MEDfl 0.2.1__py3-none-any.whl → 2.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. MEDfl/LearningManager/__init__.py +13 -13
  2. MEDfl/LearningManager/client.py +150 -181
  3. MEDfl/LearningManager/dynamicModal.py +287 -287
  4. MEDfl/LearningManager/federated_dataset.py +60 -60
  5. MEDfl/LearningManager/flpipeline.py +192 -192
  6. MEDfl/LearningManager/model.py +223 -223
  7. MEDfl/LearningManager/params.yaml +14 -14
  8. MEDfl/LearningManager/params_optimiser.py +442 -442
  9. MEDfl/LearningManager/plot.py +229 -229
  10. MEDfl/LearningManager/server.py +181 -189
  11. MEDfl/LearningManager/strategy.py +82 -138
  12. MEDfl/LearningManager/utils.py +331 -331
  13. MEDfl/NetManager/__init__.py +10 -10
  14. MEDfl/NetManager/database_connector.py +43 -43
  15. MEDfl/NetManager/dataset.py +92 -92
  16. MEDfl/NetManager/flsetup.py +320 -320
  17. MEDfl/NetManager/net_helper.py +254 -254
  18. MEDfl/NetManager/net_manager_queries.py +142 -142
  19. MEDfl/NetManager/network.py +194 -194
  20. MEDfl/NetManager/node.py +184 -184
  21. MEDfl/__init__.py +4 -3
  22. MEDfl/scripts/__init__.py +1 -1
  23. MEDfl/scripts/base.py +29 -29
  24. MEDfl/scripts/create_db.py +126 -126
  25. Medfl/LearningManager/__init__.py +13 -0
  26. Medfl/LearningManager/client.py +150 -0
  27. Medfl/LearningManager/dynamicModal.py +287 -0
  28. Medfl/LearningManager/federated_dataset.py +60 -0
  29. Medfl/LearningManager/flpipeline.py +192 -0
  30. Medfl/LearningManager/model.py +223 -0
  31. Medfl/LearningManager/params.yaml +14 -0
  32. Medfl/LearningManager/params_optimiser.py +442 -0
  33. Medfl/LearningManager/plot.py +229 -0
  34. Medfl/LearningManager/server.py +181 -0
  35. Medfl/LearningManager/strategy.py +82 -0
  36. Medfl/LearningManager/utils.py +331 -0
  37. Medfl/NetManager/__init__.py +10 -0
  38. Medfl/NetManager/database_connector.py +43 -0
  39. Medfl/NetManager/dataset.py +92 -0
  40. Medfl/NetManager/flsetup.py +320 -0
  41. Medfl/NetManager/net_helper.py +254 -0
  42. Medfl/NetManager/net_manager_queries.py +142 -0
  43. Medfl/NetManager/network.py +194 -0
  44. Medfl/NetManager/node.py +184 -0
  45. Medfl/__init__.py +3 -0
  46. Medfl/scripts/__init__.py +2 -0
  47. Medfl/scripts/base.py +30 -0
  48. Medfl/scripts/create_db.py +126 -0
  49. alembic/env.py +61 -61
  50. {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info}/METADATA +120 -108
  51. medfl-2.0.1.dist-info/RECORD +55 -0
  52. {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info}/WHEEL +1 -1
  53. {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info/licenses}/LICENSE +674 -674
  54. MEDfl-0.2.1.dist-info/RECORD +0 -31
  55. {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info}/top_level.txt +0 -0
alembic/env.py CHANGED
@@ -1,61 +1,61 @@
1
- from logging.config import fileConfig
2
- import logging
3
- from sqlalchemy import engine_from_config, create_engine
4
- from sqlalchemy import pool
5
- import sys
6
- import os
7
- from alembic import context
8
-
9
- sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
10
- from scripts.base import my_eng
11
-
12
- # this is the Alembic Config object, which provides
13
- # access to the values within the .ini file in use.
14
- config = context.config
15
-
16
- # Interpret the config file for Python logging.
17
- # This line sets up loggers basically.
18
- fileConfig(config.config_file_name)
19
-
20
- # add your model's MetaData object here
21
- # for 'autogenerate' support
22
- # from myapp import mymodel
23
- # target_metadata = mymodel.Base.metadata
24
- target_metadata = None
25
-
26
- # other values from the config, defined by the needs of env.py,
27
- # can be acquired:
28
- # my_important_option = config.get_main_option("my_important_option")
29
- # ... etc.
30
- def configure_logger(name):
31
- # This is the standard logging configuration
32
- logging.config.fileConfig(
33
- 'alembic_logging.ini', # Path to your logging configuration file
34
- defaults={
35
- 'logfilename': 'alembic.log', # Log file name
36
- },
37
- disable_existing_loggers=False,
38
- )
39
-
40
- return logging.getLogger(name)
41
-
42
-
43
-
44
- def run_migrations_offline():
45
- """Run migrations in 'offline' mode."""
46
- pass
47
-
48
- def run_migrations_online():
49
- """Run migrations in 'online' mode."""
50
- pass
51
-
52
- if context.is_offline_mode():
53
- run_migrations_offline()
54
- else:
55
- run_migrations_online()
56
-
57
-
58
- if context.is_offline_mode():
59
- run_migrations_offline()
60
- else:
61
- run_migrations_online()
1
+ from logging.config import fileConfig
2
+ import logging
3
+ from sqlalchemy import engine_from_config, create_engine
4
+ from sqlalchemy import pool
5
+ import sys
6
+ import os
7
+ from alembic import context
8
+
9
+ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
10
+ from scripts.base import my_eng
11
+
12
+ # this is the Alembic Config object, which provides
13
+ # access to the values within the .ini file in use.
14
+ config = context.config
15
+
16
+ # Interpret the config file for Python logging.
17
+ # This line sets up loggers basically.
18
+ fileConfig(config.config_file_name)
19
+
20
+ # add your model's MetaData object here
21
+ # for 'autogenerate' support
22
+ # from myapp import mymodel
23
+ # target_metadata = mymodel.Base.metadata
24
+ target_metadata = None
25
+
26
+ # other values from the config, defined by the needs of env.py,
27
+ # can be acquired:
28
+ # my_important_option = config.get_main_option("my_important_option")
29
+ # ... etc.
30
+ def configure_logger(name):
31
+ # This is the standard logging configuration
32
+ logging.config.fileConfig(
33
+ 'alembic_logging.ini', # Path to your logging configuration file
34
+ defaults={
35
+ 'logfilename': 'alembic.log', # Log file name
36
+ },
37
+ disable_existing_loggers=False,
38
+ )
39
+
40
+ return logging.getLogger(name)
41
+
42
+
43
+
44
+ def run_migrations_offline():
45
+ """Run migrations in 'offline' mode."""
46
+ pass
47
+
48
+ def run_migrations_online():
49
+ """Run migrations in 'online' mode."""
50
+ pass
51
+
52
+ if context.is_offline_mode():
53
+ run_migrations_offline()
54
+ else:
55
+ run_migrations_online()
56
+
57
+
58
+ if context.is_offline_mode():
59
+ run_migrations_offline()
60
+ else:
61
+ run_migrations_online()
@@ -1,108 +1,120 @@
1
- Metadata-Version: 2.1
2
- Name: MEDfl
3
- Version: 0.2.1
4
- Summary: Python Open-source package for simulating federated learning and differential privacy
5
- Home-page: https://github.com/MEDomics-UdeS/MEDfl
6
- Author: MEDomics consortium
7
- Author-email: medomics.info@gmail.com
8
- Project-URL: Documentation, https://
9
- Project-URL: Github, https://github.com/MEDomics-UdeS/MEDfl
10
- Keywords: federated learning differential privacy medical research
11
- Classifier: Development Status :: 3 - Alpha
12
- Classifier: Intended Audience :: Developers
13
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
14
- Classifier: License :: OSI Approved :: MIT License
15
- Classifier: Programming Language :: Python :: 3.8
16
- Classifier: Programming Language :: Python :: 3.9
17
- Requires-Python: >=3.8,<3.11
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE
20
- Requires-Dist: flwr ~=1.7.0
21
- Requires-Dist: matplotlib ~=3.6.3
22
- Requires-Dist: numpy ~=1.24.2
23
- Requires-Dist: opacus ~=1.3.0
24
- Requires-Dist: pandas ~=1.5.2
25
- Requires-Dist: PyYAML ~=6.0
26
- Requires-Dist: setuptools ~=68.0.0
27
- Requires-Dist: Sphinx ~=5.3.0
28
- Requires-Dist: SQLAlchemy ~=1.4.47
29
- Requires-Dist: torch ~=1.13.1
30
- Requires-Dist: datetime ~=5.1
31
- Requires-Dist: scikit-learn ~=1.1.1
32
- Requires-Dist: sphinx-jsonschema ==1.19.1
33
- Requires-Dist: sphinx-rtd-dark-mode ==1.2.4
34
- Requires-Dist: plotly ==5.19.0
35
- Requires-Dist: optuna ==3.5.0
36
- Requires-Dist: mysql
37
- Requires-Dist: mysql-connector-python
38
-
39
- # MEDfl: Federated Learning and Differential Privacy Simulation Tool for Tabular Data
40
- ![Python Versions](https://img.shields.io/badge/python-3.9-blue)
41
- ![Build Status](https://travis-ci.org/MEDomics-UdeS/MEDfl.svg?branch=main)
42
-
43
- ![GitHub contributors](https://img.shields.io/github/contributors/scottydocs/README-template.md)
44
- ![License: MIT](https://img.shields.io/badge/license-MIT-green)
45
-
46
-
47
-
48
- ## Table of Contents
49
- * [1. Introduction](#1-introduction)
50
- * [2. Installation](#2-installation)
51
- * [3. Documentation](#3-documentation)
52
- * [4. Getting started](#4-Getting-started)
53
- * [5. Acknowledgement](#5-acknowledgement)
54
- * [6. Authors](#6-authors)
55
-
56
- ## 1. Introduction
57
- This Python package is an open-source tool designed for simulating federated learning and incorporating differential privacy. It empowers researchers and developers to effortlessly create, execute, and assess federated learning pipelines while seamlessly working with various tabular datasets.
58
-
59
-
60
- ## 2. Installation
61
-
62
- ### Python installation
63
- The MEDfl package requires *python 3.9* or more to be run. If you don't have it installed on your machine, check out the following link [Python](https://www.python.org/downloads/).
64
- It also requires MySQL database.
65
-
66
- ### Package installation
67
- For now, you can install the ``MEDfl``package as:
68
- ```
69
- git clone https://github.com/MEDomics-UdeS/MEDfl.git
70
- cd MEDfl
71
- pip install -e .
72
- ```
73
- ### MySQL DB configuration
74
- MEDfl requires a MySQL DB connection, and this is in order to allow users to work with their own tabular datasets, we have created a bash script to install and configure A MySQL DB with phpmyadmin monitoring system, run the following command then change your credential on the MEDfl/scripts/base.py and MEDfl/scripts/db_config.ini files
75
- ```
76
- sudo bash MEDfl/scripts/setup_mysql.sh
77
- ```
78
-
79
- ### Project Base URL Update
80
- Please ensure to modify the `base_url` parameter in the `MEDfl/global_params.yaml` file. The `base_url` represents the path to the MEDfl project on your local machine. Update this value accordingly.
81
-
82
- ## 3. Documentation
83
- We used sphinx to create the documentation for this project. you can generate and host it locally by compiling the documentation source code using:
84
- ```
85
- cd docs
86
- make clean
87
- make html
88
- ```
89
-
90
- Then open it locally using:
91
-
92
- ```
93
- cd _build/html
94
- python -m http.server
95
- ```
96
-
97
- ## 4. Getting started
98
- We have created a complete tutorial for the different functionalities of the package. It can be found here: [Tutorial](https://github.com/MEDomics-UdeS/MEDfl/blob/main/notebooks/First_Tuto.ipynb).
99
-
100
-
101
- ## 5. Acknowledgment
102
- MEDfl is an open-source package that welcomes any contribution and feedback. We wish that this package could serve the growing research community in federated learning for health.
103
-
104
- ## 6. Authors
105
- * [MEDomics-UdeS](https://www.medomics-udes.org/en/)
106
- * [Hithem Lamri](https://github.com/HaithemLamri)
107
- * [Ouael Nedjem Eddine SAHBI](https://github.com/ouaelesi)
108
-
1
+ Metadata-Version: 2.4
2
+ Name: MEDfl
3
+ Version: 2.0.1
4
+ Summary: Python Open-source package for simulating federated learning and differential privacy
5
+ Home-page: https://github.com/MEDomics-UdeS/MEDfl
6
+ Author: MEDomics consortium
7
+ Author-email: medomics.info@gmail.com
8
+ Project-URL: Documentation, https://
9
+ Project-URL: Github, https://github.com/MEDomics-UdeS/MEDfl
10
+ Keywords: federated learning differential privacy medical research
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Programming Language :: Python :: 3.8
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Requires-Python: >=3.8,<3.13
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE
20
+ Requires-Dist: flwr~=1.18.0
21
+ Requires-Dist: matplotlib~=3.6.3
22
+ Requires-Dist: numpy~=1.26.4
23
+ Requires-Dist: opacus~=1.5.3
24
+ Requires-Dist: pandas~=1.5.2
25
+ Requires-Dist: PyYAML~=6.0
26
+ Requires-Dist: setuptools~=68.0.0
27
+ Requires-Dist: Sphinx~=5.3.0
28
+ Requires-Dist: SQLAlchemy~=1.4.47
29
+ Requires-Dist: torch>=2.0.0
30
+ Requires-Dist: datetime~=5.1
31
+ Requires-Dist: scikit-learn~=1.6.1
32
+ Requires-Dist: sphinx-jsonschema==1.19.1
33
+ Requires-Dist: sphinx-rtd-dark-mode==1.2.4
34
+ Requires-Dist: plotly==5.19.0
35
+ Requires-Dist: optuna==3.5.0
36
+ Requires-Dist: mysql-connector-python~=9.3.0
37
+ Requires-Dist: seaborn~=0.13.2
38
+ Dynamic: author
39
+ Dynamic: author-email
40
+ Dynamic: classifier
41
+ Dynamic: description
42
+ Dynamic: description-content-type
43
+ Dynamic: home-page
44
+ Dynamic: keywords
45
+ Dynamic: license-file
46
+ Dynamic: project-url
47
+ Dynamic: requires-dist
48
+ Dynamic: requires-python
49
+ Dynamic: summary
50
+
51
+ # MEDfl: Federated Learning and Differential Privacy Simulation Tool for Tabular Data
52
+ ![Python Versions](https://img.shields.io/badge/python-3.9-blue)
53
+ ![Build Status](https://travis-ci.org/MEDomics-UdeS/MEDfl.svg?branch=main)
54
+
55
+ ![GitHub contributors](https://img.shields.io/github/contributors/scottydocs/README-template.md)
56
+ ![License: MIT](https://img.shields.io/badge/license-MIT-green)
57
+
58
+
59
+
60
+ ## Table of Contents
61
+ * [1. Introduction](#1-introduction)
62
+ * [2. Installation](#2-installation)
63
+ * [3. Documentation](#3-documentation)
64
+ * [4. Getting started](#4-Getting-started)
65
+ * [5. Acknowledgement](#5-acknowledgement)
66
+ * [6. Authors](#6-authors)
67
+
68
+ ## 1. Introduction
69
+ This Python package is an open-source tool designed for simulating federated learning and incorporating differential privacy. It empowers researchers and developers to effortlessly create, execute, and assess federated learning pipelines while seamlessly working with various tabular datasets.
70
+
71
+
72
+ ## 2. Installation
73
+
74
+ ### Python installation
75
+ The MEDfl package requires *python 3.9* or more to be run. If you don't have it installed on your machine, check out the following link [Python](https://www.python.org/downloads/).
76
+ It also requires MySQL database.
77
+
78
+ ### Package installation
79
+ For now, you can install the ``MEDfl``package as:
80
+ ```
81
+ git clone https://github.com/MEDomics-UdeS/MEDfl.git
82
+ cd MEDfl
83
+ pip install -e .
84
+ ```
85
+ ### MySQL DB configuration
86
+ MEDfl requires a MySQL DB connection, and this is in order to allow users to work with their own tabular datasets, we have created a bash script to install and configure A MySQL DB with phpmyadmin monitoring system, run the following command then change your credential on the MEDfl/scripts/base.py and MEDfl/scripts/db_config.ini files
87
+ ```
88
+ sudo bash MEDfl/scripts/setup_mysql.sh
89
+ ```
90
+
91
+ ### Project Base URL Update
92
+ Please ensure to modify the `base_url` parameter in the `MEDfl/global_params.yaml` file. The `base_url` represents the path to the MEDfl project on your local machine. Update this value accordingly.
93
+
94
+ ## 3. Documentation
95
+ We used sphinx to create the documentation for this project. you can generate and host it locally by compiling the documentation source code using:
96
+ ```
97
+ cd docs
98
+ make clean
99
+ make html
100
+ ```
101
+
102
+ Then open it locally using:
103
+
104
+ ```
105
+ cd _build/html
106
+ python -m http.server
107
+ ```
108
+
109
+ ## 4. Getting started
110
+ We have created a complete tutorial for the different functionalities of the package. It can be found here: [Tutorial](https://github.com/MEDomics-UdeS/MEDfl/blob/main/notebooks/First_Tuto.ipynb).
111
+
112
+
113
+ ## 5. Acknowledgment
114
+ MEDfl is an open-source package that welcomes any contribution and feedback. We wish that this package could serve the growing research community in federated learning for health.
115
+
116
+ ## 6. Authors
117
+ * [MEDomics-UdeS](https://www.medomics-udes.org/en/)
118
+ * [Hithem Lamri](https://github.com/HaithemLamri)
119
+ * [Ouael Nedjem Eddine SAHBI](https://github.com/ouaelesi)
120
+
@@ -0,0 +1,55 @@
1
+ MEDfl/__init__.py,sha256=70DmtU4C3A-1XYoaYm0moXBe-YGJ2FhEe3ga5SQVTts,97
2
+ MEDfl/LearningManager/__init__.py,sha256=IMHJVeyx5ew0U_90LNMNCd4QISzWv3XCCri7fQRvcsM,341
3
+ MEDfl/LearningManager/client.py,sha256=9Y_Zb0yxvCxx3dVCPQ1bXS5mCKasylSBnoVj-RDN270,5933
4
+ MEDfl/LearningManager/dynamicModal.py,sha256=q8u7xPpj_TdZnSr8kYj0Xx7Sdz-diXsKBAfVce8-qSU,10534
5
+ MEDfl/LearningManager/federated_dataset.py,sha256=InsZ5Rys2dgqaPxVyP5G3TrJMwiCNHOoTd3tCpUwUVM,2081
6
+ MEDfl/LearningManager/flpipeline.py,sha256=5lT2uod5EqnkRQ04cgm0gYyZz0djumfIYipCrzX1fdo,7111
7
+ MEDfl/LearningManager/model.py,sha256=vp8FIMxBdz3FTF5wJaea2IO_WGeANLZgBxTKVe3gW3Q,7456
8
+ MEDfl/LearningManager/params.yaml,sha256=Ix1cNtlWr3vDC0te6pipl5w8iLADO6dZvwm633-VaIA,436
9
+ MEDfl/LearningManager/params_optimiser.py,sha256=8e0gCt4imwQHlNSJ3A2EAuc3wSr6yfSI6JDghohfmZQ,17618
10
+ MEDfl/LearningManager/plot.py,sha256=A6Z8wC8J-H-OmWBPKqwK5eiTB9vzOBGMaFv1SaNA9Js,7698
11
+ MEDfl/LearningManager/server.py,sha256=oTgW3K1UT6m4SQBk23FIf23km_BDq9vvjeC6OgY8DNw,7077
12
+ MEDfl/LearningManager/strategy.py,sha256=BHXpwmt7jx07y45YLUs8FZry2gYQbpiV4vNbHhsksQ4,3435
13
+ MEDfl/LearningManager/utils.py,sha256=B4RULJp-puJr724O6teI0PxnUyPV8NG-uPC6jqaiDKI,9605
14
+ MEDfl/NetManager/__init__.py,sha256=OpgsIiBg7UA6Bfnu_kqGfEPxU8JfpPxSFU98TOeDTP0,273
15
+ MEDfl/NetManager/database_connector.py,sha256=G8DAsD_pAIK1U67x3Q8gmSJGW7iJyxQ_NE5lWpT-P0Q,1474
16
+ MEDfl/NetManager/dataset.py,sha256=HTV0jrJ4Qlhl2aSJzdFU1lkxGBKtmJ390eBpwfKf_4o,2777
17
+ MEDfl/NetManager/flsetup.py,sha256=CVu_TIU7l3G6DDnwtY6JURbhIZk7gKC3unqWnU-YtlM,11434
18
+ MEDfl/NetManager/net_helper.py,sha256=tyfxmpbleSdfPfo2ezKT0VOvZu660v9nhBuHCpl8pG4,6812
19
+ MEDfl/NetManager/net_manager_queries.py,sha256=j-CLQPjtTLyZuFPhIcwJStD7L7xtZpkmkhe_h3pDuTs,4086
20
+ MEDfl/NetManager/network.py,sha256=5t705fzWc-BRg-QPAbAcDv5ckDGzsPwj_Q5V0iTgkx0,6829
21
+ MEDfl/NetManager/node.py,sha256=t90QuYZ8M1X_AG1bwTta0CnlOuodqkmpVda2K7NOgHc,6542
22
+ MEDfl/scripts/__init__.py,sha256=Pq1weevsPaU7MRMHfBYeyT0EOFeWLeVM6Y1DVz6jw1A,48
23
+ MEDfl/scripts/base.py,sha256=QrmG7gkiPYkAy-5tXxJgJmOSLGAKeIVH6i0jq7G9xnA,752
24
+ MEDfl/scripts/create_db.py,sha256=MnFtZkTueRZ-3qXPNX4JsXjOKj-4mlkxoRhSFdRcvJw,3817
25
+ Medfl/__init__.py,sha256=-BV6VpkX931dhU_qLqRJyhhRP9ftIrlHBvTgQVC-jK0,79
26
+ Medfl/LearningManager/__init__.py,sha256=IMHJVeyx5ew0U_90LNMNCd4QISzWv3XCCri7fQRvcsM,341
27
+ Medfl/LearningManager/client.py,sha256=9Y_Zb0yxvCxx3dVCPQ1bXS5mCKasylSBnoVj-RDN270,5933
28
+ Medfl/LearningManager/dynamicModal.py,sha256=q8u7xPpj_TdZnSr8kYj0Xx7Sdz-diXsKBAfVce8-qSU,10534
29
+ Medfl/LearningManager/federated_dataset.py,sha256=InsZ5Rys2dgqaPxVyP5G3TrJMwiCNHOoTd3tCpUwUVM,2081
30
+ Medfl/LearningManager/flpipeline.py,sha256=5lT2uod5EqnkRQ04cgm0gYyZz0djumfIYipCrzX1fdo,7111
31
+ Medfl/LearningManager/model.py,sha256=vp8FIMxBdz3FTF5wJaea2IO_WGeANLZgBxTKVe3gW3Q,7456
32
+ Medfl/LearningManager/params.yaml,sha256=_yAdYBtxNqKRWIhs_XebG_w1NGyq4-3NzVwWb8xiU5o,436
33
+ Medfl/LearningManager/params_optimiser.py,sha256=8e0gCt4imwQHlNSJ3A2EAuc3wSr6yfSI6JDghohfmZQ,17618
34
+ Medfl/LearningManager/plot.py,sha256=A6Z8wC8J-H-OmWBPKqwK5eiTB9vzOBGMaFv1SaNA9Js,7698
35
+ Medfl/LearningManager/server.py,sha256=oTgW3K1UT6m4SQBk23FIf23km_BDq9vvjeC6OgY8DNw,7077
36
+ Medfl/LearningManager/strategy.py,sha256=BHXpwmt7jx07y45YLUs8FZry2gYQbpiV4vNbHhsksQ4,3435
37
+ Medfl/LearningManager/utils.py,sha256=B4RULJp-puJr724O6teI0PxnUyPV8NG-uPC6jqaiDKI,9605
38
+ Medfl/NetManager/__init__.py,sha256=OpgsIiBg7UA6Bfnu_kqGfEPxU8JfpPxSFU98TOeDTP0,273
39
+ Medfl/NetManager/database_connector.py,sha256=Yh3GxI0NmbftM7YUkqQBjsXAe3i1ucF9q5OyR9DOhDQ,1473
40
+ Medfl/NetManager/dataset.py,sha256=HTV0jrJ4Qlhl2aSJzdFU1lkxGBKtmJ390eBpwfKf_4o,2777
41
+ Medfl/NetManager/flsetup.py,sha256=CVu_TIU7l3G6DDnwtY6JURbhIZk7gKC3unqWnU-YtlM,11434
42
+ Medfl/NetManager/net_helper.py,sha256=tyfxmpbleSdfPfo2ezKT0VOvZu660v9nhBuHCpl8pG4,6812
43
+ Medfl/NetManager/net_manager_queries.py,sha256=j-CLQPjtTLyZuFPhIcwJStD7L7xtZpkmkhe_h3pDuTs,4086
44
+ Medfl/NetManager/network.py,sha256=5t705fzWc-BRg-QPAbAcDv5ckDGzsPwj_Q5V0iTgkx0,6829
45
+ Medfl/NetManager/node.py,sha256=t90QuYZ8M1X_AG1bwTta0CnlOuodqkmpVda2K7NOgHc,6542
46
+ Medfl/scripts/__init__.py,sha256=Pq1weevsPaU7MRMHfBYeyT0EOFeWLeVM6Y1DVz6jw1A,48
47
+ Medfl/scripts/base.py,sha256=QrmG7gkiPYkAy-5tXxJgJmOSLGAKeIVH6i0jq7G9xnA,752
48
+ Medfl/scripts/create_db.py,sha256=MnFtZkTueRZ-3qXPNX4JsXjOKj-4mlkxoRhSFdRcvJw,3817
49
+ alembic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
+ alembic/env.py,sha256=-aSZ6SlJeK1ZeqHgM-54hOi9LhJRFP0SZGjut-JnY-4,1588
51
+ medfl-2.0.1.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
52
+ medfl-2.0.1.dist-info/METADATA,sha256=zHjfr88Etr5-fG8de55QinubpfHZBoSl15_iF-peN64,4579
53
+ medfl-2.0.1.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
54
+ medfl-2.0.1.dist-info/top_level.txt,sha256=dIL9X8HOFuaVSzpg40DVveDPrymWRoShHtspH7kkjdI,14
55
+ medfl-2.0.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (78.1.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5