EuroEval 15.12.0__py3-none-any.whl → 16.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- euroeval/__init__.py +32 -14
- euroeval/benchmark_config_factory.py +92 -180
- euroeval/benchmark_modules/base.py +49 -39
- euroeval/benchmark_modules/fresh.py +35 -21
- euroeval/benchmark_modules/hf.py +280 -244
- euroeval/benchmark_modules/litellm.py +752 -312
- euroeval/benchmark_modules/vllm.py +570 -268
- euroeval/benchmarker.py +651 -528
- euroeval/caching_utils.py +79 -0
- euroeval/callbacks.py +5 -7
- euroeval/cli.py +49 -38
- euroeval/constants.py +44 -25
- euroeval/data_loading.py +111 -55
- euroeval/data_models.py +490 -323
- euroeval/dataset_configs/__init__.py +26 -4
- euroeval/dataset_configs/bosnian.py +39 -0
- euroeval/dataset_configs/bulgarian.py +56 -0
- euroeval/dataset_configs/croatian.py +56 -0
- euroeval/dataset_configs/czech.py +75 -0
- euroeval/dataset_configs/danish.py +78 -50
- euroeval/dataset_configs/dutch.py +74 -44
- euroeval/dataset_configs/english.py +71 -36
- euroeval/dataset_configs/estonian.py +111 -0
- euroeval/dataset_configs/faroese.py +25 -18
- euroeval/dataset_configs/finnish.py +63 -26
- euroeval/dataset_configs/french.py +65 -32
- euroeval/dataset_configs/german.py +77 -36
- euroeval/dataset_configs/greek.py +64 -0
- euroeval/dataset_configs/icelandic.py +68 -57
- euroeval/dataset_configs/italian.py +68 -36
- euroeval/dataset_configs/latvian.py +87 -0
- euroeval/dataset_configs/lithuanian.py +64 -0
- euroeval/dataset_configs/norwegian.py +98 -72
- euroeval/dataset_configs/polish.py +96 -0
- euroeval/dataset_configs/portuguese.py +63 -40
- euroeval/dataset_configs/serbian.py +64 -0
- euroeval/dataset_configs/slovak.py +55 -0
- euroeval/dataset_configs/slovene.py +56 -0
- euroeval/dataset_configs/spanish.py +68 -34
- euroeval/dataset_configs/swedish.py +82 -41
- euroeval/dataset_configs/ukrainian.py +64 -0
- euroeval/enums.py +12 -6
- euroeval/exceptions.py +21 -1
- euroeval/finetuning.py +34 -26
- euroeval/generation.py +76 -41
- euroeval/generation_utils.py +169 -34
- euroeval/languages.py +1020 -188
- euroeval/logging_utils.py +268 -0
- euroeval/metrics/__init__.py +6 -0
- euroeval/metrics/base.py +85 -0
- euroeval/metrics/huggingface.py +216 -0
- euroeval/metrics/llm_as_a_judge.py +260 -0
- euroeval/metrics/pipeline.py +289 -0
- euroeval/metrics/speed.py +48 -0
- euroeval/model_cache.py +40 -21
- euroeval/model_config.py +4 -5
- euroeval/model_loading.py +3 -0
- euroeval/prompt_templates/__init__.py +2 -0
- euroeval/prompt_templates/classification.py +206 -0
- euroeval/prompt_templates/linguistic_acceptability.py +157 -22
- euroeval/prompt_templates/multiple_choice.py +159 -17
- euroeval/prompt_templates/named_entity_recognition.py +318 -21
- euroeval/prompt_templates/reading_comprehension.py +207 -16
- euroeval/prompt_templates/sentiment_classification.py +205 -22
- euroeval/prompt_templates/summarization.py +122 -22
- euroeval/prompt_templates/token_classification.py +279 -0
- euroeval/scores.py +20 -9
- euroeval/speed_benchmark.py +11 -12
- euroeval/task_group_utils/multiple_choice_classification.py +21 -12
- euroeval/task_group_utils/question_answering.py +101 -73
- euroeval/task_group_utils/sequence_classification.py +144 -61
- euroeval/task_group_utils/text_to_text.py +33 -12
- euroeval/task_group_utils/token_classification.py +86 -89
- euroeval/tasks.py +75 -16
- euroeval/tokenisation_utils.py +603 -0
- euroeval/types.py +17 -11
- euroeval/utils.py +332 -137
- euroeval-16.7.1.dist-info/METADATA +623 -0
- euroeval-16.7.1.dist-info/RECORD +84 -0
- {euroeval-15.12.0.dist-info → euroeval-16.7.1.dist-info}/entry_points.txt +0 -1
- euroeval/human_evaluation.py +0 -737
- euroeval/metrics.py +0 -452
- euroeval/tokenization_utils.py +0 -498
- euroeval-15.12.0.dist-info/METADATA +0 -285
- euroeval-15.12.0.dist-info/RECORD +0 -63
- {euroeval-15.12.0.dist-info → euroeval-16.7.1.dist-info}/WHEEL +0 -0
- {euroeval-15.12.0.dist-info → euroeval-16.7.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,260 @@
|
|
|
1
|
+
"""Metrics based on LLM-as-a-judge."""
|
|
2
|
+
|
|
3
|
+
import collections.abc as c
|
|
4
|
+
import logging
|
|
5
|
+
import typing as t
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
from pydantic import BaseModel, Field
|
|
9
|
+
|
|
10
|
+
from ..exceptions import InvalidBenchmark
|
|
11
|
+
from ..logging_utils import log
|
|
12
|
+
from ..utils import extract_json_dict_from_string
|
|
13
|
+
from .base import Metric
|
|
14
|
+
|
|
15
|
+
if t.TYPE_CHECKING:
|
|
16
|
+
from datasets.arrow_dataset import Dataset
|
|
17
|
+
|
|
18
|
+
from ..data_models import BenchmarkConfig, DatasetConfig
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class LLMAsAJudgeMetric(Metric):
|
|
22
|
+
"""Use an LLM to judge the quality of the predictions."""
|
|
23
|
+
|
|
24
|
+
def __init__(
|
|
25
|
+
self,
|
|
26
|
+
name: str,
|
|
27
|
+
pretty_name: str,
|
|
28
|
+
judge_id: str,
|
|
29
|
+
judge_kwargs: dict[str, t.Any],
|
|
30
|
+
user_prompt: str,
|
|
31
|
+
response_format: t.Type[BaseModel],
|
|
32
|
+
scoring_fn: t.Callable[[BaseModel | None], float],
|
|
33
|
+
condition_formatting_fn: t.Callable[[str], str] = lambda x: x,
|
|
34
|
+
system_prompt: str | None = None,
|
|
35
|
+
) -> None:
|
|
36
|
+
"""Initialise the LLM as a judge metric.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
name:
|
|
40
|
+
The name of the metric in snake_case.
|
|
41
|
+
pretty_name:
|
|
42
|
+
The pretty name of the metric, used for display purposes.
|
|
43
|
+
judge_id:
|
|
44
|
+
The model ID of the LLM to use as a judge.
|
|
45
|
+
judge_kwargs:
|
|
46
|
+
Generation parameters for the judge model, such as temperature.
|
|
47
|
+
user_prompt:
|
|
48
|
+
The user prompt to use for the judge model. The prompt should be
|
|
49
|
+
formatted with the variables `prediction` and `condition`, to
|
|
50
|
+
include the model predictions and a description of what the prediction
|
|
51
|
+
should be judged on, respectively. If the condition is not needed,
|
|
52
|
+
it can be omitted from the prompt, but the `prediction` variable must
|
|
53
|
+
still be present.
|
|
54
|
+
response_format:
|
|
55
|
+
The response format to use for the judge model. This should be a
|
|
56
|
+
Pydantic model that defines the expected structure of the judge's
|
|
57
|
+
response.
|
|
58
|
+
scoring_fn:
|
|
59
|
+
A function that takes the judge's response and returns a score.
|
|
60
|
+
condition_formatting_fn (optional):
|
|
61
|
+
A function to format the condition string before it is included in the
|
|
62
|
+
user prompt. Defaults to a no-op function that returns the input
|
|
63
|
+
unchanged.
|
|
64
|
+
system_prompt (optional):
|
|
65
|
+
The system prompt to use for the judge model. If not provided, no system
|
|
66
|
+
prompt will be used.
|
|
67
|
+
"""
|
|
68
|
+
super().__init__(name=name, pretty_name=pretty_name)
|
|
69
|
+
self.judge_id = judge_id
|
|
70
|
+
self.judge_kwargs = judge_kwargs
|
|
71
|
+
self.user_prompt = user_prompt
|
|
72
|
+
self.response_format = response_format
|
|
73
|
+
self.scoring_fn = scoring_fn
|
|
74
|
+
self.condition_formatting_fn = condition_formatting_fn
|
|
75
|
+
self.system_prompt = system_prompt
|
|
76
|
+
|
|
77
|
+
# Add response format to the generation kwargs
|
|
78
|
+
self.judge_kwargs["response_format"] = self.response_format
|
|
79
|
+
|
|
80
|
+
def __call__(
|
|
81
|
+
self,
|
|
82
|
+
predictions: c.Sequence,
|
|
83
|
+
references: c.Sequence,
|
|
84
|
+
dataset: "Dataset",
|
|
85
|
+
dataset_config: "DatasetConfig",
|
|
86
|
+
benchmark_config: "BenchmarkConfig",
|
|
87
|
+
) -> float | None:
|
|
88
|
+
"""Calculate the metric score using the judge model.
|
|
89
|
+
|
|
90
|
+
Args:
|
|
91
|
+
predictions:
|
|
92
|
+
The model predictions.
|
|
93
|
+
references:
|
|
94
|
+
The ground truth references.
|
|
95
|
+
dataset:
|
|
96
|
+
The dataset used for evaluation. This is only used in case any
|
|
97
|
+
additional metadata is used to compute the metrics.
|
|
98
|
+
dataset_config:
|
|
99
|
+
The dataset configuration.
|
|
100
|
+
benchmark_config:
|
|
101
|
+
The benchmark configuration.
|
|
102
|
+
|
|
103
|
+
Returns:
|
|
104
|
+
The calculated metric score, or None if the score should be ignored.
|
|
105
|
+
|
|
106
|
+
Raises:
|
|
107
|
+
InvalidBenchmark:
|
|
108
|
+
If the number of predictions does not match the number of references,
|
|
109
|
+
or if the user prompt requires a condition but none is provided.
|
|
110
|
+
"""
|
|
111
|
+
# Importing here to avoid circular imports
|
|
112
|
+
from ..benchmark_modules import LiteLLMModel
|
|
113
|
+
from ..model_cache import ModelCache
|
|
114
|
+
|
|
115
|
+
if not predictions or not references:
|
|
116
|
+
return None
|
|
117
|
+
elif len(predictions) != len(references):
|
|
118
|
+
raise InvalidBenchmark(
|
|
119
|
+
f"The number of predictions ({len(predictions):,}) does not match the "
|
|
120
|
+
f"number of references ({len(references):,})."
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
# Load the judge model
|
|
124
|
+
judge_model_config = LiteLLMModel.get_model_config(
|
|
125
|
+
model_id=self.judge_id, benchmark_config=benchmark_config
|
|
126
|
+
)
|
|
127
|
+
self.judge = LiteLLMModel(
|
|
128
|
+
model_config=judge_model_config,
|
|
129
|
+
dataset_config=dataset_config,
|
|
130
|
+
benchmark_config=benchmark_config,
|
|
131
|
+
log_metadata=False,
|
|
132
|
+
**self.judge_kwargs,
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
# Create a cache for the judge model
|
|
136
|
+
judge_cache = ModelCache(
|
|
137
|
+
model_cache_dir=Path(judge_model_config.model_cache_dir),
|
|
138
|
+
cache_name=f"{dataset_config.name}-model-outputs.json",
|
|
139
|
+
max_generated_tokens=dataset_config.max_generated_tokens,
|
|
140
|
+
progress_bar=benchmark_config.progress_bar,
|
|
141
|
+
)
|
|
142
|
+
judge_cache.load()
|
|
143
|
+
|
|
144
|
+
# Prepare the messages for the LLM
|
|
145
|
+
conversations = [
|
|
146
|
+
[
|
|
147
|
+
dict(
|
|
148
|
+
role="user",
|
|
149
|
+
content=self._apply_user_prompt(
|
|
150
|
+
prediction=prediction, condition=condition
|
|
151
|
+
),
|
|
152
|
+
)
|
|
153
|
+
]
|
|
154
|
+
for prediction, condition in zip(predictions, references)
|
|
155
|
+
]
|
|
156
|
+
if self.system_prompt:
|
|
157
|
+
conversations = [
|
|
158
|
+
[dict(role="system", content=self.system_prompt), *conversation]
|
|
159
|
+
for conversation in conversations
|
|
160
|
+
]
|
|
161
|
+
|
|
162
|
+
# Get the non-cached conversations and generate the completions for them
|
|
163
|
+
non_cached_conversations = [
|
|
164
|
+
(idx, conversation)
|
|
165
|
+
for idx, conversation in enumerate(conversations)
|
|
166
|
+
if conversation not in judge_cache
|
|
167
|
+
]
|
|
168
|
+
if non_cached_conversations:
|
|
169
|
+
model_inputs = dict(messages=[c for _, c in non_cached_conversations])
|
|
170
|
+
non_cached_outputs = self.judge.generate(inputs=model_inputs)
|
|
171
|
+
|
|
172
|
+
# Store the non-cached outputs in the cache
|
|
173
|
+
judge_cache.add_to_cache(
|
|
174
|
+
model_inputs=model_inputs, model_output=non_cached_outputs
|
|
175
|
+
)
|
|
176
|
+
judge_cache.save()
|
|
177
|
+
|
|
178
|
+
# Load all the outputs from the cache, in the original order, and parse them
|
|
179
|
+
raw_outputs = [judge_cache[conversation] for conversation in conversations]
|
|
180
|
+
json_dicts = [
|
|
181
|
+
extract_json_dict_from_string(s=output.sequence) for output in raw_outputs
|
|
182
|
+
]
|
|
183
|
+
outputs = [
|
|
184
|
+
self.response_format.model_validate(obj=json_dict)
|
|
185
|
+
if json_dict is not None
|
|
186
|
+
else None
|
|
187
|
+
for json_dict in json_dicts
|
|
188
|
+
]
|
|
189
|
+
|
|
190
|
+
# Calculate the scores using the scoring function
|
|
191
|
+
scores = [self.scoring_fn(output) for output in outputs]
|
|
192
|
+
if not scores:
|
|
193
|
+
log(
|
|
194
|
+
f"No scores were calculated for {self.pretty_name}.",
|
|
195
|
+
level=logging.WARNING,
|
|
196
|
+
)
|
|
197
|
+
return None
|
|
198
|
+
return sum(scores) / len(scores)
|
|
199
|
+
|
|
200
|
+
def _apply_user_prompt(self, prediction: str, condition: str | None = None) -> str:
|
|
201
|
+
"""Apply the user prompt to the prediction and condition.
|
|
202
|
+
|
|
203
|
+
Args:
|
|
204
|
+
prediction:
|
|
205
|
+
The model prediction.
|
|
206
|
+
condition (optional):
|
|
207
|
+
A description of what the prediction should be judged on. If not
|
|
208
|
+
provided, it will be omitted from the prompt.
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
The formatted user prompt with the prediction and reference.
|
|
212
|
+
|
|
213
|
+
Raises:
|
|
214
|
+
InvalidBenchmark:
|
|
215
|
+
If the user prompt requires a reference but none is provided.
|
|
216
|
+
"""
|
|
217
|
+
condition_required = "{condition}" in self.user_prompt
|
|
218
|
+
if condition_required and condition is None:
|
|
219
|
+
raise InvalidBenchmark(
|
|
220
|
+
f"The user prompt for the {self.pretty_name!r} metric requires a "
|
|
221
|
+
"condition, but none was provided."
|
|
222
|
+
)
|
|
223
|
+
if condition is not None:
|
|
224
|
+
return self.user_prompt.format(
|
|
225
|
+
prediction=prediction, condition=self.condition_formatting_fn(condition)
|
|
226
|
+
)
|
|
227
|
+
return self.user_prompt.format(prediction=prediction)
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
### Fluency metric ###
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
class Fluency(BaseModel):
|
|
234
|
+
"""Response format for the fluency metric.
|
|
235
|
+
|
|
236
|
+
Attributes:
|
|
237
|
+
fluency:
|
|
238
|
+
The fluency rating, an integer between 1 and 5.
|
|
239
|
+
"""
|
|
240
|
+
|
|
241
|
+
fluency: t.Annotated[int, Field(ge=1, le=5)]
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
fluency_metric = LLMAsAJudgeMetric(
|
|
245
|
+
name="fluency",
|
|
246
|
+
pretty_name="Fluency",
|
|
247
|
+
judge_id="gpt-5-2025-08-07",
|
|
248
|
+
judge_kwargs=dict(temperature=1.0),
|
|
249
|
+
user_prompt="Please rate the fluency of the following text on a scale from 1 to 5, "
|
|
250
|
+
"with the following definitions:\n"
|
|
251
|
+
"- 1: Very poor fluency, many grammatical errors\n"
|
|
252
|
+
"- 2: Poor fluency, several grammatical errors\n"
|
|
253
|
+
"- 3: Average fluency, a few grammatical errors\n"
|
|
254
|
+
"- 4: Good fluency, no grammatical errors but sounds a bit off\n"
|
|
255
|
+
"- 5: Excellent fluency, no grammatical errors and sounds natural\n\n"
|
|
256
|
+
"Text: {prediction!r}\n\n"
|
|
257
|
+
"Output your rating as a JSON object with a single key 'fluency'.",
|
|
258
|
+
response_format=Fluency,
|
|
259
|
+
scoring_fn=lambda output: (output.fluency - 1) / 4.0 if output is not None else 0.0,
|
|
260
|
+
)
|
|
@@ -0,0 +1,289 @@
|
|
|
1
|
+
"""Metrics based on a scikit-learn Pipeline."""
|
|
2
|
+
|
|
3
|
+
import collections.abc as c
|
|
4
|
+
import logging
|
|
5
|
+
import typing as t
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import cloudpickle
|
|
9
|
+
import huggingface_hub as hf_hub
|
|
10
|
+
import numpy as np
|
|
11
|
+
from scipy.special import expit as sigmoid
|
|
12
|
+
|
|
13
|
+
from ..exceptions import InvalidBenchmark
|
|
14
|
+
from ..logging_utils import log, no_terminal_output
|
|
15
|
+
from ..utils import unscramble
|
|
16
|
+
from .base import Metric
|
|
17
|
+
|
|
18
|
+
if t.TYPE_CHECKING:
|
|
19
|
+
from datasets.arrow_dataset import Dataset
|
|
20
|
+
from sklearn.pipeline import Pipeline
|
|
21
|
+
|
|
22
|
+
from ..data_models import BenchmarkConfig, DatasetConfig
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
T = t.TypeVar("T", bound=int | float | str | bool)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class PreprocessingFunction(t.Protocol):
|
|
29
|
+
"""A protocol for a preprocessing function."""
|
|
30
|
+
|
|
31
|
+
def __call__(
|
|
32
|
+
self, predictions: c.Sequence[int], dataset: "Dataset"
|
|
33
|
+
) -> c.Sequence[int]:
|
|
34
|
+
"""Preprocess the model predictions before they are passed to the pipeline.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
predictions:
|
|
38
|
+
The model predictions.
|
|
39
|
+
dataset:
|
|
40
|
+
The dataset used for evaluation. This is only used in case any
|
|
41
|
+
additional metadata is used to compute the metrics.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
The preprocessed model predictions.
|
|
45
|
+
"""
|
|
46
|
+
...
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class PipelineMetric(Metric):
|
|
50
|
+
"""Load a scikit-learn pipeline and use it to get scores from the predictions."""
|
|
51
|
+
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
name: str,
|
|
55
|
+
pretty_name: str,
|
|
56
|
+
pipeline_repo: str,
|
|
57
|
+
pipeline_scoring_function: c.Callable[["Pipeline", c.Sequence], float],
|
|
58
|
+
pipeline_file_name: str = "pipeline.pkl",
|
|
59
|
+
preprocessing_fn: PreprocessingFunction | None = None,
|
|
60
|
+
postprocessing_fn: c.Callable[[float], tuple[float, str]] | None = None,
|
|
61
|
+
) -> None:
|
|
62
|
+
"""Initialise the pipeline transform metric.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
name:
|
|
66
|
+
The name of the metric in snake_case.
|
|
67
|
+
pretty_name:
|
|
68
|
+
The pretty name of the metric, used for display purposes.
|
|
69
|
+
pipeline_repo:
|
|
70
|
+
The Hugging Face repository ID of the scikit-learn pipeline to load.
|
|
71
|
+
pipeline_scoring_method:
|
|
72
|
+
The method to use for scoring the predictions with the pipeline. Takes
|
|
73
|
+
a 1D sequence of predictions and returns a float score.
|
|
74
|
+
pipeline_file_name (optional):
|
|
75
|
+
The name of the file to download from the Hugging Face repository.
|
|
76
|
+
Defaults to "pipeline.joblib".
|
|
77
|
+
preprocessing_fn (optional):
|
|
78
|
+
A function to apply to the predictions before they are passed to the
|
|
79
|
+
pipeline. This is useful for preprocessing the predictions to match
|
|
80
|
+
the expected input format of the pipeline. Defaults to a no-op function
|
|
81
|
+
that returns the input unchanged.
|
|
82
|
+
postprocessing_fn (optional):
|
|
83
|
+
A function to apply to the metric scores after they are computed,
|
|
84
|
+
taking the score to the postprocessed score along with its string
|
|
85
|
+
representation. Defaults to x -> (100 * x, f"{x:.2%}").
|
|
86
|
+
"""
|
|
87
|
+
super().__init__(
|
|
88
|
+
name=name, pretty_name=pretty_name, postprocessing_fn=postprocessing_fn
|
|
89
|
+
)
|
|
90
|
+
self.pipeline_repo = pipeline_repo
|
|
91
|
+
self.pipeline_file_name = pipeline_file_name
|
|
92
|
+
self.pipeline_scoring_function = pipeline_scoring_function
|
|
93
|
+
self.pipeline: "Pipeline | None" = None
|
|
94
|
+
self.preprocessing_fn = preprocessing_fn
|
|
95
|
+
|
|
96
|
+
def __call__(
|
|
97
|
+
self,
|
|
98
|
+
predictions: c.Sequence,
|
|
99
|
+
references: c.Sequence,
|
|
100
|
+
dataset: "Dataset",
|
|
101
|
+
dataset_config: "DatasetConfig",
|
|
102
|
+
benchmark_config: "BenchmarkConfig",
|
|
103
|
+
) -> float | None:
|
|
104
|
+
"""Calculate the metric score using the scikit-learn pipeline.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
predictions:
|
|
108
|
+
The model predictions.
|
|
109
|
+
references:
|
|
110
|
+
Not used, but required for consistency with the Metric interface.
|
|
111
|
+
dataset:
|
|
112
|
+
The dataset used for evaluation. This is only used in case any
|
|
113
|
+
additional metadata is used to compute the metrics.
|
|
114
|
+
dataset_config:
|
|
115
|
+
The dataset configuration.
|
|
116
|
+
benchmark_config:
|
|
117
|
+
The benchmark configuration.
|
|
118
|
+
|
|
119
|
+
Returns:
|
|
120
|
+
The calculated metric score, or None if the score should be ignored.
|
|
121
|
+
"""
|
|
122
|
+
if self.pipeline is None:
|
|
123
|
+
self.pipeline = self._download_pipeline(
|
|
124
|
+
cache_dir=benchmark_config.cache_dir
|
|
125
|
+
)
|
|
126
|
+
if self.preprocessing_fn is not None:
|
|
127
|
+
predictions = self.preprocessing_fn(
|
|
128
|
+
predictions=predictions, dataset=dataset
|
|
129
|
+
)
|
|
130
|
+
return self.pipeline_scoring_function(self.pipeline, predictions)
|
|
131
|
+
|
|
132
|
+
def _download_pipeline(self, cache_dir: str) -> "Pipeline":
|
|
133
|
+
"""Download the scikit-learn pipeline from the given URL.
|
|
134
|
+
|
|
135
|
+
Args:
|
|
136
|
+
cache_dir:
|
|
137
|
+
The directory to use for caching the downloaded pipeline.
|
|
138
|
+
|
|
139
|
+
Returns:
|
|
140
|
+
The downloaded scikit-learn pipeline.
|
|
141
|
+
|
|
142
|
+
Raises:
|
|
143
|
+
InvalidBenchmark:
|
|
144
|
+
If the loading of the pipeline fails for any reason.
|
|
145
|
+
"""
|
|
146
|
+
log(f"Loading pipeline from {self.pipeline_repo}...", level=logging.DEBUG)
|
|
147
|
+
with no_terminal_output():
|
|
148
|
+
folder_path = hf_hub.HfApi(
|
|
149
|
+
token=unscramble("XbjeOLhwebEaSaDUMqqaPaPIhgOcyOfDpGnX_")
|
|
150
|
+
).snapshot_download(
|
|
151
|
+
repo_id=self.pipeline_repo, repo_type="model", cache_dir=cache_dir
|
|
152
|
+
)
|
|
153
|
+
model_path = Path(folder_path, self.pipeline_file_name)
|
|
154
|
+
try:
|
|
155
|
+
with model_path.open(mode="rb") as f:
|
|
156
|
+
pipeline = cloudpickle.load(f)
|
|
157
|
+
except Exception as e:
|
|
158
|
+
raise InvalidBenchmark(
|
|
159
|
+
f"Failed to load pipeline from {self.pipeline_repo!r}: {e}"
|
|
160
|
+
) from e
|
|
161
|
+
log(f"Successfully loaded pipeline: {pipeline}", level=logging.DEBUG)
|
|
162
|
+
return pipeline
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
### European Values Metric ###
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
def european_values_preprocessing_fn(
|
|
169
|
+
predictions: c.Sequence[int], dataset: "Dataset"
|
|
170
|
+
) -> c.Sequence[int]:
|
|
171
|
+
"""Preprocess the model predictions for the European Values metric.
|
|
172
|
+
|
|
173
|
+
Args:
|
|
174
|
+
predictions:
|
|
175
|
+
The model predictions, a sequence of integers representing the predicted
|
|
176
|
+
choices for each question.
|
|
177
|
+
dataset:
|
|
178
|
+
The dataset used for evaluation. This is only used in case any additional
|
|
179
|
+
metadata is used to compute the metrics.
|
|
180
|
+
|
|
181
|
+
Returns:
|
|
182
|
+
The preprocessed model predictions, a sequence of integers representing the
|
|
183
|
+
final predicted choices for each question after any necessary aggregation and
|
|
184
|
+
mapping.
|
|
185
|
+
|
|
186
|
+
Raises:
|
|
187
|
+
AssertionError:
|
|
188
|
+
If the number of predictions is not a multiple of 53, which is required
|
|
189
|
+
for the European Values metric.
|
|
190
|
+
"""
|
|
191
|
+
num_questions = 53
|
|
192
|
+
num_phrasings_per_question = 5
|
|
193
|
+
|
|
194
|
+
# Convert the predictions to integers
|
|
195
|
+
integer_predictions = []
|
|
196
|
+
for prediction, idx_to_choice in zip(predictions, dataset["idx_to_choice"]):
|
|
197
|
+
idx_to_choice = {
|
|
198
|
+
int(idx): int(choice)
|
|
199
|
+
for idx, choice in idx_to_choice.items()
|
|
200
|
+
if choice is not None
|
|
201
|
+
}
|
|
202
|
+
if prediction not in idx_to_choice:
|
|
203
|
+
raise InvalidBenchmark(
|
|
204
|
+
f"The prediction {prediction} is not a valid index for the "
|
|
205
|
+
f"question with choices {idx_to_choice}."
|
|
206
|
+
)
|
|
207
|
+
integer_prediction = idx_to_choice[prediction]
|
|
208
|
+
integer_predictions.append(integer_prediction)
|
|
209
|
+
|
|
210
|
+
assert len(predictions) % num_questions == 0, (
|
|
211
|
+
f"The number of predictions ({len(predictions)}) is not a multiple of "
|
|
212
|
+
f"{num_questions}, which is required for the European Values metric."
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
# When we are using the situational version of the dataset, there are 5 phrasings
|
|
216
|
+
# for each question, so we need to aggregate the predictions by question, which we
|
|
217
|
+
# do using majority voting.
|
|
218
|
+
using_situational = len(predictions) == num_questions * num_phrasings_per_question
|
|
219
|
+
if using_situational:
|
|
220
|
+
# Reshape the predictions to a 2D array with `num_phrasings_per_question` rows
|
|
221
|
+
# (one for each phrasing) and `num_questions` columns (one for each question).
|
|
222
|
+
# The five phrasings for each question appear right after each other, e.g.,
|
|
223
|
+
# (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, ...)
|
|
224
|
+
# Shape: (num_questions, num_phrasings_per_question)
|
|
225
|
+
arr = np.array(
|
|
226
|
+
[
|
|
227
|
+
integer_predictions[i : i + num_phrasings_per_question]
|
|
228
|
+
for i in range(0, len(predictions), num_phrasings_per_question)
|
|
229
|
+
]
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
# Double check that we reshaped the predictions correctly
|
|
233
|
+
for idx, pred in enumerate(integer_predictions):
|
|
234
|
+
assert arr[idx // 5, idx % 5] == pred, (
|
|
235
|
+
f"Reshaped predictions do not match the original predictions at index "
|
|
236
|
+
f"{idx}: {arr[idx // 5, idx % 5]} != {pred}."
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
# Use majority voting to get the final prediction for each question
|
|
240
|
+
# Shape: (53,)
|
|
241
|
+
arr = np.apply_along_axis(lambda x: np.bincount(x).argmax(), axis=1, arr=arr)
|
|
242
|
+
|
|
243
|
+
# Convert the array to a list
|
|
244
|
+
integer_predictions = arr.tolist()
|
|
245
|
+
|
|
246
|
+
# Some of the questions are categorical and we're only interested in whether the
|
|
247
|
+
# model chooses a specific choice or not. This mapping takes the question index
|
|
248
|
+
# to the choice value that we're interested in.
|
|
249
|
+
question_choices = {
|
|
250
|
+
0: 1,
|
|
251
|
+
1: 5,
|
|
252
|
+
3: 3,
|
|
253
|
+
6: 1,
|
|
254
|
+
15: 4,
|
|
255
|
+
20: 2,
|
|
256
|
+
47: 8,
|
|
257
|
+
48: 7,
|
|
258
|
+
49: 4,
|
|
259
|
+
51: 4,
|
|
260
|
+
52: 4,
|
|
261
|
+
}
|
|
262
|
+
|
|
263
|
+
# Map the predictions to the choices we're interested in
|
|
264
|
+
integer_predictions = list(integer_predictions)
|
|
265
|
+
for question_idx, choice in question_choices.items():
|
|
266
|
+
integer_predictions[question_idx] = (
|
|
267
|
+
1 if integer_predictions[question_idx] == choice else 0
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
return integer_predictions
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def european_values_scoring_function(
|
|
274
|
+
pipeline: "Pipeline", predictions: c.Sequence[int]
|
|
275
|
+
) -> float:
|
|
276
|
+
"""Scoring function for the European Values metric."""
|
|
277
|
+
normalised_predictions = pipeline[0].transform([predictions])
|
|
278
|
+
log_likelihoods = pipeline[1].transform(normalised_predictions)[0]
|
|
279
|
+
score = sigmoid(pipeline[2].alpha_ * (log_likelihoods - pipeline[2].center_))
|
|
280
|
+
return score.item()
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
european_values_metric = PipelineMetric(
|
|
284
|
+
name="european_values",
|
|
285
|
+
pretty_name="European Values",
|
|
286
|
+
pipeline_repo="EuroEval/european-values-pipeline",
|
|
287
|
+
pipeline_scoring_function=european_values_scoring_function,
|
|
288
|
+
preprocessing_fn=european_values_preprocessing_fn,
|
|
289
|
+
)
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
"""Inference speed metric."""
|
|
2
|
+
|
|
3
|
+
import collections.abc as c
|
|
4
|
+
import typing as t
|
|
5
|
+
|
|
6
|
+
from .base import Metric
|
|
7
|
+
|
|
8
|
+
if t.TYPE_CHECKING:
|
|
9
|
+
from datasets.arrow_dataset import Dataset
|
|
10
|
+
|
|
11
|
+
from ..data_models import BenchmarkConfig, DatasetConfig
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class SpeedMetric(Metric):
|
|
15
|
+
"""Speed metric."""
|
|
16
|
+
|
|
17
|
+
def __init__(self, name: str, pretty_name: str) -> None:
|
|
18
|
+
"""Initialise the speed metric.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
name:
|
|
22
|
+
The name of the metric in snake_case.
|
|
23
|
+
pretty_name:
|
|
24
|
+
The pretty name of the metric, used for display purposes.
|
|
25
|
+
"""
|
|
26
|
+
super().__init__(
|
|
27
|
+
name=name,
|
|
28
|
+
pretty_name=pretty_name,
|
|
29
|
+
postprocessing_fn=lambda raw_score: (raw_score, f"{raw_score:,.0f}"),
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
def __call__(
|
|
33
|
+
self,
|
|
34
|
+
predictions: c.Sequence,
|
|
35
|
+
references: c.Sequence,
|
|
36
|
+
dataset: "Dataset",
|
|
37
|
+
dataset_config: "DatasetConfig",
|
|
38
|
+
benchmark_config: "BenchmarkConfig",
|
|
39
|
+
) -> float | None:
|
|
40
|
+
"""Not used with the speed metric, but required for consistency."""
|
|
41
|
+
raise NotImplementedError
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
speed_metric = SpeedMetric(name="speed", pretty_name="Tokens per second")
|
|
45
|
+
|
|
46
|
+
speed_short_metric = SpeedMetric(
|
|
47
|
+
name="speed_short", pretty_name="Tokens per second on short documents"
|
|
48
|
+
)
|