTjDGzjDFzQq+5h7hfBxApIg4gCqgETgWeDS1/BDgv9P7c0GdCy5eJiAy2A530TimllLIMJdmXAs3DtUNjTDlwF1CCleSbgbVAkzHGH6pWBmSF3meFYiC0vBlIHnQ/evOdUkopBVgt7MEUAe+KyKuAt7vQGPP7g9mhiCRitdYnAE3AM8CKPqp2Z+u+WvH7ZXIRuQ64DsCVPlm78ZVSSqmQobTsS7Cu17uA2F6vg3UasMsYU2uM6QKeB44DEkLd+gDZQEXofRmQAxBaHg807LtRY8xDxphFxphFoA/VUUoppboN2rI3xvwMQESijTHtw7DPEmCJiEQBHcAyIB94B7gQeBK4EusOAICXQp8/Ci3/lxnCUHsdja+UUkpZhjIa/1gR2QJsDX2eJyL3HewOjTEfYw20WwdsDMXwEHAr8B0RKcS6Jv/X0Cp/BZJD5d8Bbhvafg42QqWUUiq8DOWa/R+xnon/EoAx5jMROfFQdmqM+Qnwk32Ki4DFfdTtBC464H1oR75SSikFDPGxt8aY0n2KAn1WPEwI2rJXSimlug2lZV8qIscBJvRUu28R6tI/nGmuV0oppSxDadlfD9yAdb97GTA/9Pmw1uUPjnUISiml1GFhKC37SGPMV3oXiEj6CMUzLCKcdj4p3u/uPKWUUupzaSgt+12hyWoie5WtGqmAhkOUy05R7XDcJaiUUkod+YaS7DcC/wY+EJFJobJBn00/lpx2G61eP+1e/+CVlVJKqTA3lGRvjDH3YQ3Me1lEzuYwH//mtFvnIlUtnWMciVJKKTX2hnLNXgCMMatFZBnwFDB9RKM6RA6bDT/Q2O6D1LGORimllBpbQ0n2Z3S/McZUisipWM+yP2zZbFbLvlW78ZVSSqn+k72IXGaMeQz4cj/Tx78/YlEdInt3su/UZK+UUkoN1LKPDv3b1wx3h/U1e1vo5KRNk71SSinVf7I3xjwYevuWMWZ172UisnREozpE9tCww9bOrrENRCmllDoMDGU0/v8OseywYRNBBFo02SullFIDXrM/FmsgXqqIfKfXojjAPtKBHaop42L4z64GjDH0M+ZAKaWU+lwYqGXvAmKwTghie71agAtHPrRDs3RyCp8UN/KbNwrGOhSllFJqTA10zf494D0R+bsxZvcoxjQsJqRY4wvvf3cnt55+WD8WQCmllBpRA3Xj/9EY823gHhHZb/S9MeacEY3sEF26OJdfv7aNmIihPEpAKaWUCl8DZcJHQ//eNRqBDDeH3ca3T5vKL1dtpaHdR1K0a6xDUkoppcbEQMm+RERmhrrze4jILKBmZMMaHjMz4wDYWtnC0skpYxyNUkopNTYGGqD3v/T9ZPls4O6RCWd4zciwkv1bW6vHOBKllFJq7AyU7Ofs26oHMMa8AcwduZCGT1K0i0XjE3n84xI8Pn2anlJKqc+ngZK98yCXHVa+fdpUfP4gD7xXNNahKKWUUmNioGS/Q0TO2LdQRFYAR0zmPH5KCjMy4nhhfRk7qlspa/SMdUhKKaXUqBpogN7NwCsicjGwNlS2CDgWOGukAxtOly8Zzw9e2MjyP1gT9d14ymSaOnxMTo3h8mPzembJU0oppcLRQA/V2S4ic4BLgdmh4veArxtjOkcjuOFy6TG5BIJB/ue1bXh8Ae55p7Bn2U9f3kJqrJuvHJOLzx9kRkYca3c3YrcJHV0BlkxM5ozZ6dhtMuTH7rZ7/WytbCHCaWdGRhwN7T5+8tImLjk6l3nZ8bR5/UQ67by9tabnOQAf7axnYmo0Xzo6lz/9awcCnL8gi5217ZwwJYUolwNjDP6gwRma6acrEGTt7kbWlzQxZVwMeSlRfLSznppWL8nRLuKjnJw3P+uAHhfsDwRx2IcyZYKlpbOLDl+AhCgnNpGe2A4X/kDwgP7v1Ojp/lnrCgSxh+azCATNgD9/gaDhs7ImSuo9TM+IZXp63ID7+LionormDpbPTMcYQ9DA6sI6Jo+LYWpaXxN6Hrw2r5/3CmqZmBrNhJRo/EFDjHvPn1h/IEhRXTuRTjs5SVEA+PxBXI7h+Z0xxlBY00aE005Du4/EKBcfFNYxPyeBuEgHaXERff5+dvgCtHn9/M+qrcMShzo8iTGjP1utiCQAf8E6iTDA1UAB8BSQBxQDFxtjGsX6K303cAbgAa4yxqwbaPuLFi0y+fn5fS5bX9LIO9tqWL2znnGxbsoaO9hY3jxozC67jSWTkllf0khchDVkISnaxcWLsimsaeO97bVMHhfDW1tH5q7EaWmxuBw2NpY3E+2yk50YRUF166DrnTQ1lfk5CWQlRnL3Wzu4cGE2OUlRrN3dyIrZ6Wwoa8Jpt3HspGR++tJm1pU0MSszDpsIXn+Aby2bQn2bj43lzczOjGNOdjzlTZ20e/3c9UYBLZ1ddAX2/AzdfNpUzpiTzri4CF5cX05ClJMTp6TyyoYKNle0kJcSzZ/e3oHHF+DPVyzi+XVlJEW7+NFZMwkaQ5TLQWtnF43tXWQkRFDd0kmk005yjJtA0GC3CV2BII98WMyrGytZX9LEF4/K4toTJjAzI46yxg7e31GLxxvA4wvw8oYKshIiiY908m5BDfNyEiiqbSfKZWdqeiydvgBzsuOZkBLNzIw4cpKiiHBaUz90JyNjDG9vrWHp5BQiXf1PC2GMwesPUtPiJTc5qqd8W1ULqwvrWTIxiaRoF26HnfhIJ1sqWshNjmLd7kZOnpbac0ISDBp8gWBPHN38gSBtXj/tvgBpsW42lDeztriRorp2vnR0DvNyEthU3szfVhdz5tx0cpOisIkQG+Fkc0UzNS1ePiiso6q5k8yECL68OJekaBedXUH+U9zA+KQoTp0+jvd31FLa2MFlx+QiIgSChu6/EyKCTeiJdVN5M6UNHtxOG1PGxdLa6ScrMRJjDMZAc0cXBdWtvFtQw5qiBnbVtXP10gmsKapnW1ULs7PiKWnw0OTZM2nV/JwEOnwBEqOdZMZHEhfpZGN5MxvLmvEFgnt9JwtyE5g8LoYfnDGDCKed0gYP7++oo7MrwEc76/mgsK7f/687zpvNCZNT2FHTRkZ8BCUNHuZkxfPRznrm5SQwISUau02w24QtFS1srWwhLyWKo3ISaff5ebeglh3VrVS1dPJZaXOfv4/zsuNZNiONLx2dw81Pf8rqwvr96lx/0iRuW2E95bOyuYM/vLmdpGg3mQkR/HNzNfNy4pmeHkd1SydtXhfMhG8AACAASURBVH/Pz0VRbRt2m42i2jbKGjto9Pjw+AL9Hm+36emxjIuLoN3rxxjDupKmnmW7f33WWmPMokE3oo44Y5XsHwH+bYz5i4i4gCjgB0CDMeZOEbkNSDTG3BoaN/BNrGR/DHC3MeaYgbY/ULLvS35xAxFOO3ab8HR+KaUNHSydnMxJU1P587+LeOI/pQA47VYL0ecPMjMjjppWL3Vt3v22lxztYvnMNP65pZqGdh8AE1OiqW31khjtoqTBGjdw+5kz+KS4gYz4SC5bkst97+zktU1V3Lx8Cksnp3DuPavxB/f8/0Q4bXR2Bffb376+v2I6bV4/nxQ3sKaoYcjfQ28Om+y17/6Mi3UzeVwMAB/u3P8P2YGyCThstv3+qGfGR9Do6cLlsNHccfCzGYrAYD/y3XVE4KicBGwi5O9uJDnaxe1nzWBbVSuvbazC4wtQ1+Yl1u0gNdZNUV17zzbGxbqZmBpNZnwkL2+o2OuEyGkXMuIje34OwEoKsRFO1u5uJGgMInDKtHGUNnqwidDm9VNU277XNnpvE6yTz+6ft4PV+2csJcaFMVDfxzaH+vMxVKmxbmLcDnaFvsPcpCh8/iBVLXt3Is7PSeDT0iayEiIpb+oYcJsi8MX5WXxhdjo/fGFTz+9q9zaGU0Z8BJ1dARo9XRwzIYnSBg8Vzft3gNoE+vraYt2O0EydB3fXUFZCJFPTYjhmYjIby5rZWtXCjHTr5HxNUT3vFtQC1vfsstto7ezq2ZfTLhw7KYWcxEh+df5cTfZhatSTvYjEAZ8BE02vnYtIAXCyMaZSRDKAd40x00TkwdD7J/at198+DjTZD0V3S8VmEzq7AkQ47XT4AqwvbSQjPpLkGBcNbT68/iBT02IQkZ4u5Davn2iXA1tobEBhTSuTUmP67Fru3Y1e09qJ02YjLtLZM67AHwhS3epld317KNHG9rlut21VLazaUElucjR5yVHsrvdgtwlNHh+ZCZF4/UF217fz8meVLBifwLeWTcEY64/C21tr2FHdyoyMONp9fpKiXazaWEmHL8CyGWkcPzmFhCjnXi3SD3fWs7G8mc9Kmyiub2dKWiw1LZ0smzGOtLgIvF1BTpuZxv/+aweVTVa5xxfgl6u2ctbcDDAQG+HAbrPx+qZKAsZw6vRxbChrZnNFCwlRTpKiXHztxIlMTYslEDQ8t7aMmtZOot0OjIEF4xOxC6TFRXDytHF0BYMYA/GRTkobPKwurOP02ekEgoZ3Cmp5fVMVC8cn0trZxYvry6lv9xEb4aQrENzrxMLlsOHzB3tOBhKjnDR6upibHU+Tp4uSBg9RLjvnzMvkyU9Ke9ZLjnZx5XF5fLSzntgIBxXNHXi7grR7/WQnRuENBKlr9RLpsjM+KYrEaBefFDfQ5OkiIz6CCKcdfzDIpvIWjp2YzNF5iawtaeQLs9KJj3QSF+Hkbx8W09BuJbOZGXFkJUThdtqobOqgvKmD3KRoVsxJJ9rloKiujefXlfd0IVc0dXDMhCQinHY+3FlPU4eP02els66kiY3lzfj8e068upN8Sowbt8NGeVMHd5w3m896JeCESCepsW4aPD4a231MSo3htJlpZCVE9lweK2voIDHauvQTH+nsaa2WNnjISojs+V3x+YNUNHVQXN/O9upWvnbCxJ5kWd3SyQeFdXj9QTaWNVFY08Zxk1JIinaxZGIyCVFOMhMiAXp6J7p/P97fXsvO2jbW7m6krs1LZ1eQzIQIfP4gCVEunl1bttfv0emz0pmYGk1lcycvrC8nPtLJZUtyWTIxmeMmpezV29H793FHTRvPryvD4wswPjmKa46fiE2goLoVh81GjNvB3W9vp6XDT1cgSGyEk+zESJbPTKO21cuivET+ta2G97fXkRLj4rIl46lv9+Hx+kmPjyA3KQp/0OzXCzQU3X/HehMRTfZhqt9kLyJvG2OWicivjTG3DtsOReYDDwFbgHlYg/9uAsqNMQm96jUaYxJF5BXgTmPMB91xAbcaY/L32e51wHUAubm5C3fvPuLm7lGHGWMMmytamDwuhginnd317Wwqb2Hp5GQSogZ+/HJrp5X8jYGpoUsw4agrEDzsxmkMJ38guF8y9QeCBA1h+X+qyT58DTQaP0NETgLOEZEngb1OWwe7bj7IPhcA3zTGfCwidwO3DVC/r5FVfU3M8xDWSQSLFi0a/WsTKuyICLOz4ns+j0+OZnxy9JDWjY1wMiszfvCKR7hwTvRgzbHhsO9fptSRZqBk/2OsJJwN/H6fZQY49SD3WQaUGWM+Dn1+NrSfahHJ6NWNX9Orfk6v9bOBioPct1JKKfW50+8pqjHmWWPMCuA3xphT9nkdbKLHGFMFlIrItFDRMqwu/ZeAK0NlVwL/CL1/CbhCLEuA5oGu1yullFJqb4NO9m6MuUNEzgFODBW9a4x55RD3+03g8dBI/CLgq1gnHk+LyDVACXBRqO4qrJH4hVi33n31EPetlFJKfa4MmuxF5H+AxcDjoaKbRGSpMeb7B7tTY8ynWE/j29eyPuoa4IaD3ZdSSin1eTdosgfOBOYbY4LQc4/8euCgk71SSimlRs9Qh5Um9Hof/kOMlVJKqTAylJb9/wDrReQdrNvgTkRb9UoppdQRYygD9J4QkXeBo7GS/a2hEfVKKaWUOgIMpWVP6Fa3l0Y4FqWUUkqNAH0UlFJKKRXmNNkrpZRSYW7AZC8iNhHZNFrBKKWUUmr4DZjsQ/fWfyYiuaMUj1JKKaWG2VAG6GUAm0XkP0B7d6Ex5pwRi0oppZRSw2Yoyf5nIx6FUkoppUbMUO6zf09ExgNTjDFviUgUYB9sPaWUUkodHgYdjS8iX8Oac/7BUFEW8OJIBqWUUkqp4TOUW+9uAJYCLQDGmB3AuJEMSimllFLDZyjJ3muM8XV/EBEHYEYuJKWUUkoNp6Ek+/dE5AdApIgsB54BXh7ZsJRSSik1XIaS7G8DaoGNwNeBVcDtIxmUUkoppYbPUEbjB0XkEeBjrO77AmOMduMrpZRSR4hBk72InAk8AOzEmuJ2goh83Rjz2kgHp5RSSqlDN5SH6vwOOMUYUwggIpOAVwFN9koppdQRYCjX7Gu6E31IEVAzQvEopZRSapj127IXkfNDbzeLyCrgaaxr9hcBn4xCbEoppZQaBgN145/d6301cFLofS2QOGIRKaWUUmpY9ZvsjTFfHc1AlFJKKTUyhjIafwLwTSCvd32d4lYppZQ6MgxlNP6LwF+xnpoXHK4di4gdyAfKjTFnhU4qngSSgHXA5cYYn4i4gZXAQqAeuMQYUzxccSillFLhbiij8TuNMX8yxrxjjHmv+zUM+74J2Nrr86+BPxhjpgCNwDWh8muARmPMZOAPoXpKKaWUGqKhJPu7ReQnInKsiCzofh3KTkUkGzgT+EvoswCnYk2lC/AIcF7o/bmhz4SWLwvVV0oppdQQDKUbfw5wOVYy7u7GN6HPB+uPwC1AbOhzMtBkjPGHPpcBWaH3WUApgDHGLyLNofp1vTcoItcB1wHk5uYeQmhKKaVUeBlKsv8iMLH3NLeHQkTOwnpQz1oRObm7uI+qZgjL9hQY8xDwEMCiRYv02f1HKF/AR1lrmfVBYHzseOw2O+Vt5cS6YolzxY1tgEopdQQaSrL/DEhg+J6atxQ4R0TOACKAOKyWfoKIOEKt+2ygIlS/DMgBykTEAcQDDQPuoWk3bFsF088YppBHXiAYYGPdRj6p+oSACeAL+PAGvFS2V1LWWkaHvwOn3UmMM4b5qfNx2BzkxOZwau6prKteR1tXG21dbTR7m7GLndy4XOJccWyo3cDult2cNfEsytrKiHBEsDh9MQnuBGo9tWTFZmGToVzN2Z+ny0N9Zz2J7kRiXDEHvH5lWyW+oI9aTy0b6zZS3FLMOyXv0Oht7KkT54rDG/DiDXixiY2J8RNZmrmUsrYydjbtpKq9iuMyj8Mb9LKueh1zU+eSFpVGlCOKC6deyKSESVS1V9HQ2UBtRy3p0ekUNRXR4mvBJjYS3Yn8u/zfxLniWJy+GLvNTpuvDV/QR1ZMFvNT59MV7KK2oxaA1MhU6jvqCRIkxhlDcmTyQX13Sik1mmSwCexE5F1gLtZT87zd5cNx612oZf//QqPxnwGeM8Y8KSIPABuMMfeJyA3AHGPM9SLyJeB8Y8zFA213Uabd5F8XAz9tPtQQ+/RB+QckRSTxTuk7bKvfRnJkMjaxsbZ6LVGOKJZkLqGxs5H6jnqqPdUAOGwOHDYHdrEzO2U2J+ecTFJEEqWtpdR31PP3zX+nqLlor/0IQlZMFgZDSmQKyRHJlLWVsb1x+wHFaxc7ARPoc1l6dDqJ7kQiHZHYxMbc1LnUd9TjsrtYkLaAnNgcHDYHmdGZPLb1MSraKohwRLC+ej07m3futZ0EdwLbGrYxOWEyE+In0BXoorilGLvYCRIkMzqTyQmTmZo0lVW7VrG6fPVesThsDk7MOpGTc04m0hFJVXsVn9V+Rrw7nuzYbLbUb+HN3W/27G9SwiSAnu1MSZxCs7cZT5eHtq62nu/Q7N8RNCxsYmNSwiQcYp0zp0WlEeOKwRvwEu+Oxxfw9fRGGAwT4iaQFJmEL+AjaIJUt1cTMAGyY7OZnjSdcVHjRiTOoarvqCfeHU/QBLGLHbvNPqbxqNEnImuNMYvGOg41/IaS7E/qq3w4RuTvk+wnsufWu/XAZcYYr4hEAI8CR2G16L9kjCnqb5swvMneH/TzUcVHvFv6LoVNhXQGOtlSv6VneWpkKnUddRgMbrubeFc8NR01PclzZvJMoh3RNHmb2Nm8k1Zfa5/7mZwwma/M+ArLxy/HbXfj8XuId8X3+Qc3EAzQ6G1kTeUadjXvYnH6YuLd8djFTnZsNjWeGtp8bZS1lTE9aToJ7gQ+rPiQWFcsMc4Y/l3+bzxdHjKiM1hXsw5fwEd5WznegJfytnLiXHH4Aj46A5377bv7eGenzGZ2ymzy4vKo76ynqKkIX9DHjsYdpEalsr1hO13BLqYmTiUlMoVmbzMtvhZ2t+zGYHDYHFw39zpyYnNw293MS51HckTyoAnGGGMlo171giaIMQa7zU73z3N9Zz3PbX+OzkAn8a54EiMSGR83ns31m5mWOI3EiETsYqcz0EmCOwGA9TXrsYud+s56JsRP4O3db+OwOfAH/cxJnUPQBClpKbF6DpxR7Gjcwa7mXQB0mS7KWsvwB/00e5vp8Hf0e4LVF0E4LvM4qj3VTEmYQltXGzWeGqYlTeP6udeTFJmE0+bEZXftt+7Opp1sa9iGXeysqVyDp8tDnDuOmckzOTbjWNKj0+k9ptUf9PNe2Xu8U/KO9Z1i2NW8i411G3GIA7/xMy5qHBdMuYAoRxQJEQl4ujykRaXRZbr4V8m/2Fq/lar2Kpx2J2lRaTR7m0mOTMYu9p6fo+SIZM6ceCbtXe1sqd9CZ6ATp81JnCuOCEcEy3KXcXLOydR31FPaWkpyZDIlLSU4bU4WpC0g2hmNIHrSMYo02YevQZP9kehgk33QBNneuJ1Paz7FJjby4vL4bf5v2dawjUhHJBnRGVS2V3JS9knkxOawIG0Bx2cdj6fLQ2egk0R3IiKCL+Drs2XU/V2XtZaxpWELnf5OMmMyiXPFMSVxykF3pw8XYwy1HbUkuhNB4J2SdyhqLiItKo31Nes5bfxpnJh9Iv6gH4dt4CtAHf4OPF2e/bq5W3wtbKjdwNTEqWPekh1J/qAfX8BHfnU+s1NmEzRBChoK6PR34vF7yInN6TlBq2yv5IPyD3ih8AWavc247W4cNgcR9giavE17nTSkR6czJWEKn9Z+ijGGWFcsle2V++2/O2mDdSnEYXOQHJlMRVsFvoCPrmAXEfYIEiMSey6RLM1cSlJEEp2BTtZVr6OgsaDf45ubOpejUo+i0dtIaWsphU2FZMdkkxKZAkBmTCZrKtewu2U3ANMSpyEi7GjcgV3s+IKDDwGyi50oZxRdgS6yY7Op66hjUsIkTsk5hRpPDU3eJhLdidhsNpakLyHCEYGI8O+yf1PRXkGcK44rZ11JVkzWoPtSFk324WsoLftW9gyIcwFOoN0Yc9iOlDqQZN/ia+GpbU/x8KaH+2yNxbpiufXoWzlt/GlEO6NHKmSlCJogNZ4a0qPTMcZgMOxo3MEnVZ/wdsnb5FfnkxKZgjGGeHc8ubG5NPuaiXXFct7k80iOSKatq43js44naII8t/05iluKWVu9lsyYTDr9nWTHZuO2u5mSOIUv5H2BSEdkn7EYY9jeuJ3UqFRqPDU4xEGjt5EaTw2n5JxClDNq0OMJBAO0+lrpCnaRGpXac4w2sbGtYRuFTYW8X/Y+s5JnMTF+InUddaRFpeE3fj6r/YwWbwulraWsq1lHTmwOca44ytvKqWyv7OlxGYzL5uKE7BPY2bSTifETsdvsZEZn4rA5iHZG09rVSou3paeXp8PfQYwzhoAJUNleSYQ9glNyTyE9yrpM1X2SNtDdv3Uddfyn8j8cn338kAaUegNeWn2t+IN+0qPTB60/kjTZh68DbtmLyHnAYmPMD0YmpEM3lGTvC/i499N7eXjTw4DVjXpKzikszVrKvNR51HhqeKP4Df57/n9ry0Cpw4Qxhh1NO0iNTCUxIpEOfwfN3mY+KP+AaGc0QRMkwZ3A0qylbK7fzONbHmdN5RpqO2qxix2X3UWHv6PPbXef+HT4O4iwR5AXn0dDZwM1nr3HJp+UfRLJkcmUt5VT1lpGbmwu4+PGU9tRS42nhi31W3oaDRnRGUyMn0hihDUuZlriNGw2Gy6bi6r2KlbtWtUzVkcQ5qTO4ei0o3E73CS5kxARUiNTcdvdxLpiiXZFkxyRTJwrbsATjoOlyT58HVQ3voisMcYsGYF4hsVgyd4X8HHzuzfzftn7RDmi+NXxv+LU3FNH5JdHKXV42VC7AX/Qj9PmJC8+j/U168mIzmBK4pT96gaCAQoaCyhrLcMX9LG6fDWvFL3SszzaGU1SRBItvhbcNjcAx2Qcw6yUWdR31LOzaSeb6zdT31Hfc1llX+dMOoeM6IyeS1yb6zcPegwOcTA5cTIzkmaQEZ3Bl6d/mXh3PKWtpWTHZh/0JUFN9uFrKN345/f6aAMWAScZY44dycAOxUDJ3hfwce0/r2V9zXpuOfoWLp52MW67ewyiVEodaYImyAs7XsBld7Esdxkuu2vQ8Svdl2S8AS/tXe1UtlVS2FRITmwOdpudo8YdtVf9Zq/1d6sr2EWnv5Oi5iJ2Ne8iOTK553bXlwpfwml39gwQ3dfUxKmckHUCtR217GjcwfFZx7MwbSHHZR43YKNGk334Gkqy/1uvj36gGPizMWa47rsfdgMl+0c2P8Jd+Xfxs+N+xvlTzu9jbaWUOjJUtVfxatGrtPpaqWivoL6jnsKmQho69zyKJNIR2XPpIi8uj/TodOaPm09GdAbHZR7XM07AGIPNZtNkH6YGfajOET2vfTAItj3dWS2+Fv688c8szVyqiV4pdcRLj07nmjnX7FUWNEHautoQhE5/J4kRiTR5m3i16FVe2/UaO5t2sqZyDQCxzlimJ0/vubtBha9+k72I/HiA9Ywx5o4RiGd4eeohJrXn432f3keLt4WbFtw0hkEppdTIsYmt5y6AWJc1/UhKZApXzrqSK2ddCUB5WzkFDQU8t+M5ChoKSI5MZk7KHFazut/tqiPbQC379j7KorGmnE0GDv9kv+k5WHI9ANsatvHEtie4eNrFzEieMcaBKaXU2MmKySIrJotTc/eez+xO7hyjiNRI6zfZG2N+1/1eRGKx5p//KtZT7n7X33qHldptPW8f3vQwsa5YvnnUN8cwIKWUUmr0DXjNXkSSgO8AX8GaU36BMaZxoHUOKx3WIBVjDJ9UfcLSzKXEu+PHOCillFJqdA10zf63wPlY08bOMca0jVpUw8VjJfui5iLqOupYnL54jANSSimlRt9AT174LpAJ3A5UiEhL6NUqIi2jE94h6rBGl3aPPF2Sedg+B0gppZQaMQNdsx/bWVmGQ/0O8DSwqmgVeXF5+thbpZRSn0tHfkLvz6Rl4O+ktTyfDXUbOHvS2WMdkVJKKTUmwjfZx2YA8FntpwBMT5o+ltEopZRSYyZ8k320Na/2S9Ufk+BOYGHawjEOSCmllBobYZ/sCzxVHDXuKJ2LXiml1OdW+CZ7m5OutFns7mpmclT6WEejlFJKjZnwTfZio+KU2wiIML6+ZKyjUUoppcZMGCd7oSQmEYDcDc9B/c4xDkgppZQaG+Gb7IGSVqtFn9Plh/9dMMbRKKWUUmMjfJO92ChtLSXKEUVyMGiVNRaPaUhKKaXUWAjjZC+UtJSQG5eLXP1Pq2zjM2Mbk1JKKTUGBpz17sgmlLSWMDVxKuQeAxNOhHWPwvHfBVv4nuMopdSAjIGyfNj6ElR+an1OmQLTzxrryNQICttkHwDK28pZlrvMKlh4FTx7NXx0Dyz91liGppRSI8fvhY5GiO11y3EwCO/+CvL/Bp66/dcp/jfkPzx6MapRN+rJXkRygJVAOhAEHjLG3C0iScBTQB5QDFxsjGkUEQHuBs4APMBVxph1g+2nNuDBH/TvmfxmxrmQNAne/BHEZcKcC4f/4JRS4e/930J7Pay4c/T26WmAyEQQgYAfit6F1GlQvQmqNkFrpfWI8OlnwCvfgdI1kDTRSvp+H3S179lWwniYvMyaP2TcDEjIhZot8OI3gA9H75jUqBqLlr0f+K4xZp2IxAJrReRN4CrgbWPMnSJyG3AbcCuwApgSeh0D3B/6d0AVPmsW3syYTKvA7oAvPwH3LoaXvw3TzgBX1HAfm1LqSBMMWklUZP9lLRVWa3jBFRCfDZueg3/9wlrWVg15x8OMs8EdB86I/ddvLoP374LWKshaCMfdaCXnVf8P7C6YdZ7VAjcGujqg5CNo3A3ps0FsVsPkrZ9BsMvaXt4J1kDj5tK+j+WdX+x531C097LcY+HCv0Fcxv7rZcyD/14N3+jjO1BhQYwxYxuAyD+Ae0Kvk40xlSKSAbxrjJkmIg+G3j8Rql/QXa+/bS7KtJufPnYr3y99mX+c9w8mxk/cs7DoPVh5jvX+6jcgV+e4V+qI11AEnc2QMb/vpO3zWMnT4baWf/oEbHkRGnZBXYFVxx0PE06w/kb4Wg9s/84o6PJY77/8pNVafuVmKP340I6rL0kTwea0Givjl1onGzFp0LATCl6DycutkxBXNJSvg4APMueDM3LQTYvIWmPMouEPWo21Mb1mLyJ5wFHAx0BadwIPJfxxoWpZQO/T2LJQ2V7JXkSuA64DWJhho6KrGYCM6H3OYieeBCf/wLp+9fAXICIBpiyHxV+HnKOhswUi4ob3QJU6UD4PmCB4W6BkDez+EHa8AYl51h/7xt2w4HKr6zb3WPC1gbcVmsutn2Owkt/uD63WYtYiKwG4Y63yjkZrUNZAmsuthFJXaHUZN+22klrypBE//L2011vJ3B0L46ZD8WorcXnqYd0jVsKu3rSnftocqwWdMN5K8K2V8PK3rOMGK1F2t5R78zbDtlf2L4/Lso6/+AOYeS781y+tk4a6HZD/1z3fZ8lHVv0nvrT3+ifeAktvsq6Jv/kjcETCefdZJwIfPwBTvgCLrrb+DyeeDOVrrZ6AiSdZJx7Tz+yZ62NASRNg8ml7l2XrBGDKMmYtexGJAd4DfmmMeV5EmowxCb2WNxpjEkXkVeB/jDEfhMrfBm4xxqztb9uLMu3mrAcv5R1PCe9d8l7fld78Caz+48BBTjgJco6xfgHTZll/OD5vJwLeVnDFQEs5xGYO/U6GYBAC3iG1Jo4YxkBnk3XtdDAlH0P1RqtldfS1kD4HKj+DzAVQ9gkE/Va3rs1uJYp/3g4Vn1qtzOQpUL/DSkoiVsvsQESnwriZsKufn/3eco+zuponngiLroGCVeBts/a75r7+10ufa+2juRSW32ElsvgssDmspJy9GDY9C1tfhuTJsOI3VvdxU6nV4mwogg1PWycQOcdYJ9yx6bDmASuht9VYCW/3h3ta3gCTToWd/+o7nqQJ0FIJZf8Z/LhTpsKX/s86IajaEDqB2gUJedBUDIkTrHoOtxXvUHS2QMV62P4GxKSC3Q2Lr7MuIfano3FoP0+jRFv24WtMkr2IOIFXgDeMMb8PlfV0zw9HN/4J953PLrp48bwX+w8kGOD/t3f/QVaV9x3H3193l91l2WX5oQgsAupKRKyRIOAPRI0/EDMh6diJNNNYY8Z2aqaa/khM40xsO52ME0cTq0lqTPzRdMSEOA1JLYYoThJjFKQWsPxGRBQDCCggAst++8f3ud67uAus7nL2nvt5zdy5nHPPvTznuc+e73m+z3PuYfV82LMtek9rftn5TNX3Cn4c1A+Gtndh+ldiCGD3ljgw1tRHT2z42dAwJLY/8G4czKtqip/Rtg/mfzXeO+Hq7C4D3L8nxgx3b4EtK+Cpf44ynXhmHPiGTYA5fxqzdAtOPBMGnBi9zXNvhNM/2TFl2t4Or/wW3lgGLzwI21bDBV+CnRvjvU0j4+C+eWnU4fk3RY+zujbqpbMxz67KfrQH4O5a+V+wZ2sEsp0b4afXQ00DzPhGBJkV8+J7GzQmDtSLvg/jPwVbV8YDYp9eW9zxc2sHRs/xcMZM61jfLedEevacL0TPsqpf1Nv+d6Ku/ndO9FpX/DzKfM4XYNH9HT9z7IUw8dq41MqOg6WPHr6Nlxo6LrIEyx+LFPUffSYyYRt/F99xT6iqjZPCrtQNjIlkaxZ0nlq/7J+iPUz/SvytAbz8mzhRMIvgO3IijL4ggqq3H307q0AK9vl1zIN9ml3/ELDd3W8uWf9N4M2SCXqD3f3LZnYV8EViNv4U4G53n3y4/2PSiCo/+56r2FvXxI9m/qh7BWxvjwNudW2M/725BpY8DCsfh+ZRxVTdkQyb0DG1OGpKpO1Kx/bqmqOnCHDdfBh91UZ+8QAAC+lJREFUbvyG/6CxcRKwe2ucKFTXFQ9Q+3bDsh/D1tWRhq2qic8cNzPSvCedB43DYtu9O6Lc656K3s7wsyIlu3VFvF7bFIH7SJpGRs++MzPviMC3bG705Nrbjq5+Co6rLr5n7HQ449ORihwwDJbOiV7nkNY4cXj+34qp2EtviyDmHpOddm6MHm3DkEhtL34ggmP9IBhwQmRkzvjj+GGlDb+FqX8FbXvjxOPA3ggMrzxz5PKeNiNmQre923F9Vb+OPfDm0bEfo8+Dn91Y3P4jn4iTqdpGWPgvsa7heJh1L5x2RfH97e3dy6IUJpjt+gOs/VV81ydO6Po9bfvh7U2RUm5vi+/uzXUR0J+9J06+Pju3617pO9vjsWJeBNkDe6ON798T392ODXGCcuKZsHVVzGBf/UQE7Cl/Gd/Lwf1w8a2RTXjhgXQivRfO/rP4+6lvjvIV6sE9HmbxN9o8GgaNPro6kqOiYJ9fWQT7C4DfAMuIS+8A/oEYt/8xcBKwEfgTd9+eTg7uAWYQl95d5+6L3/fBJSaNqPLWb1/KwOaxfO+y7/XsDrhHOvbt1+K5aWQctF7+daQm92yD3W8c+XMmfi6yCdtWv/+1kR+Ds2ZHECtomRwH0i0vHfmz6wfH+F+H9K8B6bseMy1ORFrSOVPdQJh0HfzqtjghOfWyCEatl0U5zGK/d70RvcKD+2OC06Lvd/J/D4re1riZcZDftCjGHp/9DuzdDjNujwzKkofjRGdXSYKmq7HUY6WpJSZWDT01hi9GTYGzromTprmfj0zEGZ+OwLbuqej5DjklMkSFXmV7W/Sym0YUP3f7+qi7lnM6ZnkKCgFMJGMK9vmV+Wz83jBpRJUPv3Ma44ZP4o7pd2RTiNdfjNR+w/Fxic7Pb4Jpfxe99wN7o7cJ0Svbvi5m7m5f33UPuqklguWBd2K8ccpfxInF09/ougz1g2PM8ITTY2JRYQz35Is+/P65x2VJq+fHmOcplxSHALpj58ZIkzcMSb/stSh6pm+9FunXhqGRzTiuGkZNjiBqVbDkQXjuvhjPvfDvY4LT1pUxO/mVZyID0Hp51Gldc9Tr8sfiJGvb6jjZGXxKBPS6pvjMwvCLSIVSsM+v3Ab7xm9OZvrYK7jtvNuyLk73uEcAHdgSQX390zHuWlMfcwDe2RavFbQfjKDbryF6h5teiJTxaTMOPzFIROQQCvb5ldtosPvgPgbUDMi6GN1nBuOuLC6XjuPW1HUM9BDp4+ZRxeXWQy69ERGRipfLYO/APj/AgH5lGOxFRER6WC5v/9aeJjs19mvMuCQiIiLZy2WwP5ieG2p66VpsERGRMpLLYF+4nq+xRj17ERGRXAb7gymNrzF7ERGRnAb7Qs++LGfji4iI9LBcB/v6PN2ERURE5APKZ7BPafz+1f0zLomIiEj28hns03N9tXr2IiIiuQ726tmLiIjkNdgbVFsVNZ3dYUxERKTC5DPYY9Qf1y/rYoiIiPQJuQz2DvSvqs26GCIiIn1CLoN9O1BfpZ69iIgI5DXYm6lnLyIikuQz2AP1CvYiIiJAjoN9/6q6rIshIiLSJ+Qz2JvG7EVERAryGewx9exFRESSnAZ7jdmLiIgU5DPYm8bsRURECnIZ7B1orNHv4ouIiEBOgz1AY3VD1kUQERHpE8om2JvZDDNbZWZrzeyWI23fqDveiYiIAGUS7M2sCrgXuBIYD8w2s/GHe88ApfFFRESAMgn2wGRgrbuvd/f9wBxg1uHe0FijNL6IiAiUT7AfCbxasrwprXuPmd1gZovNbPGAduP4ppOOaQFFRET6qnIJ9tbJOu+w4H6fu09y90mjjx/PyJapx6hoIiIifVu5BPtNwKiS5Rbg9YzKIiIiUlbKJdgvAlrNbKyZ9QOuAeZlXCYREZGyUJ11AY6Gu7eZ2ReBJ4Aq4Ifu/lLGxRIRESkLZRHsAdz9ceDxrMshIiJSbsoljS8iIiIfkIK9iIhIzinYi4iI5JyCvYiISM6Zux95qzJjZruAVVmXo48YCmzLuhB9hOqiSHVRpLooGufujVkXQnpe2czG76ZV7j4p60L0BWa2WHURVBdFqosi1UWRmS3OugzSO5TGFxERyTkFexERkZzLa7C/L+sC9CGqiyLVRZHqokh1UaS6yKlcTtATERGRorz27EVERCRRsBcREcm53AV7M5thZqvMbK2Z3ZJ1eXqbmY0ys4VmtsLMXjKzm9L6wWa2wMzWpOdBab2Z2d2pfpaa2cRs96BnmVmVmf2Pmf0iLY81s+dSPTyabpGMmdWm5bXp9TFZlrunmVmzmc01s5WpbZxbwW3iS+lvY7mZPWJmdZXSLszsh2a2xcyWl6zrdjsws2vT9mvM7Nos9kU+nFwFezOrAu4FrgTGA7PNbHy2pep1bcDfuvvpwFTgxrTPtwBPunsr8GRahqib1vS4AfjusS9yr7oJWFGyfDtwV6qHHcD1af31wA53PxW4K22XJ98G5rv7R4CziDqpuDZhZiOBvwYmufsE4hbZ11A57eJBYMYh67rVDsxsMPB1YAowGfh64QRBykeugj3RENe6+3p33w/MAWZlXKZe5e6b3X1J+vcu4qA+ktjvh9JmDwGfSv+eBTzs4fdAs5kNP8bF7hVm1gJcBdyflg24BJibNjm0Hgr1Mxf4eNq+7JlZE3Ah8AMAd9/v7jupwDaRVAP1ZlYN9Ac2UyHtwt1/DWw/ZHV328EVwAJ33+7uO4AFvP8EQvq4vAX7kcCrJcub0rqKkFKOZwPPAcPcfTPECQFwQtosz3X0LeDLQHtaHgLsdPe2tFy6r+/VQ3r9rbR9HpwMbAUeSEMa95tZAxXYJtz9NeAOYCMR5N8CXqAy20VBd9tBbttHJclbsO/sDLwiri00swHAT4Gb3f3tw23aybqyryMz+wSwxd1fKF3dyaZ+FK+Vu2pgIvBddz8b2EMxVduZ3NZFSjfPAsYCI4AGIl19qEpoF0fS1b5Xcp3kRt6C/SZgVMlyC/B6RmU5Zsyshgj0/+Huj6XVfyikYtPzlrQ+r3V0PvBJM9tADN9cQvT0m1P6Fjru63v1kF4fyPvTneVqE7DJ3Z9Ly3OJ4F9pbQLgUuBld9/q7geAx4DzqMx2UdDddpDn9lEx8hbsFwGtaaZtP2IizryMy9Sr0njiD4AV7n5nyUvzgMKs2WuBn5Ws/1yaeTsVeKuQ0itn7v5Vd29x9zHE9/6Uu38WWAhcnTY7tB4K9XN12j4XvRV3fwN41czGpVUfB/6PCmsTyUZgqpn1T38rhbqouHZRorvt4AngcjMblDIll6d1Uk7cPVcPYCawGlgHfC3r8hyD/b2ASKktBV5Mj5nEOOOTwJr0PDhtb8QVC+uAZcQs5cz3o4fr5CLgF+nfJwPPA2uBnwC1aX1dWl6bXj8563L3cB18FFic2sV/AoMqtU0A/wisBJYD/w7UVkq7AB4h5iocIHro13+QdgB8PtXJWuC6rPdLj+4/9HO5IiIiOZe3NL6IiIgcQsFeREQk5xTsRUREck7BXkREJOcU7EVERHJOwV6kh5jZ19Ld1Zaa2YtmNsXMbjaz/lmXTUQqmy69E+kBZnYucCdwkbvvM7OhQD/gd8T1ytsyLaCIVDT17EV6xnBgm7vvA0jB/Wri99gXmtlCADO73MyeNbMlZvaTdE8DzGyDmd1uZs+nx6lZ7YiI5I+CvUjP+CUwysxWm9l3zGy6u99N/Ib4xe5+cert3wpc6u4TiV+4+5uSz3jb3ScD9xC/6y8i0iOqj7yJiByJu+82s48B04CLgUfN7NA7zU0FxgPPpFuk9wOeLXn9kZLnu3q3xCJSSRTsRXqIux8EngaeNrNlFG82UmDAAnef3dVHdPFvEZEPRWl8kR5gZuPMrLVk1UeBV4BdQGNa93vg/MJ4fLoT22kl7/lMyXNpj19E5ENRz16kZwwA/tXMmoE24u5gNwCzgf82s81p3P7PgUfMrDa971biLo0AtWb2HHES3lXvX0Sk23TpnUgfYGYb0CV6ItJLlMYXERHJOfXsRUREck49exERkZxTsBcREck5BXsREZGcU7AXERHJOQV7ERGRnPt/5PtiRD7CCSQAAAAASUVORK5CYII=\n",
|
|
69
|
-
"text/plain": [
|
|
70
|
-
"<Figure size 432x288 with 1 Axes>"
|
|
71
|
-
]
|
|
72
|
-
},
|
|
73
|
-
"metadata": {
|
|
74
|
-
"needs_background": "light"
|
|
75
|
-
},
|
|
76
|
-
"output_type": "display_data"
|
|
77
|
-
}
|
|
78
|
-
],
|
|
79
|
-
"source": [
|
|
80
|
-
"ax = model_out.plot()\n",
|
|
81
|
-
"ax.set_title(\"Citizen Condition Over Time\")\n",
|
|
82
|
-
"ax.set_xlabel(\"Step\")\n",
|
|
83
|
-
"ax.set_ylabel(\"Number of Citizens\")\n",
|
|
84
|
-
"_ = ax.legend(bbox_to_anchor=(1.35, 1.025))"
|
|
85
|
-
]
|
|
86
|
-
},
|
|
87
|
-
{
|
|
88
|
-
"cell_type": "code",
|
|
89
|
-
"execution_count": null,
|
|
90
|
-
"metadata": {},
|
|
91
|
-
"outputs": [],
|
|
92
|
-
"source": []
|
|
93
|
-
}
|
|
94
|
-
],
|
|
95
|
-
"metadata": {
|
|
96
|
-
"kernelspec": {
|
|
97
|
-
"display_name": "Python 3",
|
|
98
|
-
"language": "python",
|
|
99
|
-
"name": "python3"
|
|
100
|
-
},
|
|
101
|
-
"language_info": {
|
|
102
|
-
"codemirror_mode": {
|
|
103
|
-
"name": "ipython",
|
|
104
|
-
"version": 3
|
|
105
|
-
},
|
|
106
|
-
"file_extension": ".py",
|
|
107
|
-
"mimetype": "text/x-python",
|
|
108
|
-
"name": "python",
|
|
109
|
-
"nbconvert_exporter": "python",
|
|
110
|
-
"pygments_lexer": "ipython3",
|
|
111
|
-
"version": "3.7.3"
|
|
112
|
-
}
|
|
113
|
-
},
|
|
114
|
-
"nbformat": 4,
|
|
115
|
-
"nbformat_minor": 1
|
|
116
|
-
}
|
|
@@ -1,34 +0,0 @@
|
|
|
1
|
-
# Epstein Civil Violence Model
|
|
2
|
-
|
|
3
|
-
## Summary
|
|
4
|
-
|
|
5
|
-
This model is based on Joshua Epstein's simulation of how civil unrest grows and is suppressed. Citizen agents wander the grid randomly, and are endowed with individual risk aversion and hardship levels; there is also a universal regime legitimacy value. There are also Cop agents, who work on behalf of the regime. Cops arrest Citizens who are actively rebelling; Citizens decide whether to rebel based on their hardship and the regime legitimacy, and their perceived probability of arrest.
|
|
6
|
-
|
|
7
|
-
The model generates mass uprising as self-reinforcing processes: if enough agents are rebelling, the probability of any individual agent being arrested is reduced, making more agents more likely to join the uprising. However, the more rebelling Citizens the Cops arrest, the less likely additional agents become to join.
|
|
8
|
-
|
|
9
|
-
## How to Run
|
|
10
|
-
|
|
11
|
-
To run the model interactively, run ``EpsteinCivilViolenceServer.py`` in this directory. e.g.
|
|
12
|
-
|
|
13
|
-
```
|
|
14
|
-
$ python EpsteinCivilViolenceServer.py
|
|
15
|
-
```
|
|
16
|
-
|
|
17
|
-
Then open your browser to [http://127.0.0.1:8521/](http://127.0.0.1:8521/) and press Reset, then Run.
|
|
18
|
-
|
|
19
|
-
## Files
|
|
20
|
-
|
|
21
|
-
* ``model.py``: Core model code.
|
|
22
|
-
* ``agent.py``: Agent classes.
|
|
23
|
-
* ``app.py``: Sets up the interactive visualization.
|
|
24
|
-
* ``Epstein Civil Violence.ipynb``: Jupyter notebook conducting some preliminary analysis of the model.
|
|
25
|
-
|
|
26
|
-
## Further Reading
|
|
27
|
-
|
|
28
|
-
This model is based adapted from:
|
|
29
|
-
|
|
30
|
-
[Epstein, J. “Modeling civil violence: An agent-based computational approach”, Proceedings of the National Academy of Sciences, Vol. 99, Suppl. 3, May 14, 2002](http://www.pnas.org/content/99/suppl.3/7243.short)
|
|
31
|
-
|
|
32
|
-
A similar model is also included with NetLogo:
|
|
33
|
-
|
|
34
|
-
Wilensky, U. (2004). NetLogo Rebellion model. http://ccl.northwestern.edu/netlogo/models/Rebellion. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
|
|
File without changes
|
|
@@ -1,164 +0,0 @@
|
|
|
1
|
-
import math
|
|
2
|
-
from enum import Enum
|
|
3
|
-
|
|
4
|
-
import mesa
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
class CitizenState(Enum):
|
|
8
|
-
ACTIVE = 1
|
|
9
|
-
QUIET = 2
|
|
10
|
-
ARRESTED = 3
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
class EpsteinAgent(mesa.experimental.cell_space.CellAgent):
|
|
14
|
-
def update_neighbors(self):
|
|
15
|
-
"""
|
|
16
|
-
Look around and see who my neighbors are
|
|
17
|
-
"""
|
|
18
|
-
self.neighborhood = self.cell.get_neighborhood(radius=self.vision)
|
|
19
|
-
self.neighbors = self.neighborhood.agents
|
|
20
|
-
self.empty_neighbors = [c for c in self.neighborhood if c.is_empty]
|
|
21
|
-
|
|
22
|
-
def move(self):
|
|
23
|
-
if self.model.movement and self.empty_neighbors:
|
|
24
|
-
new_pos = self.random.choice(self.empty_neighbors)
|
|
25
|
-
self.move_to(new_pos)
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
class Citizen(EpsteinAgent):
|
|
29
|
-
"""
|
|
30
|
-
A member of the general population, may or may not be in active rebellion.
|
|
31
|
-
Summary of rule: If grievance - risk > threshold, rebel.
|
|
32
|
-
|
|
33
|
-
Attributes:
|
|
34
|
-
hardship: Agent's 'perceived hardship (i.e., physical or economic
|
|
35
|
-
privation).' Exogenous, drawn from U(0,1).
|
|
36
|
-
regime_legitimacy: Agent's perception of regime legitimacy, equal
|
|
37
|
-
across agents. Exogenous.
|
|
38
|
-
risk_aversion: Exogenous, drawn from U(0,1).
|
|
39
|
-
threshold: if (grievance - (risk_aversion * arrest_probability)) >
|
|
40
|
-
threshold, go/remain Active
|
|
41
|
-
vision: number of cells in each direction (N, S, E and W) that agent
|
|
42
|
-
can inspect
|
|
43
|
-
condition: Can be "Quiescent" or "Active;" deterministic function of
|
|
44
|
-
greivance, perceived risk, and
|
|
45
|
-
grievance: deterministic function of hardship and regime_legitimacy;
|
|
46
|
-
how aggrieved is agent at the regime?
|
|
47
|
-
arrest_probability: agent's assessment of arrest probability, given
|
|
48
|
-
rebellion
|
|
49
|
-
"""
|
|
50
|
-
|
|
51
|
-
def __init__(
|
|
52
|
-
self, model, regime_legitimacy, threshold, vision, arrest_prob_constant
|
|
53
|
-
):
|
|
54
|
-
"""
|
|
55
|
-
Create a new Citizen.
|
|
56
|
-
Args:
|
|
57
|
-
model: the model to which the agent belongs
|
|
58
|
-
hardship: Agent's 'perceived hardship (i.e., physical or economic
|
|
59
|
-
privation).' Exogenous, drawn from U(0,1).
|
|
60
|
-
regime_legitimacy: Agent's perception of regime legitimacy, equal
|
|
61
|
-
across agents. Exogenous.
|
|
62
|
-
risk_aversion: Exogenous, drawn from U(0,1).
|
|
63
|
-
threshold: if (grievance - (risk_aversion * arrest_probability)) >
|
|
64
|
-
threshold, go/remain Active
|
|
65
|
-
vision: number of cells in each direction (N, S, E and W) that
|
|
66
|
-
agent can inspect. Exogenous.
|
|
67
|
-
model: model instance
|
|
68
|
-
"""
|
|
69
|
-
super().__init__(model)
|
|
70
|
-
self.hardship = self.random.random()
|
|
71
|
-
self.risk_aversion = self.random.random()
|
|
72
|
-
self.regime_legitimacy = regime_legitimacy
|
|
73
|
-
self.threshold = threshold
|
|
74
|
-
self.state = CitizenState.QUIET
|
|
75
|
-
self.vision = vision
|
|
76
|
-
self.jail_sentence = 0
|
|
77
|
-
self.grievance = self.hardship * (1 - self.regime_legitimacy)
|
|
78
|
-
self.arrest_prob_constant = arrest_prob_constant
|
|
79
|
-
self.arrest_probability = None
|
|
80
|
-
|
|
81
|
-
self.neighborhood = []
|
|
82
|
-
self.neighbors = []
|
|
83
|
-
self.empty_neighbors = []
|
|
84
|
-
|
|
85
|
-
def step(self):
|
|
86
|
-
"""
|
|
87
|
-
Decide whether to activate, then move if applicable.
|
|
88
|
-
"""
|
|
89
|
-
if self.jail_sentence:
|
|
90
|
-
self.jail_sentence -= 1
|
|
91
|
-
return # no other changes or movements if agent is in jail.
|
|
92
|
-
self.update_neighbors()
|
|
93
|
-
self.update_estimated_arrest_probability()
|
|
94
|
-
|
|
95
|
-
net_risk = self.risk_aversion * self.arrest_probability
|
|
96
|
-
if (self.grievance - net_risk) > self.threshold:
|
|
97
|
-
self.state = CitizenState.ACTIVE
|
|
98
|
-
else:
|
|
99
|
-
self.state = CitizenState.QUIET
|
|
100
|
-
|
|
101
|
-
self.move()
|
|
102
|
-
|
|
103
|
-
def update_estimated_arrest_probability(self):
|
|
104
|
-
"""
|
|
105
|
-
Based on the ratio of cops to actives in my neighborhood, estimate the
|
|
106
|
-
p(Arrest | I go active).
|
|
107
|
-
"""
|
|
108
|
-
cops_in_vision = 0
|
|
109
|
-
actives_in_vision = 1 # citizen counts herself
|
|
110
|
-
for neighbor in self.neighbors:
|
|
111
|
-
if isinstance(neighbor, Cop):
|
|
112
|
-
cops_in_vision += 1
|
|
113
|
-
elif neighbor.state == CitizenState.ACTIVE:
|
|
114
|
-
actives_in_vision += 1
|
|
115
|
-
|
|
116
|
-
# there is a body of literature on this equation
|
|
117
|
-
# the round is not in the pnas paper but without it, its impossible to replicate
|
|
118
|
-
# the dynamics shown there.
|
|
119
|
-
self.arrest_probability = 1 - math.exp(
|
|
120
|
-
-1 * self.arrest_prob_constant * round(cops_in_vision / actives_in_vision)
|
|
121
|
-
)
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
class Cop(EpsteinAgent):
|
|
125
|
-
"""
|
|
126
|
-
A cop for life. No defection.
|
|
127
|
-
Summary of rule: Inspect local vision and arrest a random active agent.
|
|
128
|
-
|
|
129
|
-
Attributes:
|
|
130
|
-
unique_id: unique int
|
|
131
|
-
x, y: Grid coordinates
|
|
132
|
-
vision: number of cells in each direction (N, S, E and W) that cop is
|
|
133
|
-
able to inspect
|
|
134
|
-
"""
|
|
135
|
-
|
|
136
|
-
def __init__(self, model, vision, max_jail_term):
|
|
137
|
-
"""
|
|
138
|
-
Create a new Cop.
|
|
139
|
-
Args:
|
|
140
|
-
x, y: Grid coordinates
|
|
141
|
-
vision: number of cells in each direction (N, S, E and W) that
|
|
142
|
-
agent can inspect. Exogenous.
|
|
143
|
-
model: model instance
|
|
144
|
-
"""
|
|
145
|
-
super().__init__(model)
|
|
146
|
-
self.vision = vision
|
|
147
|
-
self.max_jail_term = max_jail_term
|
|
148
|
-
|
|
149
|
-
def step(self):
|
|
150
|
-
"""
|
|
151
|
-
Inspect local vision and arrest a random active agent. Move if
|
|
152
|
-
applicable.
|
|
153
|
-
"""
|
|
154
|
-
self.update_neighbors()
|
|
155
|
-
active_neighbors = []
|
|
156
|
-
for agent in self.neighbors:
|
|
157
|
-
if isinstance(agent, Citizen) and agent.state == CitizenState.ACTIVE:
|
|
158
|
-
active_neighbors.append(agent)
|
|
159
|
-
if active_neighbors:
|
|
160
|
-
arrestee = self.random.choice(active_neighbors)
|
|
161
|
-
arrestee.jail_sentence = self.random.randint(0, self.max_jail_term)
|
|
162
|
-
arrestee.state = CitizenState.ARRESTED
|
|
163
|
-
|
|
164
|
-
self.move()
|