EuroEval 15.12.0__py3-none-any.whl → 16.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- euroeval/__init__.py +32 -14
- euroeval/benchmark_config_factory.py +92 -180
- euroeval/benchmark_modules/base.py +49 -39
- euroeval/benchmark_modules/fresh.py +35 -21
- euroeval/benchmark_modules/hf.py +280 -244
- euroeval/benchmark_modules/litellm.py +752 -312
- euroeval/benchmark_modules/vllm.py +570 -268
- euroeval/benchmarker.py +651 -528
- euroeval/caching_utils.py +79 -0
- euroeval/callbacks.py +5 -7
- euroeval/cli.py +49 -38
- euroeval/constants.py +44 -25
- euroeval/data_loading.py +111 -55
- euroeval/data_models.py +490 -323
- euroeval/dataset_configs/__init__.py +26 -4
- euroeval/dataset_configs/bosnian.py +39 -0
- euroeval/dataset_configs/bulgarian.py +56 -0
- euroeval/dataset_configs/croatian.py +56 -0
- euroeval/dataset_configs/czech.py +75 -0
- euroeval/dataset_configs/danish.py +78 -50
- euroeval/dataset_configs/dutch.py +74 -44
- euroeval/dataset_configs/english.py +71 -36
- euroeval/dataset_configs/estonian.py +111 -0
- euroeval/dataset_configs/faroese.py +25 -18
- euroeval/dataset_configs/finnish.py +63 -26
- euroeval/dataset_configs/french.py +65 -32
- euroeval/dataset_configs/german.py +77 -36
- euroeval/dataset_configs/greek.py +64 -0
- euroeval/dataset_configs/icelandic.py +68 -57
- euroeval/dataset_configs/italian.py +68 -36
- euroeval/dataset_configs/latvian.py +87 -0
- euroeval/dataset_configs/lithuanian.py +64 -0
- euroeval/dataset_configs/norwegian.py +98 -72
- euroeval/dataset_configs/polish.py +96 -0
- euroeval/dataset_configs/portuguese.py +63 -40
- euroeval/dataset_configs/serbian.py +64 -0
- euroeval/dataset_configs/slovak.py +55 -0
- euroeval/dataset_configs/slovene.py +56 -0
- euroeval/dataset_configs/spanish.py +68 -34
- euroeval/dataset_configs/swedish.py +82 -41
- euroeval/dataset_configs/ukrainian.py +64 -0
- euroeval/enums.py +12 -6
- euroeval/exceptions.py +21 -1
- euroeval/finetuning.py +34 -26
- euroeval/generation.py +76 -41
- euroeval/generation_utils.py +169 -34
- euroeval/languages.py +1020 -188
- euroeval/logging_utils.py +268 -0
- euroeval/metrics/__init__.py +6 -0
- euroeval/metrics/base.py +85 -0
- euroeval/metrics/huggingface.py +216 -0
- euroeval/metrics/llm_as_a_judge.py +260 -0
- euroeval/metrics/pipeline.py +289 -0
- euroeval/metrics/speed.py +48 -0
- euroeval/model_cache.py +40 -21
- euroeval/model_config.py +4 -5
- euroeval/model_loading.py +3 -0
- euroeval/prompt_templates/__init__.py +2 -0
- euroeval/prompt_templates/classification.py +206 -0
- euroeval/prompt_templates/linguistic_acceptability.py +157 -22
- euroeval/prompt_templates/multiple_choice.py +159 -17
- euroeval/prompt_templates/named_entity_recognition.py +318 -21
- euroeval/prompt_templates/reading_comprehension.py +207 -16
- euroeval/prompt_templates/sentiment_classification.py +205 -22
- euroeval/prompt_templates/summarization.py +122 -22
- euroeval/prompt_templates/token_classification.py +279 -0
- euroeval/scores.py +20 -9
- euroeval/speed_benchmark.py +11 -12
- euroeval/task_group_utils/multiple_choice_classification.py +21 -12
- euroeval/task_group_utils/question_answering.py +101 -73
- euroeval/task_group_utils/sequence_classification.py +144 -61
- euroeval/task_group_utils/text_to_text.py +33 -12
- euroeval/task_group_utils/token_classification.py +86 -89
- euroeval/tasks.py +75 -16
- euroeval/tokenisation_utils.py +603 -0
- euroeval/types.py +17 -11
- euroeval/utils.py +332 -137
- euroeval-16.7.1.dist-info/METADATA +623 -0
- euroeval-16.7.1.dist-info/RECORD +84 -0
- {euroeval-15.12.0.dist-info → euroeval-16.7.1.dist-info}/entry_points.txt +0 -1
- euroeval/human_evaluation.py +0 -737
- euroeval/metrics.py +0 -452
- euroeval/tokenization_utils.py +0 -498
- euroeval-15.12.0.dist-info/METADATA +0 -285
- euroeval-15.12.0.dist-info/RECORD +0 -63
- {euroeval-15.12.0.dist-info → euroeval-16.7.1.dist-info}/WHEEL +0 -0
- {euroeval-15.12.0.dist-info → euroeval-16.7.1.dist-info}/licenses/LICENSE +0 -0
euroeval/tokenization_utils.py
DELETED
|
@@ -1,498 +0,0 @@
|
|
|
1
|
-
"""Utility functions related to tokenization."""
|
|
2
|
-
|
|
3
|
-
import logging
|
|
4
|
-
import re
|
|
5
|
-
import typing as t
|
|
6
|
-
|
|
7
|
-
import torch
|
|
8
|
-
|
|
9
|
-
from .constants import TASK_GROUPS_USING_LOGPROBS
|
|
10
|
-
from .enums import GenerativeType
|
|
11
|
-
from .utils import log_once
|
|
12
|
-
|
|
13
|
-
if t.TYPE_CHECKING:
|
|
14
|
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
15
|
-
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
|
16
|
-
|
|
17
|
-
from .data_models import DatasetConfig, ModelConfig
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
logger = logging.getLogger("euroeval")
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def get_special_token_metadata(tokenizer: "PreTrainedTokenizerBase") -> dict:
|
|
24
|
-
"""Get the special token metadata for a tokenizer.
|
|
25
|
-
|
|
26
|
-
Args:
|
|
27
|
-
tokenizer:
|
|
28
|
-
The tokenizer.
|
|
29
|
-
|
|
30
|
-
Returns:
|
|
31
|
-
The special token metadata.
|
|
32
|
-
"""
|
|
33
|
-
# Create some test input IDs, to check if the tokenizer is adding special tokens
|
|
34
|
-
test_input_ids = tokenizer("Test").input_ids
|
|
35
|
-
|
|
36
|
-
# Extract the CLS token IDs from the tokenizer, if it's using them
|
|
37
|
-
has_cls_token = True
|
|
38
|
-
if tokenizer.cls_token_id in test_input_ids:
|
|
39
|
-
cls_token_id = tokenizer.cls_token_id
|
|
40
|
-
cls_token = tokenizer.cls_token
|
|
41
|
-
elif tokenizer.bos_token_id in test_input_ids:
|
|
42
|
-
cls_token_id = tokenizer.bos_token_id
|
|
43
|
-
cls_token = tokenizer.bos_token
|
|
44
|
-
elif tokenizer.cls_token is not None:
|
|
45
|
-
cls_token_id = tokenizer.cls_token_id
|
|
46
|
-
cls_token = tokenizer.cls_token
|
|
47
|
-
has_cls_token = False
|
|
48
|
-
else:
|
|
49
|
-
cls_token_id = tokenizer.bos_token_id
|
|
50
|
-
cls_token = tokenizer.bos_token
|
|
51
|
-
has_cls_token = False
|
|
52
|
-
|
|
53
|
-
# Extract the SEP token IDs from the tokenizer, if it's using them
|
|
54
|
-
has_sep_token = True
|
|
55
|
-
if tokenizer.sep_token_id in test_input_ids:
|
|
56
|
-
sep_token = tokenizer.sep_token
|
|
57
|
-
elif tokenizer.eos_token_id in test_input_ids:
|
|
58
|
-
sep_token = tokenizer.eos_token
|
|
59
|
-
elif tokenizer.sep_token is not None:
|
|
60
|
-
sep_token = tokenizer.sep_token
|
|
61
|
-
has_sep_token = False
|
|
62
|
-
else:
|
|
63
|
-
sep_token = tokenizer.eos_token
|
|
64
|
-
has_sep_token = False
|
|
65
|
-
|
|
66
|
-
return dict(
|
|
67
|
-
cls_token_id=cls_token_id,
|
|
68
|
-
cls_token=cls_token,
|
|
69
|
-
sep_token=sep_token,
|
|
70
|
-
has_cls_token=has_cls_token,
|
|
71
|
-
has_sep_token=has_sep_token,
|
|
72
|
-
)
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
def should_prompts_be_stripped(
|
|
76
|
-
labels_to_be_generated: list[str], tokenizer: "PreTrainedTokenizer"
|
|
77
|
-
) -> bool:
|
|
78
|
-
"""Determine if we should strip the prompts for few-shot evaluation.
|
|
79
|
-
|
|
80
|
-
This is the case if the tokenizer needs to include the space as part of the label
|
|
81
|
-
token. The strategy is thus to tokenize a label with a preceeding colon (as in the
|
|
82
|
-
prompts), i.e., ": positive", and check if the tokenization starts with the tokens
|
|
83
|
-
of ": ". If this is the case, then we should not strip the prompts, since the
|
|
84
|
-
tokenizer produces the whitespace token separately.
|
|
85
|
-
|
|
86
|
-
Args:
|
|
87
|
-
labels_to_be_generated:
|
|
88
|
-
The labels that are to be generated.
|
|
89
|
-
tokenizer:
|
|
90
|
-
The tokenizer used to tokenize the labels.
|
|
91
|
-
|
|
92
|
-
Returns:
|
|
93
|
-
Whether we should strip the prompts.
|
|
94
|
-
"""
|
|
95
|
-
strip_prompts = True
|
|
96
|
-
for label in labels_to_be_generated:
|
|
97
|
-
colon_tokens = tokenizer(": ", add_special_tokens=False).input_ids
|
|
98
|
-
label_tokens = tokenizer(": " + label, add_special_tokens=False).input_ids
|
|
99
|
-
|
|
100
|
-
if isinstance(colon_tokens, torch.Tensor):
|
|
101
|
-
colon_tokens = list(colon_tokens.squeeze(0))
|
|
102
|
-
if isinstance(label_tokens, torch.Tensor):
|
|
103
|
-
label_tokens = list(label_tokens.squeeze(0))
|
|
104
|
-
|
|
105
|
-
label_tokens_start_with_colon_tokens = (
|
|
106
|
-
label_tokens[: len(colon_tokens)] == colon_tokens
|
|
107
|
-
)
|
|
108
|
-
if label_tokens_start_with_colon_tokens:
|
|
109
|
-
strip_prompts = False
|
|
110
|
-
|
|
111
|
-
return strip_prompts
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
def should_prefix_space_be_added_to_labels(
|
|
115
|
-
labels_to_be_generated: list[str], tokenizer: "PreTrainedTokenizer"
|
|
116
|
-
) -> bool:
|
|
117
|
-
"""Determine if we should add a prefix space to the labels.
|
|
118
|
-
|
|
119
|
-
This is the case if the prompts are stripped and the tokenizer doesn't
|
|
120
|
-
automatically add prefix whitespaces to the labels.
|
|
121
|
-
|
|
122
|
-
Args:
|
|
123
|
-
labels_to_be_generated:
|
|
124
|
-
The labels that are to be generated.
|
|
125
|
-
tokenizer:
|
|
126
|
-
The tokenizer used to tokenize the labels.
|
|
127
|
-
|
|
128
|
-
Returns:
|
|
129
|
-
Whether we should add a prefix space to the labels.
|
|
130
|
-
"""
|
|
131
|
-
if not should_prompts_be_stripped(
|
|
132
|
-
labels_to_be_generated=labels_to_be_generated, tokenizer=tokenizer
|
|
133
|
-
):
|
|
134
|
-
return False
|
|
135
|
-
|
|
136
|
-
whitespace_token = tokenizer.convert_ids_to_tokens(
|
|
137
|
-
ids=tokenizer(" ", add_special_tokens=False).input_ids[0]
|
|
138
|
-
)[0]
|
|
139
|
-
|
|
140
|
-
add_prefix_space = True
|
|
141
|
-
for label in labels_to_be_generated:
|
|
142
|
-
label_tokens = tokenizer(label, add_special_tokens=False).input_ids
|
|
143
|
-
if isinstance(label_tokens, torch.Tensor):
|
|
144
|
-
label_tokens = list(label_tokens.squeeze(0))
|
|
145
|
-
first_label_token: int = int(label_tokens[0])
|
|
146
|
-
first_character_of_label = tokenizer.convert_ids_to_tokens(first_label_token)[0]
|
|
147
|
-
has_prefix_space = first_character_of_label == whitespace_token
|
|
148
|
-
if has_prefix_space:
|
|
149
|
-
add_prefix_space = False
|
|
150
|
-
break
|
|
151
|
-
|
|
152
|
-
return add_prefix_space
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
def get_bos_token(
|
|
156
|
-
tokenizer: "PreTrainedTokenizer",
|
|
157
|
-
) -> tuple[str, int] | tuple[None, None]:
|
|
158
|
-
"""Get the beginning-of-sequence token from a tokenizer.
|
|
159
|
-
|
|
160
|
-
Args:
|
|
161
|
-
tokenizer:
|
|
162
|
-
The tokenizer.
|
|
163
|
-
|
|
164
|
-
Returns:
|
|
165
|
-
A pair (token, token_id) representing the beginning-of-sequence token and its
|
|
166
|
-
token ID, or (None, None) if no BOS token is found.
|
|
167
|
-
"""
|
|
168
|
-
if isinstance(tokenizer.bos_token, str) and isinstance(tokenizer.bos_token_id, int):
|
|
169
|
-
return tokenizer.bos_token, tokenizer.bos_token_id
|
|
170
|
-
|
|
171
|
-
vocab: dict[str, int] = tokenizer.get_vocab()
|
|
172
|
-
|
|
173
|
-
candidate_bos_tokens = ["<s>", "<|begin_of_text|>", "<|startoftext|>", "[CLS]"]
|
|
174
|
-
for candidate_bos_token in candidate_bos_tokens:
|
|
175
|
-
if candidate_bos_token in vocab:
|
|
176
|
-
bos_token = candidate_bos_token
|
|
177
|
-
bos_token_id = vocab[bos_token]
|
|
178
|
-
break
|
|
179
|
-
else:
|
|
180
|
-
log_once(
|
|
181
|
-
"The model does not have a beginning-of-sequence token. Please ensure that "
|
|
182
|
-
"this has been set in the tokenizer's configuration. Using no BOS token."
|
|
183
|
-
" This may lead to unexpected behavior in the model.",
|
|
184
|
-
level=logging.INFO,
|
|
185
|
-
)
|
|
186
|
-
return None, None
|
|
187
|
-
|
|
188
|
-
log_once(
|
|
189
|
-
f"Beginning-of-sequence token was not set, but detected it as {bos_token!r} "
|
|
190
|
-
f"with ID {bos_token_id}.",
|
|
191
|
-
level=logging.DEBUG,
|
|
192
|
-
)
|
|
193
|
-
return bos_token, bos_token_id
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
def get_eos_token(
|
|
197
|
-
tokenizer: "PreTrainedTokenizer",
|
|
198
|
-
) -> tuple[str, int] | tuple[None, None]:
|
|
199
|
-
"""Get the end-of-sequence token from a tokenizer.
|
|
200
|
-
|
|
201
|
-
Args:
|
|
202
|
-
tokenizer:
|
|
203
|
-
The tokenizer.
|
|
204
|
-
|
|
205
|
-
Returns:
|
|
206
|
-
A pair (token, token_id) representing the end-of-sequence token and its token
|
|
207
|
-
ID, or (None, None) if no EOS token is found.
|
|
208
|
-
"""
|
|
209
|
-
if isinstance(tokenizer.eos_token, str) and isinstance(tokenizer.eos_token_id, int):
|
|
210
|
-
return tokenizer.eos_token, tokenizer.eos_token_id
|
|
211
|
-
|
|
212
|
-
vocab: dict[str, int] = tokenizer.get_vocab()
|
|
213
|
-
|
|
214
|
-
candidate_eos_tokens = ["</s>", "<|end_of_text|>", "<|endoftext|>", "[SEP]"]
|
|
215
|
-
for candidate_eos_token in candidate_eos_tokens:
|
|
216
|
-
if candidate_eos_token in vocab:
|
|
217
|
-
eos_token = candidate_eos_token
|
|
218
|
-
eos_token_id = vocab[eos_token]
|
|
219
|
-
break
|
|
220
|
-
else:
|
|
221
|
-
log_once(
|
|
222
|
-
"The model does not have an end-of-sequence token. Please ensure that this "
|
|
223
|
-
"has been set in the tokenizer's configuration. Using no EOS token. This "
|
|
224
|
-
"may lead to unexpected behavior in the model.",
|
|
225
|
-
level=logging.INFO,
|
|
226
|
-
)
|
|
227
|
-
return None, None
|
|
228
|
-
|
|
229
|
-
log_once(
|
|
230
|
-
f"End-of-sequence token was not set, but detected it as {eos_token!r} with "
|
|
231
|
-
f"ID {eos_token_id}.",
|
|
232
|
-
level=logging.DEBUG,
|
|
233
|
-
)
|
|
234
|
-
return eos_token, eos_token_id
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
def get_pad_token(
|
|
238
|
-
tokenizer: "PreTrainedTokenizer",
|
|
239
|
-
) -> tuple[str, int] | tuple[None, None]:
|
|
240
|
-
"""Get the padding token from a tokenizer.
|
|
241
|
-
|
|
242
|
-
Args:
|
|
243
|
-
tokenizer:
|
|
244
|
-
The tokenizer.
|
|
245
|
-
|
|
246
|
-
Returns:
|
|
247
|
-
A pair (token, token_id) representing the padding token and its token ID, or
|
|
248
|
-
(None, None) if no padding token is found.
|
|
249
|
-
"""
|
|
250
|
-
# If the tokenizer already has a padding token, return it
|
|
251
|
-
if tokenizer.pad_token is not None and tokenizer.pad_token_id is not None:
|
|
252
|
-
assert isinstance(tokenizer.pad_token, str), (
|
|
253
|
-
"Expected tokenizer.pad_token to be a string, but got "
|
|
254
|
-
f"{type(tokenizer.pad_token)}."
|
|
255
|
-
)
|
|
256
|
-
assert isinstance(tokenizer.pad_token_id, int), (
|
|
257
|
-
"Expected tokenizer.pad_token_id to be an integer, but got "
|
|
258
|
-
f"{type(tokenizer.pad_token_id)}."
|
|
259
|
-
)
|
|
260
|
-
return (tokenizer.pad_token, tokenizer.pad_token_id)
|
|
261
|
-
|
|
262
|
-
# If the tokenizer has a BOS token, use it as the padding token
|
|
263
|
-
if tokenizer.bos_token is not None and tokenizer.bos_token_id is not None:
|
|
264
|
-
assert isinstance(tokenizer.bos_token, str), (
|
|
265
|
-
"Expected tokenizer.bos_token to be a string, but got "
|
|
266
|
-
f"{type(tokenizer.bos_token)}."
|
|
267
|
-
)
|
|
268
|
-
assert isinstance(tokenizer.bos_token_id, int), (
|
|
269
|
-
"Expected tokenizer.bos_token_id to be an integer, but got "
|
|
270
|
-
f"{type(tokenizer.bos_token_id)}."
|
|
271
|
-
)
|
|
272
|
-
pad_token = tokenizer.bos_token
|
|
273
|
-
pad_token_id = tokenizer.bos_token_id
|
|
274
|
-
|
|
275
|
-
# If the tokenizer has an EOS token, use it as the padding token
|
|
276
|
-
elif tokenizer.eos_token is not None and tokenizer.eos_token_id is not None:
|
|
277
|
-
assert isinstance(tokenizer.eos_token, str), (
|
|
278
|
-
"Expected tokenizer.eos_token to be a string, but got "
|
|
279
|
-
f"{type(tokenizer.eos_token)}."
|
|
280
|
-
)
|
|
281
|
-
assert isinstance(tokenizer.eos_token_id, int), (
|
|
282
|
-
"Expected tokenizer.eos_token_id to be an integer, but got "
|
|
283
|
-
f"{type(tokenizer.eos_token_id)}."
|
|
284
|
-
)
|
|
285
|
-
pad_token = tokenizer.eos_token
|
|
286
|
-
pad_token_id = tokenizer.eos_token_id
|
|
287
|
-
|
|
288
|
-
# Otherwise, try to find a candidate padding token in the vocabulary
|
|
289
|
-
else:
|
|
290
|
-
pad_token_candidates = [
|
|
291
|
-
"<pad>",
|
|
292
|
-
"[pad]",
|
|
293
|
-
"<|endoftext|>",
|
|
294
|
-
"<|end▁of▁sentence|>",
|
|
295
|
-
"<|im_end|>",
|
|
296
|
-
]
|
|
297
|
-
pad_token_candidates.extend([c.upper() for c in pad_token_candidates])
|
|
298
|
-
for candidate in pad_token_candidates:
|
|
299
|
-
if candidate in tokenizer.get_vocab():
|
|
300
|
-
pad_token = candidate
|
|
301
|
-
pad_token_id = tokenizer.get_vocab()[candidate]
|
|
302
|
-
break
|
|
303
|
-
else:
|
|
304
|
-
log_once(
|
|
305
|
-
"Could not identify a padding token for the model. Please ensure that "
|
|
306
|
-
"this has been set in the tokenizer's configuration. Using no padding "
|
|
307
|
-
"token. This may lead to unexpected behavior in the model.",
|
|
308
|
-
level=logging.INFO,
|
|
309
|
-
)
|
|
310
|
-
return None, None
|
|
311
|
-
|
|
312
|
-
log_once(
|
|
313
|
-
f"Padding token was not set, but detected it as {pad_token!r} with ID "
|
|
314
|
-
f"{pad_token_id}.",
|
|
315
|
-
level=logging.DEBUG,
|
|
316
|
-
)
|
|
317
|
-
return pad_token, pad_token_id
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
def get_end_of_chat_token_ids(tokenizer: "PreTrainedTokenizer") -> list[int] | None:
|
|
321
|
-
"""Get the end token ID for chat models.
|
|
322
|
-
|
|
323
|
-
This is only relevant for tokenizers with a chat template.
|
|
324
|
-
|
|
325
|
-
Args:
|
|
326
|
-
tokenizer:
|
|
327
|
-
The tokenizer.
|
|
328
|
-
|
|
329
|
-
Returns:
|
|
330
|
-
The token IDs used to end chats, or None if the tokenizer does not have a chat
|
|
331
|
-
template.
|
|
332
|
-
|
|
333
|
-
Raises:
|
|
334
|
-
ValueError:
|
|
335
|
-
If the end-of-chat token could not be located.
|
|
336
|
-
"""
|
|
337
|
-
if tokenizer.chat_template is None:
|
|
338
|
-
return None
|
|
339
|
-
|
|
340
|
-
user_message: dict[str, str] = dict(role="user", content="X")
|
|
341
|
-
token_ids: list[int] = tokenizer.apply_chat_template(conversation=[user_message]) # type: ignore[assignment]
|
|
342
|
-
|
|
343
|
-
for idx, token in enumerate(tokenizer.convert_ids_to_tokens(token_ids)):
|
|
344
|
-
token_id = tokenizer.convert_tokens_to_ids(token)
|
|
345
|
-
assert isinstance(token_id, int)
|
|
346
|
-
token = tokenizer.decode([token_id])
|
|
347
|
-
if "X" in token:
|
|
348
|
-
x_token_index = idx
|
|
349
|
-
break
|
|
350
|
-
else:
|
|
351
|
-
raise ValueError("Could not locate the end-of-chat token for the model.")
|
|
352
|
-
|
|
353
|
-
end_of_chat_tokens = token_ids[x_token_index + 1 :]
|
|
354
|
-
if len(end_of_chat_tokens) == 0:
|
|
355
|
-
return None
|
|
356
|
-
return end_of_chat_tokens
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
def get_first_label_token_mapping(
|
|
360
|
-
dataset_config: "DatasetConfig",
|
|
361
|
-
model_config: "ModelConfig",
|
|
362
|
-
tokenizer: "PreTrainedTokenizer | None",
|
|
363
|
-
generative_type: "GenerativeType | None",
|
|
364
|
-
) -> dict[str, str] | bool:
|
|
365
|
-
"""Check if the model should output scores.
|
|
366
|
-
|
|
367
|
-
Args:
|
|
368
|
-
dataset_config:
|
|
369
|
-
The dataset configuration.
|
|
370
|
-
model_config:
|
|
371
|
-
The model configuration.
|
|
372
|
-
tokenizer:
|
|
373
|
-
The tokenizer, or None if not available.
|
|
374
|
-
generative_type:
|
|
375
|
-
The generative type, or None if not available.
|
|
376
|
-
|
|
377
|
-
Returns:
|
|
378
|
-
A mapping from labels to the first token in each label, or alternatively a
|
|
379
|
-
Boolean value indicating whether the model should output scores (if the mapping
|
|
380
|
-
is outputted then the model will always output scores).
|
|
381
|
-
"""
|
|
382
|
-
if generative_type == GenerativeType.REASONING:
|
|
383
|
-
log_once(
|
|
384
|
-
f"The model {model_config.model_id!r} is a reasoning model and "
|
|
385
|
-
"thus does not support logprobs, so we do not enable it.",
|
|
386
|
-
level=logging.DEBUG,
|
|
387
|
-
)
|
|
388
|
-
return False
|
|
389
|
-
|
|
390
|
-
# If we do not have any tokenizer, then we cannot check if the model should output
|
|
391
|
-
# scores and we just assume it should if the dataset supports it
|
|
392
|
-
output_scores = dataset_config.task.task_group in TASK_GROUPS_USING_LOGPROBS
|
|
393
|
-
if tokenizer is None:
|
|
394
|
-
if output_scores:
|
|
395
|
-
log_once(
|
|
396
|
-
f"We will use logprobs with the model {model_config.model_id!r} "
|
|
397
|
-
"since the dataset supports it and no tokenizer is available.",
|
|
398
|
-
level=logging.DEBUG,
|
|
399
|
-
)
|
|
400
|
-
else:
|
|
401
|
-
log_once(
|
|
402
|
-
f"We will not use logprobs with the model {model_config.model_id!r} "
|
|
403
|
-
"since the dataset does not support it and no tokenizer is available.",
|
|
404
|
-
level=logging.DEBUG,
|
|
405
|
-
)
|
|
406
|
-
return output_scores
|
|
407
|
-
|
|
408
|
-
# If there are labels associated with the dataset, and that the first token of each
|
|
409
|
-
# label is distinct, then we can safely use the logprobs
|
|
410
|
-
if output_scores and dataset_config.labels:
|
|
411
|
-
local_labels = [
|
|
412
|
-
dataset_config.prompt_label_mapping[label].strip()
|
|
413
|
-
for label in dataset_config.labels
|
|
414
|
-
]
|
|
415
|
-
|
|
416
|
-
# Tokenize some text containing each label, which we will use to extract the
|
|
417
|
-
# first token of each label
|
|
418
|
-
all_tokens: list[list[str]]
|
|
419
|
-
if tokenizer.chat_template is None:
|
|
420
|
-
add_prefix_space = should_prefix_space_be_added_to_labels(
|
|
421
|
-
labels_to_be_generated=local_labels, tokenizer=tokenizer
|
|
422
|
-
)
|
|
423
|
-
all_tokens = [
|
|
424
|
-
tokenizer.tokenize(text=f" {label}" if add_prefix_space else label)
|
|
425
|
-
for label in local_labels
|
|
426
|
-
]
|
|
427
|
-
else:
|
|
428
|
-
all_tokens = [
|
|
429
|
-
tokenizer.convert_ids_to_tokens(
|
|
430
|
-
ids=tokenizer.apply_chat_template(
|
|
431
|
-
conversation=[
|
|
432
|
-
dict(role="user", content=""),
|
|
433
|
-
dict(role="assistant", content=label),
|
|
434
|
-
],
|
|
435
|
-
add_generation_prompt=True,
|
|
436
|
-
tokenize=True,
|
|
437
|
-
)
|
|
438
|
-
)
|
|
439
|
-
for label in local_labels
|
|
440
|
-
]
|
|
441
|
-
|
|
442
|
-
# Remove any non-alphabetic characters from the tokens
|
|
443
|
-
all_tokens = [
|
|
444
|
-
[
|
|
445
|
-
re.sub(
|
|
446
|
-
pattern=r"^[^a-zæøåüöä]+|[^a-zæøåüöä]+$",
|
|
447
|
-
repl="",
|
|
448
|
-
string=token.lower(),
|
|
449
|
-
)
|
|
450
|
-
for token in token_list
|
|
451
|
-
]
|
|
452
|
-
for token_list in all_tokens
|
|
453
|
-
]
|
|
454
|
-
|
|
455
|
-
# Extract the first token of each label
|
|
456
|
-
first_tokens: list[str] = list()
|
|
457
|
-
for token_list, label in zip(all_tokens, local_labels):
|
|
458
|
-
matching_tokens = [
|
|
459
|
-
tok for tok in token_list if tok and label.startswith(tok)
|
|
460
|
-
]
|
|
461
|
-
if not matching_tokens:
|
|
462
|
-
log_once(
|
|
463
|
-
f"No matching token found in token_list for label '{label}', so "
|
|
464
|
-
"we will not use logprobs with the model.",
|
|
465
|
-
level=logging.DEBUG,
|
|
466
|
-
)
|
|
467
|
-
return False
|
|
468
|
-
first_tokens.append(matching_tokens[0])
|
|
469
|
-
|
|
470
|
-
# Build a mapping from labels to the first token in each label if the first
|
|
471
|
-
# tokens are distinct
|
|
472
|
-
if len(first_tokens) == len(set(first_tokens)):
|
|
473
|
-
log_once(
|
|
474
|
-
"We will use logprobs with the model since the first tokens of the "
|
|
475
|
-
"labels are distinct.",
|
|
476
|
-
level=logging.DEBUG,
|
|
477
|
-
)
|
|
478
|
-
return {
|
|
479
|
-
label: first_token
|
|
480
|
-
for label, first_token in zip(local_labels, first_tokens)
|
|
481
|
-
}
|
|
482
|
-
else:
|
|
483
|
-
log_once(
|
|
484
|
-
"We will not use logprobs with the model since the first tokens of the "
|
|
485
|
-
"labels are not distinct. The first tokens for the labels "
|
|
486
|
-
f"{local_labels} are {first_tokens}"
|
|
487
|
-
)
|
|
488
|
-
return False
|
|
489
|
-
|
|
490
|
-
# Otherwise, we assume that the model should not output scores, to avoid potential
|
|
491
|
-
# evaluation errors. This will force the label extraction to rely on word edit
|
|
492
|
-
# distance instead of logprobs.
|
|
493
|
-
log_once(
|
|
494
|
-
"We will not use logprobs with the model, since the dataset does not have "
|
|
495
|
-
"labels.",
|
|
496
|
-
level=logging.DEBUG,
|
|
497
|
-
)
|
|
498
|
-
return False
|