ECOv003-L2T-STARS 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,248 @@
1
+ Metadata-Version: 2.1
2
+ Name: ECOv003_L2T_STARS
3
+ Version: 1.0.0
4
+ Summary: ECOSTRESS Collection 3 JPL STARS Data Fusion Product Generating Executable (PGE)
5
+ Author-email: "Gregory H. Halverson" <gregory.h.halverson@jpl.nasa.gov>
6
+ Project-URL: Homepage, https://github.com/ECOSTRESS-Collection-3/ECOv003-L2T-STARS
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: Operating System :: OS Independent
9
+ Requires-Python: >=3.11
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: colored-logging
13
+ Requires-Dist: ECOv002-granules
14
+ Requires-Dist: ECOv002-CMR
15
+ Requires-Dist: pandas
16
+ Requires-Dist: pillow
17
+ Requires-Dist: geopandas
18
+ Requires-Dist: geos5fp
19
+ Requires-Dist: harmonized-landsat-sentinel>=1.1.0
20
+ Requires-Dist: h5py
21
+ Requires-Dist: matplotlib
22
+ Requires-Dist: modland
23
+ Requires-Dist: msgpack
24
+ Requires-Dist: msgpack-numpy
25
+ Requires-Dist: netCDF4
26
+ Requires-Dist: numpy
27
+ Requires-Dist: pyproj
28
+ Requires-Dist: rasterio
29
+ Requires-Dist: shapely
30
+ Requires-Dist: scikit-image
31
+ Requires-Dist: affine
32
+ Requires-Dist: astropy
33
+ Requires-Dist: pycksum
34
+ Requires-Dist: pykdtree
35
+ Requires-Dist: pyresample
36
+ Requires-Dist: rasters
37
+ Requires-Dist: scikit-learn
38
+ Requires-Dist: scipy
39
+ Requires-Dist: sentinel-tiles
40
+ Requires-Dist: six
41
+ Requires-Dist: tensorflow
42
+ Requires-Dist: untangle
43
+ Requires-Dist: xmltodict
44
+ Provides-Extra: dev
45
+ Requires-Dist: pytest>=6.0; extra == "dev"
46
+ Requires-Dist: pytest-cov; extra == "dev"
47
+
48
+ # ECOSTRESS Collection 3 Level 2 STARS Vegetation Index & Albedo
49
+
50
+ This is the main repository for the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) collection 3 level 2 STARS NDVI and albedo data product. This product will utilize the [Spatial Timeseries for Automated high-Resolution multi-Sensor (STARS)](https://github.com/STARS-Data-Fusion) data fusion system to produce normalized difference vegetation index (NDVI) and albedo estimates corresponding to ECOSTRESS surface temperature measurements, to support the [evapotranspiration product](https://github.com/ECOSTRESS-Collection-3/ECOv003-L3-JET).
51
+
52
+ The ECOSTRESS collection 3 level 2 vegetation index and albedo data product is the pre-cursor to the [Surface Biology and Geology (SBG) collection 1 level 2 vegetation index and albedo data product algorithm](https://github.com/sbg-tir/SBG-TIR-L2-STARS).
53
+
54
+ [Gregory H. Halverson](https://github.com/gregory-halverson-jpl) (they/them)<br>
55
+ [gregory.h.halverson@jpl.nasa.gov](mailto:gregory.h.halverson@jpl.nasa.gov)<br>
56
+ NASA Jet Propulsion Laboratory 329G
57
+
58
+ [Margaret C. Johnson](https://github.com/majohnso) (she/her)<br>
59
+ [maggie.johnson@jpl.nasa.gov](mailto:maggie.johnson@jpl.nasa.gov)<br>
60
+ NASA Jet Propulsion Laboratory 398L
61
+
62
+ [Evan Davis](https://github.com/evandjpl) (he/him)<br>
63
+ [evan.w.davis@jpl.nasa.gov](mailto:evan.w.davis@jpl.nasa.gov)<br>
64
+ NASA Jet Propulsion Laboratory 397K
65
+
66
+ [Kerry Cawse-Nicholson](https://github.com/kcawse) (she/her)<br>
67
+ [kerry-anne.cawse-nicholson@jpl.nasa.gov](mailto:kerry-anne.cawse-nicholson@jpl.nasa.gov)<br>
68
+ NASA Jet Propulsion Laboratory 329G
69
+
70
+ [Claire Villanueva-Weeks](https://github.com/clairesvw) (she/her)<br>
71
+ [claire.s.villanueva-weeks@jpl.nasa.gov](mailto:claire.s.villanueva-weeks@jpl.nasa.gov)<br>
72
+ NASA Jet Propulsion Laboratory 329G
73
+
74
+ The code for the ECOSTRESS level 2 STARS PGE will be developed using open-science practices based on the [ECOSTRESS collection 2 gridded and tiled product generation software](https://github.com/ECOSTRESS-Collection-2/ECOSTRESS-Collection-2).
75
+
76
+ This software will produce estimates of:
77
+ - Normalized Difference Vegetation Index (NDVI)
78
+ - albedo
79
+
80
+ NDVI and albedo are estimated at 70 m ECOSTRESS standard resolution for each daytime ECOSTRESS overpass by fusing temporally sparse but fine spatial resolution images from the Harmonized Landsat Sentinel (HLS) 2.0 product with daily, moderate spatial resolution images from the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) VNP09GA product. The data fusion is performed using a variant of the Spatial Timeseries for Automated high-Resolution multi-Sensor data fusion (STARS) algorithm developed by Dr. Margaret Johnson and Gregory Halverson at the Jet Propulsion Laboratory. STARS is a Bayesian timeseries methodology that provides streaming data fusion and uncertainty quantification through efficient Kalman filtering.
81
+
82
+ Operationally, each L2T STARS tile run loads the means and covariances of the STARS model saved from the most recent tile run, then iteratively advances the means and covariances forward each day updating with fine imagery from HLS and/or moderate resolution imagery from VIIRS up to the day of the target SBG overpass. A pixelwise, lagged 16-day implementation of the VNP43 algorithm (Schaaf, 2017) is used for a near-real-time BRDF correction on the VNP09GA products to produce VIIRS NDVI and albedo.
83
+
84
+ ## 1. Introduction to Data Products
85
+
86
+ The data format for the ECOSTRESS products is described in the [ECOSTRESS Collection 3 landing page](https://github.com/ECOSTRESS-Collection-3).
87
+
88
+ ## 2. L2T STARS NDVI and Albedo Product
89
+
90
+ ```mermaid
91
+ flowchart TB
92
+ subgraph VNP43NRT[VNP43NRT.jl]
93
+ VNP09GA_I[VNP09GA<br>I-Band<br>500m<br>Surface<br>Reflectance]
94
+ VNP09GA_M[VNP09GA<br>M-Band<br>1000m<br>Surface<br>Reflectance]
95
+ VIIRS_downscaling[VIIRS<br>Downscaling]
96
+ VNP09GA_downscaled[Downscaled<br>500m<br>VIIRS<br>Surface<br>Reflectance]
97
+ VNP43_BRDF[VNP43NRT.jl<br>BRDF<br>Correction]
98
+ VIIRS_corrected[VIIRS<br>BRDF-Corrected<br>500m<br>Surface<br>Reflectance]
99
+ VIIRS_NDVI[VIIRS<br>500m<br>NDVI]
100
+ VIIRS_albedo[VIIRS<br>500m<br>Albedo]
101
+ end
102
+
103
+ subgraph HLS_aquisition[HLS.jl]
104
+ direction TB
105
+ Landsat_reflectance[HLS<br>Landsat<br>30m<br>Surface<br>Reflectance]
106
+ Landsat_upsampled[Upsampled<br>Landsat<br>70m<br>Surface<br>Reflectance]
107
+ Landsat_NDVI[Landsat<br>70m<br>NDVI]
108
+ Sentinel_reflectance[HLS<br>Sentinel<br>30m<br>Surface<br>Reflectance]
109
+ Sentinel_upsampled[Upsampled<br>Sentinel<br>70m<br>Surface<br>Reflectance]
110
+ Sentinel_NDVI[Sentinel<br>70m<br>NDVI]
111
+ Landsat_albedo[Landsat<br>70m<br>Albedo]
112
+ Sentinel_albedo[Sentinel<br>70m<br>Albedo]
113
+ end
114
+
115
+ subgraph bayesian_state[Bayesian State]
116
+ NDVI_covariance_prior[NDVI<br>Fine-Coarse<br>Covariance<br>Prior<br>from<br>Previous<br>Overpass]
117
+ NDVI_covariance_posterior[NDVI<br>Fine-Coarse<br>Covariance<br>Posterior<br>for<br>Next<br>Overpass]
118
+ albedo_covariance_prior[Albedo<br>Fine-Coarse<br>Covariance<br>Prior<br>from<br>Previous<br>Overpass]
119
+ albedo_covariance_posterior[Albedo<br>Fine-Coarse<br>Covariance<br>Posterior<br>for<br>Next<br>Overpass]
120
+ end
121
+
122
+ fine_NDVI_input[NDVI<br>70m<br>Composite]
123
+ NDVI_data_fusion[STARS.jl<br>NDVI<br>Data<br>Fusion]
124
+ fine_NDVI_output[Fused<br>30m<br>NDVI]
125
+ fine_NDVI_uncertainty[NDVI<br>Uncertainty]
126
+
127
+ fine_albedo_input[Albedo<br>70m<br>Composite]
128
+ albedo_data_fusion[STARS.jl<br>Albedo<br>Data<br>Fusion]
129
+ fine_albedo_output[Fused<br>30m<br>Albedo]
130
+ fine_albedo_uncertainty[Albedo<br>Uncertainty]
131
+
132
+ SBG_L2T_STARS(ECOSTRESS<br>L2T<br>STARS<br>NDVI<br>&<br>Albedo<br>Product)
133
+
134
+ VNP09GA_I --> VIIRS_downscaling
135
+ VNP09GA_M --> VIIRS_downscaling
136
+ VIIRS_downscaling --> VNP09GA_downscaled
137
+ VNP09GA_downscaled --> VNP43_BRDF
138
+ VNP43_BRDF --> VIIRS_corrected
139
+ VIIRS_corrected --> VIIRS_NDVI
140
+ VIIRS_corrected --> VIIRS_albedo
141
+
142
+ Landsat_reflectance --> Landsat_upsampled
143
+ Sentinel_reflectance --> Sentinel_upsampled
144
+
145
+ Landsat_upsampled --> Landsat_NDVI
146
+ Sentinel_upsampled --> Sentinel_NDVI
147
+
148
+ Landsat_upsampled --> Landsat_albedo
149
+ Sentinel_upsampled --> Sentinel_albedo
150
+
151
+ Landsat_NDVI --> fine_NDVI_input
152
+ Sentinel_NDVI --> fine_NDVI_input
153
+ fine_NDVI_input --> NDVI_data_fusion
154
+ VIIRS_NDVI --> NDVI_data_fusion
155
+ NDVI_covariance_prior --> NDVI_data_fusion
156
+ NDVI_data_fusion --> fine_NDVI_output
157
+ NDVI_data_fusion --> fine_NDVI_uncertainty
158
+ NDVI_data_fusion --> NDVI_covariance_posterior
159
+
160
+ Landsat_albedo --> fine_albedo_input
161
+ Sentinel_albedo --> fine_albedo_input
162
+ fine_albedo_input --> albedo_data_fusion
163
+ VIIRS_albedo --> albedo_data_fusion
164
+ albedo_covariance_prior --> albedo_data_fusion
165
+ albedo_data_fusion --> fine_albedo_output
166
+ albedo_data_fusion --> fine_albedo_uncertainty
167
+ albedo_data_fusion --> albedo_covariance_posterior
168
+
169
+ fine_NDVI_output --> SBG_L2T_STARS
170
+ fine_NDVI_uncertainty --> SBG_L2T_STARS
171
+ fine_albedo_output --> SBG_L2T_STARS
172
+ fine_albedo_uncertainty --> SBG_L2T_STARS
173
+
174
+ click VNP43_BRDF "https://github.com/STARS-Data-Fusion/VNP43NRT.jl"
175
+ click NDVI_data_fusion "https://github.com/STARS-Data-Fusion/STARS.jl"
176
+ click albedo_data_fusion "https://github.com/STARS-Data-Fusion/STARS.jl"
177
+ ```
178
+
179
+ *Figure 1. Flowchart of the ECOSTRESS Collection 3 L2T STARS processing workflow.*
180
+
181
+ NDVI and albedo are estimated at 70 m ECOSTRESS standard resolution with uncertainty for each UTC day in which there is an ECOSTRESS overpass by fusing temporally sparse but fine spatial resolution images from the Harmonized Landsat Sentinel (HLS) 2.0 product with daily, moderate spatial resolution images from the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) VNP09GA product.
182
+
183
+ Landsat and Sentinel surface reflectances are collected using the [HLS.jl](https://github.com/STARS-Data-Fusion/HLS.jl) package.
184
+
185
+ VIIRS surface reflectance is downscaled and BRDF corrected using the [VNP43NRT.jl](https://github.com/STARS-Data-Fusion/VNP43NRT.jl) package. A pixelwise, lagged 16-day implementation of the VNP43 algorithm (Schaaf, 2017) is used for a near-real-time BRDF correction on the VNP09GA products to produce VIIRS NDVI and albedo.
186
+
187
+ The data fusion is performed with a variant of the Spatial Timeseries for Automated high-Resolution multi-Sensor data fusion (STARS) algorithm developed by Dr. Margaret Johnson and Gregory H. Halverson at the Jet Propulsion Laboratory using the [STARS.jl](https://github.com/STARS-Data-Fusion/STARS.jl) package. STARS is a Bayesian timeseries methodology that provides streaming data fusion and uncertainty quantification through efficient Kalman filtering. Operationally, each L2T STARS tile run loads the means and covariances of the STARS model saved from the most recent tile run, then iteratively advances the means and covariances forward each day updating with fine imagery from HLS and/or moderate resolution imagery from VIIRS up to the day of the target ECOSTRESS overpass.
188
+
189
+ The layers of the L2T STARS product are listed in Table 2. All layers of this product are represented by 32-bit floating point arrays. The NDVI estimates and 1σ uncertainties (-UQ) are unitless from -1 to 1. The albedo estimates and 1σ uncertainties (-UQ) are proportions from 0 to 1.
190
+
191
+ | **Name** | **Description** | **Type** | **Units** | **Fill Value** | **No Data Value** | **Valid Min** | **Valid Max** |**Scale Factor** | **Size** |
192
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | -- |
193
+ | NDVI | Normalized Difference Vegetation Index | float32 | Index | NaN | N/A | -1 | 1 | N/A | 13.4 mb |
194
+ | NDVI-UQ | Normalized Difference Vegetation Index Uncertainty | float32 | Index | NaN | N/A | -1 | 1 | N/A | 13.4 mb |
195
+ | albedo | Albedo | float32 | Ratio | NaN | N/A | 0 | 1 | N/A | 13.4 mb |
196
+ | albedo-UQ | Albedo Uncertainty | float32 | Ratio | NaN | N/A | 0 | 1 | N/A | 13.4 mb |
197
+
198
+ *Table 2. Listing of L2T STARS data layers.*
199
+
200
+ ## Prerequisites
201
+
202
+ This is a Python package that calls Julia code. Julia must be installed in order to run this package.
203
+
204
+ ## Authentication
205
+
206
+ This package requires an [EarthData](https://urs.earthdata.nasa.gov/) account and reads EarthData credentials from `~/.netrc` in the following format:
207
+
208
+ ```
209
+ machine urs.earthdata.nasa.gov
210
+ login <USERNAME>
211
+ password <PASSWORD>
212
+ ```
213
+
214
+ ## Environment
215
+
216
+ On macOS, there are issues with installing `pykdtree` using pip, so it's better to use a mamba environment and install the `pykdtree` mamba package.
217
+
218
+ ```
219
+ mamba create -y -n ECOv003-L2T-STARS -c conda-forge python=3.11 jupyter pykdtree
220
+ mamba activate ECOv003-L2T-STARS
221
+ ```
222
+
223
+ ## Installation
224
+
225
+ Install this package from PyPi using the name `ECOv003-L2T-STARS` with dashes:
226
+
227
+ ```
228
+ pip install ECOv003-L2T-STARS
229
+ ```
230
+
231
+ You can also install development versions of this package directly from a clone of this repository:
232
+
233
+ ```
234
+ pip install .
235
+ ```
236
+
237
+ ## Usage
238
+
239
+ Import this package with the name `ECOv003_L2T_STARS` with underscores:
240
+
241
+ ```
242
+ import ECOv003_L2T_STARS
243
+ ```
244
+
245
+
246
+ ## References
247
+
248
+ Schaaf, C. B. et al. (2017). *Algorithm Theoretical Basis Document for MODIS Bidirectional Reflectance Distribution Function and Albedo (MOD43) Products*. NASA. [Link to source](https://lpdaac.usgs.gov/documents/110/MOD43_ATBD.pdf)
@@ -0,0 +1,5 @@
1
+ ECOv003_L2T_STARS-1.0.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2
+ ECOv003_L2T_STARS-1.0.0.dist-info/METADATA,sha256=CPg_xIBBTlCsj6GPjNKkFwxEw17WhkYk27hzxFB-pT4,12724
3
+ ECOv003_L2T_STARS-1.0.0.dist-info/WHEEL,sha256=a7TGlA-5DaHMRrarXjVbQagU3Man_dCnGIWMJr5kRWo,91
4
+ ECOv003_L2T_STARS-1.0.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
5
+ ECOv003_L2T_STARS-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.4.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+