MEDfl 0.2.1__py3-none-any.whl → 2.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- MEDfl/LearningManager/__init__.py +13 -13
- MEDfl/LearningManager/client.py +150 -181
- MEDfl/LearningManager/dynamicModal.py +287 -287
- MEDfl/LearningManager/federated_dataset.py +60 -60
- MEDfl/LearningManager/flpipeline.py +192 -192
- MEDfl/LearningManager/model.py +223 -223
- MEDfl/LearningManager/params.yaml +14 -14
- MEDfl/LearningManager/params_optimiser.py +442 -442
- MEDfl/LearningManager/plot.py +229 -229
- MEDfl/LearningManager/server.py +181 -189
- MEDfl/LearningManager/strategy.py +82 -138
- MEDfl/LearningManager/utils.py +331 -331
- MEDfl/NetManager/__init__.py +10 -10
- MEDfl/NetManager/database_connector.py +43 -43
- MEDfl/NetManager/dataset.py +92 -92
- MEDfl/NetManager/flsetup.py +320 -320
- MEDfl/NetManager/net_helper.py +254 -254
- MEDfl/NetManager/net_manager_queries.py +142 -142
- MEDfl/NetManager/network.py +194 -194
- MEDfl/NetManager/node.py +184 -184
- MEDfl/__init__.py +4 -3
- MEDfl/scripts/__init__.py +1 -1
- MEDfl/scripts/base.py +29 -29
- MEDfl/scripts/create_db.py +126 -126
- Medfl/LearningManager/__init__.py +13 -0
- Medfl/LearningManager/client.py +150 -0
- Medfl/LearningManager/dynamicModal.py +287 -0
- Medfl/LearningManager/federated_dataset.py +60 -0
- Medfl/LearningManager/flpipeline.py +192 -0
- Medfl/LearningManager/model.py +223 -0
- Medfl/LearningManager/params.yaml +14 -0
- Medfl/LearningManager/params_optimiser.py +442 -0
- Medfl/LearningManager/plot.py +229 -0
- Medfl/LearningManager/server.py +181 -0
- Medfl/LearningManager/strategy.py +82 -0
- Medfl/LearningManager/utils.py +331 -0
- Medfl/NetManager/__init__.py +10 -0
- Medfl/NetManager/database_connector.py +43 -0
- Medfl/NetManager/dataset.py +92 -0
- Medfl/NetManager/flsetup.py +320 -0
- Medfl/NetManager/net_helper.py +254 -0
- Medfl/NetManager/net_manager_queries.py +142 -0
- Medfl/NetManager/network.py +194 -0
- Medfl/NetManager/node.py +184 -0
- Medfl/__init__.py +3 -0
- Medfl/scripts/__init__.py +2 -0
- Medfl/scripts/base.py +30 -0
- Medfl/scripts/create_db.py +126 -0
- alembic/env.py +61 -61
- {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info}/METADATA +120 -108
- medfl-2.0.1.dist-info/RECORD +55 -0
- {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info}/WHEEL +1 -1
- {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info/licenses}/LICENSE +674 -674
- MEDfl-0.2.1.dist-info/RECORD +0 -31
- {MEDfl-0.2.1.dist-info → medfl-2.0.1.dist-info}/top_level.txt +0 -0
MEDfl/NetManager/net_helper.py
CHANGED
@@ -1,254 +1,254 @@
|
|
1
|
-
from sklearn.preprocessing import LabelEncoder
|
2
|
-
from sklearn.impute import SimpleImputer
|
3
|
-
|
4
|
-
from sqlalchemy import text
|
5
|
-
|
6
|
-
import torch
|
7
|
-
import pandas as pd
|
8
|
-
from torch.utils.data import TensorDataset
|
9
|
-
import numpy as np
|
10
|
-
|
11
|
-
from MEDfl.NetManager.database_connector import DatabaseManager
|
12
|
-
|
13
|
-
|
14
|
-
def is_str(data_df, row, x):
|
15
|
-
"""
|
16
|
-
Check if a column in a DataFrame is of type 'object' and convert the value accordingly.
|
17
|
-
|
18
|
-
Args:
|
19
|
-
data_df (pandas.DataFrame): DataFrame containing the data.
|
20
|
-
row (pandas.Series): Data row.
|
21
|
-
x (str): Column name.
|
22
|
-
|
23
|
-
Returns:
|
24
|
-
str or float: Processed value based on the column type.
|
25
|
-
"""
|
26
|
-
if data_df[x].dtype == "object":
|
27
|
-
x = f"'{row[x]}'"
|
28
|
-
else:
|
29
|
-
x = row[x]
|
30
|
-
return x
|
31
|
-
|
32
|
-
|
33
|
-
def process_eicu(data_df):
|
34
|
-
"""
|
35
|
-
Process eICU data by filling missing values with mean and replacing NaNs with 'Unknown'.
|
36
|
-
|
37
|
-
Args:
|
38
|
-
data_df (pandas.DataFrame): Input data.
|
39
|
-
|
40
|
-
Returns:
|
41
|
-
pandas.DataFrame: Processed data.
|
42
|
-
"""
|
43
|
-
# Identify numeric and non-numeric columns
|
44
|
-
numeric_columns = data_df.select_dtypes(include=[np.number]).columns
|
45
|
-
non_numeric_columns = data_df.select_dtypes(exclude=[np.number]).columns
|
46
|
-
|
47
|
-
# Fill NaN in numeric columns with mean
|
48
|
-
data_df[numeric_columns] = data_df[numeric_columns].fillna(
|
49
|
-
data_df[numeric_columns].mean())
|
50
|
-
|
51
|
-
# Fill NaN in non-numeric columns with 'Unknown'
|
52
|
-
data_df[non_numeric_columns] = data_df[non_numeric_columns].fillna(
|
53
|
-
'Unknown')
|
54
|
-
|
55
|
-
try:
|
56
|
-
data_df = data_df.reset_index(drop=True)
|
57
|
-
except:
|
58
|
-
pass
|
59
|
-
|
60
|
-
return data_df
|
61
|
-
|
62
|
-
|
63
|
-
# remove indiserd columns after reading from the DB
|
64
|
-
def process_data_after_reading(data, output, fill_strategy="mean", fit_encode=[], to_drop=[]):
|
65
|
-
"""
|
66
|
-
Process data after reading from the database, including encoding, dropping columns, and creating a PyTorch TensorDataset.
|
67
|
-
|
68
|
-
Args:
|
69
|
-
data (pandas.DataFrame): Input data.
|
70
|
-
output (str): Output column name.
|
71
|
-
fill_strategy (str, optional): Imputation strategy for missing values. Default is "mean".
|
72
|
-
fit_encode (list, optional): List of columns to be label-encoded. Default is an empty list.
|
73
|
-
to_drop (list, optional): List of columns to be dropped from the DataFrame. Default is an empty list.
|
74
|
-
|
75
|
-
Returns:
|
76
|
-
torch.utils.data.TensorDataset: Processed data as a PyTorch TensorDataset.
|
77
|
-
"""
|
78
|
-
|
79
|
-
# Check if there is a DataSet assigned to the node
|
80
|
-
if (len(data) == 0):
|
81
|
-
raise "Node doesn't Have dataSet"
|
82
|
-
|
83
|
-
encoder = LabelEncoder()
|
84
|
-
# En Code some columns
|
85
|
-
for s in fit_encode:
|
86
|
-
try:
|
87
|
-
data[s] = encoder.fit_transform(data[s])
|
88
|
-
except:
|
89
|
-
raise print(s)
|
90
|
-
|
91
|
-
# The output of the DATA
|
92
|
-
y = data[output]
|
93
|
-
|
94
|
-
X = data
|
95
|
-
|
96
|
-
# remove indisered columns when reading the dataframe from the DB
|
97
|
-
for column in to_drop:
|
98
|
-
try:
|
99
|
-
X = X.drop(
|
100
|
-
[column], axis=1
|
101
|
-
)
|
102
|
-
except Exception as e:
|
103
|
-
raise e
|
104
|
-
|
105
|
-
# Get the DATAset Features
|
106
|
-
features = [col for col in X.columns if col != output]
|
107
|
-
|
108
|
-
# Impute missing values using the mean strategy
|
109
|
-
try:
|
110
|
-
imputer = SimpleImputer(strategy=fill_strategy)
|
111
|
-
X[features] = imputer.fit_transform(X[features])
|
112
|
-
except:
|
113
|
-
print()
|
114
|
-
|
115
|
-
X = torch.tensor(X.values, dtype=torch.float32)
|
116
|
-
y = torch.tensor(y.values, dtype=torch.float32)
|
117
|
-
data = TensorDataset(X, y)
|
118
|
-
|
119
|
-
return data
|
120
|
-
|
121
|
-
|
122
|
-
def get_nodeid_from_name(name):
|
123
|
-
"""
|
124
|
-
Get the NodeId from the Nodes table based on the NodeName.
|
125
|
-
|
126
|
-
Args:
|
127
|
-
name (str): Node name.
|
128
|
-
|
129
|
-
Returns:
|
130
|
-
int or None: NodeId or None if not found.
|
131
|
-
"""
|
132
|
-
db_manager = DatabaseManager()
|
133
|
-
db_manager.connect()
|
134
|
-
my_eng = db_manager.get_connection()
|
135
|
-
|
136
|
-
result_proxy = my_eng.execute(f"SELECT NodeId FROM Nodes WHERE NodeName = '{name}'")
|
137
|
-
NodeId = int(result_proxy.fetchone()[0])
|
138
|
-
return NodeId
|
139
|
-
|
140
|
-
|
141
|
-
def get_netid_from_name(name):
|
142
|
-
"""
|
143
|
-
Get the Network Id from the Networks table based on the NetName.
|
144
|
-
|
145
|
-
Args:
|
146
|
-
name (str): Network name.
|
147
|
-
|
148
|
-
Returns:
|
149
|
-
int or None: NetId or None if not found.
|
150
|
-
"""
|
151
|
-
db_manager = DatabaseManager()
|
152
|
-
db_manager.connect()
|
153
|
-
my_eng = db_manager.get_connection()
|
154
|
-
|
155
|
-
try:
|
156
|
-
result_proxy = my_eng.execute(f"SELECT NetId FROM Networks WHERE NetName = '{name}'")
|
157
|
-
NetId = int(result_proxy.fetchone()[0])
|
158
|
-
except:
|
159
|
-
NetId = None
|
160
|
-
return NetId
|
161
|
-
|
162
|
-
|
163
|
-
def get_flsetupid_from_name(name):
|
164
|
-
"""
|
165
|
-
Get the FLsetupId from the FLsetup table based on the FL setup name.
|
166
|
-
|
167
|
-
Args:
|
168
|
-
name (str): FL setup name.
|
169
|
-
|
170
|
-
Returns:
|
171
|
-
int or None: FLsetupId or None if not found.
|
172
|
-
"""
|
173
|
-
db_manager = DatabaseManager()
|
174
|
-
db_manager.connect()
|
175
|
-
my_eng = db_manager.get_connection()
|
176
|
-
|
177
|
-
try:
|
178
|
-
|
179
|
-
result_proxy = my_eng.execute(f"SELECT FLsetupId FROM FLsetup WHERE name = '{name}'")
|
180
|
-
id = int(result_proxy.fetchone()[0])
|
181
|
-
|
182
|
-
except:
|
183
|
-
id = None
|
184
|
-
return id
|
185
|
-
|
186
|
-
|
187
|
-
def get_flpipeline_from_name(name):
|
188
|
-
"""
|
189
|
-
Get the FLpipeline Id from the FLpipeline table based on the FL pipeline name.
|
190
|
-
|
191
|
-
Args:
|
192
|
-
name (str): FL pipeline name.
|
193
|
-
|
194
|
-
Returns:
|
195
|
-
int or None: FLpipelineId or None if not found.
|
196
|
-
"""
|
197
|
-
db_manager = DatabaseManager()
|
198
|
-
db_manager.connect()
|
199
|
-
my_eng = db_manager.get_connection()
|
200
|
-
|
201
|
-
try:
|
202
|
-
|
203
|
-
result_proxy = my_eng.execute(f"SELECT id FROM FLpipeline WHERE name = '{name}'")
|
204
|
-
id = int(result_proxy.fetchone()[0])
|
205
|
-
except:
|
206
|
-
id = None
|
207
|
-
return id
|
208
|
-
|
209
|
-
|
210
|
-
def get_feddataset_id_from_name(name):
|
211
|
-
"""
|
212
|
-
Get the Federated dataset Id from the FedDatasets table based on the federated dataset name.
|
213
|
-
|
214
|
-
Args:
|
215
|
-
name (str): Federated dataset name.
|
216
|
-
|
217
|
-
Returns:
|
218
|
-
int or None: FedId or None if not found.
|
219
|
-
"""
|
220
|
-
db_manager = DatabaseManager()
|
221
|
-
db_manager.connect()
|
222
|
-
my_eng = db_manager.get_connection()
|
223
|
-
|
224
|
-
try:
|
225
|
-
|
226
|
-
result_proxy = my_eng.execute(f"SELECT FedId FROM FedDatasets WHERE name = '{name}'")
|
227
|
-
id = int(result_proxy.fetchone()[0])
|
228
|
-
except:
|
229
|
-
id = None
|
230
|
-
return id
|
231
|
-
|
232
|
-
|
233
|
-
def master_table_exists():
|
234
|
-
"""
|
235
|
-
Check if the MasterDataset table exists in the database.
|
236
|
-
|
237
|
-
Returns:
|
238
|
-
bool: True if the table exists, False otherwise.
|
239
|
-
"""
|
240
|
-
try:
|
241
|
-
db_manager = DatabaseManager()
|
242
|
-
db_manager.connect()
|
243
|
-
my_eng = db_manager.get_connection()
|
244
|
-
|
245
|
-
# SQLite-specific query to check if table exists
|
246
|
-
sql_query = text("SELECT name FROM sqlite_master WHERE type='table' AND name='MasterDataset'")
|
247
|
-
result = my_eng.execute(sql_query)
|
248
|
-
exists = result.fetchone() is not None
|
249
|
-
return exists
|
250
|
-
|
251
|
-
except Exception as e:
|
252
|
-
print(f"Error checking MasterDataset table existence: {e}")
|
253
|
-
return False
|
254
|
-
|
1
|
+
from sklearn.preprocessing import LabelEncoder
|
2
|
+
from sklearn.impute import SimpleImputer
|
3
|
+
|
4
|
+
from sqlalchemy import text
|
5
|
+
|
6
|
+
import torch
|
7
|
+
import pandas as pd
|
8
|
+
from torch.utils.data import TensorDataset
|
9
|
+
import numpy as np
|
10
|
+
|
11
|
+
from MEDfl.NetManager.database_connector import DatabaseManager
|
12
|
+
|
13
|
+
|
14
|
+
def is_str(data_df, row, x):
|
15
|
+
"""
|
16
|
+
Check if a column in a DataFrame is of type 'object' and convert the value accordingly.
|
17
|
+
|
18
|
+
Args:
|
19
|
+
data_df (pandas.DataFrame): DataFrame containing the data.
|
20
|
+
row (pandas.Series): Data row.
|
21
|
+
x (str): Column name.
|
22
|
+
|
23
|
+
Returns:
|
24
|
+
str or float: Processed value based on the column type.
|
25
|
+
"""
|
26
|
+
if data_df[x].dtype == "object":
|
27
|
+
x = f"'{row[x]}'"
|
28
|
+
else:
|
29
|
+
x = row[x]
|
30
|
+
return x
|
31
|
+
|
32
|
+
|
33
|
+
def process_eicu(data_df):
|
34
|
+
"""
|
35
|
+
Process eICU data by filling missing values with mean and replacing NaNs with 'Unknown'.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
data_df (pandas.DataFrame): Input data.
|
39
|
+
|
40
|
+
Returns:
|
41
|
+
pandas.DataFrame: Processed data.
|
42
|
+
"""
|
43
|
+
# Identify numeric and non-numeric columns
|
44
|
+
numeric_columns = data_df.select_dtypes(include=[np.number]).columns
|
45
|
+
non_numeric_columns = data_df.select_dtypes(exclude=[np.number]).columns
|
46
|
+
|
47
|
+
# Fill NaN in numeric columns with mean
|
48
|
+
data_df[numeric_columns] = data_df[numeric_columns].fillna(
|
49
|
+
data_df[numeric_columns].mean())
|
50
|
+
|
51
|
+
# Fill NaN in non-numeric columns with 'Unknown'
|
52
|
+
data_df[non_numeric_columns] = data_df[non_numeric_columns].fillna(
|
53
|
+
'Unknown')
|
54
|
+
|
55
|
+
try:
|
56
|
+
data_df = data_df.reset_index(drop=True)
|
57
|
+
except:
|
58
|
+
pass
|
59
|
+
|
60
|
+
return data_df
|
61
|
+
|
62
|
+
|
63
|
+
# remove indiserd columns after reading from the DB
|
64
|
+
def process_data_after_reading(data, output, fill_strategy="mean", fit_encode=[], to_drop=[]):
|
65
|
+
"""
|
66
|
+
Process data after reading from the database, including encoding, dropping columns, and creating a PyTorch TensorDataset.
|
67
|
+
|
68
|
+
Args:
|
69
|
+
data (pandas.DataFrame): Input data.
|
70
|
+
output (str): Output column name.
|
71
|
+
fill_strategy (str, optional): Imputation strategy for missing values. Default is "mean".
|
72
|
+
fit_encode (list, optional): List of columns to be label-encoded. Default is an empty list.
|
73
|
+
to_drop (list, optional): List of columns to be dropped from the DataFrame. Default is an empty list.
|
74
|
+
|
75
|
+
Returns:
|
76
|
+
torch.utils.data.TensorDataset: Processed data as a PyTorch TensorDataset.
|
77
|
+
"""
|
78
|
+
|
79
|
+
# Check if there is a DataSet assigned to the node
|
80
|
+
if (len(data) == 0):
|
81
|
+
raise "Node doesn't Have dataSet"
|
82
|
+
|
83
|
+
encoder = LabelEncoder()
|
84
|
+
# En Code some columns
|
85
|
+
for s in fit_encode:
|
86
|
+
try:
|
87
|
+
data[s] = encoder.fit_transform(data[s])
|
88
|
+
except:
|
89
|
+
raise print(s)
|
90
|
+
|
91
|
+
# The output of the DATA
|
92
|
+
y = data[output]
|
93
|
+
|
94
|
+
X = data
|
95
|
+
|
96
|
+
# remove indisered columns when reading the dataframe from the DB
|
97
|
+
for column in to_drop:
|
98
|
+
try:
|
99
|
+
X = X.drop(
|
100
|
+
[column], axis=1
|
101
|
+
)
|
102
|
+
except Exception as e:
|
103
|
+
raise e
|
104
|
+
|
105
|
+
# Get the DATAset Features
|
106
|
+
features = [col for col in X.columns if col != output]
|
107
|
+
|
108
|
+
# Impute missing values using the mean strategy
|
109
|
+
try:
|
110
|
+
imputer = SimpleImputer(strategy=fill_strategy)
|
111
|
+
X[features] = imputer.fit_transform(X[features])
|
112
|
+
except:
|
113
|
+
print()
|
114
|
+
|
115
|
+
X = torch.tensor(X.values, dtype=torch.float32)
|
116
|
+
y = torch.tensor(y.values, dtype=torch.float32)
|
117
|
+
data = TensorDataset(X, y)
|
118
|
+
|
119
|
+
return data
|
120
|
+
|
121
|
+
|
122
|
+
def get_nodeid_from_name(name):
|
123
|
+
"""
|
124
|
+
Get the NodeId from the Nodes table based on the NodeName.
|
125
|
+
|
126
|
+
Args:
|
127
|
+
name (str): Node name.
|
128
|
+
|
129
|
+
Returns:
|
130
|
+
int or None: NodeId or None if not found.
|
131
|
+
"""
|
132
|
+
db_manager = DatabaseManager()
|
133
|
+
db_manager.connect()
|
134
|
+
my_eng = db_manager.get_connection()
|
135
|
+
|
136
|
+
result_proxy = my_eng.execute(f"SELECT NodeId FROM Nodes WHERE NodeName = '{name}'")
|
137
|
+
NodeId = int(result_proxy.fetchone()[0])
|
138
|
+
return NodeId
|
139
|
+
|
140
|
+
|
141
|
+
def get_netid_from_name(name):
|
142
|
+
"""
|
143
|
+
Get the Network Id from the Networks table based on the NetName.
|
144
|
+
|
145
|
+
Args:
|
146
|
+
name (str): Network name.
|
147
|
+
|
148
|
+
Returns:
|
149
|
+
int or None: NetId or None if not found.
|
150
|
+
"""
|
151
|
+
db_manager = DatabaseManager()
|
152
|
+
db_manager.connect()
|
153
|
+
my_eng = db_manager.get_connection()
|
154
|
+
|
155
|
+
try:
|
156
|
+
result_proxy = my_eng.execute(f"SELECT NetId FROM Networks WHERE NetName = '{name}'")
|
157
|
+
NetId = int(result_proxy.fetchone()[0])
|
158
|
+
except:
|
159
|
+
NetId = None
|
160
|
+
return NetId
|
161
|
+
|
162
|
+
|
163
|
+
def get_flsetupid_from_name(name):
|
164
|
+
"""
|
165
|
+
Get the FLsetupId from the FLsetup table based on the FL setup name.
|
166
|
+
|
167
|
+
Args:
|
168
|
+
name (str): FL setup name.
|
169
|
+
|
170
|
+
Returns:
|
171
|
+
int or None: FLsetupId or None if not found.
|
172
|
+
"""
|
173
|
+
db_manager = DatabaseManager()
|
174
|
+
db_manager.connect()
|
175
|
+
my_eng = db_manager.get_connection()
|
176
|
+
|
177
|
+
try:
|
178
|
+
|
179
|
+
result_proxy = my_eng.execute(f"SELECT FLsetupId FROM FLsetup WHERE name = '{name}'")
|
180
|
+
id = int(result_proxy.fetchone()[0])
|
181
|
+
|
182
|
+
except:
|
183
|
+
id = None
|
184
|
+
return id
|
185
|
+
|
186
|
+
|
187
|
+
def get_flpipeline_from_name(name):
|
188
|
+
"""
|
189
|
+
Get the FLpipeline Id from the FLpipeline table based on the FL pipeline name.
|
190
|
+
|
191
|
+
Args:
|
192
|
+
name (str): FL pipeline name.
|
193
|
+
|
194
|
+
Returns:
|
195
|
+
int or None: FLpipelineId or None if not found.
|
196
|
+
"""
|
197
|
+
db_manager = DatabaseManager()
|
198
|
+
db_manager.connect()
|
199
|
+
my_eng = db_manager.get_connection()
|
200
|
+
|
201
|
+
try:
|
202
|
+
|
203
|
+
result_proxy = my_eng.execute(f"SELECT id FROM FLpipeline WHERE name = '{name}'")
|
204
|
+
id = int(result_proxy.fetchone()[0])
|
205
|
+
except:
|
206
|
+
id = None
|
207
|
+
return id
|
208
|
+
|
209
|
+
|
210
|
+
def get_feddataset_id_from_name(name):
|
211
|
+
"""
|
212
|
+
Get the Federated dataset Id from the FedDatasets table based on the federated dataset name.
|
213
|
+
|
214
|
+
Args:
|
215
|
+
name (str): Federated dataset name.
|
216
|
+
|
217
|
+
Returns:
|
218
|
+
int or None: FedId or None if not found.
|
219
|
+
"""
|
220
|
+
db_manager = DatabaseManager()
|
221
|
+
db_manager.connect()
|
222
|
+
my_eng = db_manager.get_connection()
|
223
|
+
|
224
|
+
try:
|
225
|
+
|
226
|
+
result_proxy = my_eng.execute(f"SELECT FedId FROM FedDatasets WHERE name = '{name}'")
|
227
|
+
id = int(result_proxy.fetchone()[0])
|
228
|
+
except:
|
229
|
+
id = None
|
230
|
+
return id
|
231
|
+
|
232
|
+
|
233
|
+
def master_table_exists():
|
234
|
+
"""
|
235
|
+
Check if the MasterDataset table exists in the database.
|
236
|
+
|
237
|
+
Returns:
|
238
|
+
bool: True if the table exists, False otherwise.
|
239
|
+
"""
|
240
|
+
try:
|
241
|
+
db_manager = DatabaseManager()
|
242
|
+
db_manager.connect()
|
243
|
+
my_eng = db_manager.get_connection()
|
244
|
+
|
245
|
+
# SQLite-specific query to check if table exists
|
246
|
+
sql_query = text("SELECT name FROM sqlite_master WHERE type='table' AND name='MasterDataset'")
|
247
|
+
result = my_eng.execute(sql_query)
|
248
|
+
exists = result.fetchone() is not None
|
249
|
+
return exists
|
250
|
+
|
251
|
+
except Exception as e:
|
252
|
+
print(f"Error checking MasterDataset table existence: {e}")
|
253
|
+
return False
|
254
|
+
|