DiadFit 0.0.84__py3-none-any.whl → 0.0.88__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- DiadFit/CO2_EOS.py +2 -2
- DiadFit/CO2_H2O_EOS.py +173 -90
- DiadFit/CO2_in_bubble_error.py +217 -115
- DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl +0 -0
- DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl +0 -0
- DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl +0 -0
- DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl +0 -0
- DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl +0 -0
- DiadFit/Highrho_polyfit_data_CMASS_24C.pkl +0 -0
- DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl +0 -0
- DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl +0 -0
- DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl +0 -0
- DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl +0 -0
- DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl +0 -0
- DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl +0 -0
- DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl +0 -0
- DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl +0 -0
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl +0 -0
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl +0 -0
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl +0 -0
- DiadFit/_version.py +1 -1
- DiadFit/densimeter_fitting.py +7 -1
- DiadFit/densimeters.py +182 -40
- DiadFit/density_depth_crustal_profiles.py +37 -5
- DiadFit/diads.py +85 -48
- DiadFit/error_propagation.py +141 -229
- DiadFit/importing_data_files.py +81 -15
- DiadFit/lookup_table.csv +64001 -0
- DiadFit/lookup_table_noneg.csv +63707 -0
- DiadFit/ne_lines.py +58 -29
- {DiadFit-0.0.84.dist-info → DiadFit-0.0.88.dist-info}/METADATA +1 -1
- DiadFit-0.0.88.dist-info/RECORD +50 -0
- {DiadFit-0.0.84.dist-info → DiadFit-0.0.88.dist-info}/WHEEL +1 -1
- DiadFit-0.0.84.dist-info/RECORD +0 -40
- {DiadFit-0.0.84.dist-info → DiadFit-0.0.88.dist-info}/top_level.txt +0 -0
DiadFit/ne_lines.py
CHANGED
@@ -46,7 +46,16 @@ error_pk2
|
|
46
46
|
dist = (df['Raman_shift (cm-1)'] - line1_shift).abs()
|
47
47
|
return df.loc[dist.idxmin()]
|
48
48
|
|
49
|
-
|
49
|
+
def find_max_row(df, target_shift, tol=2):
|
50
|
+
""" This function is used to find the highest amplitude within a predefined ampl range for finding the right Ne line
|
51
|
+
"""
|
52
|
+
|
53
|
+
df_filtered = df[(df['Raman_shift (cm-1)'] >= target_shift - tol) & (df['Raman_shift (cm-1)'] <= target_shift + tol)]
|
54
|
+
|
55
|
+
# Find the row with the maximum intensity within this filtered DataFrame
|
56
|
+
max_intensity_row = df_filtered.loc[df_filtered['Intensity'].idxmax()]
|
57
|
+
|
58
|
+
return max_intensity_row
|
50
59
|
|
51
60
|
def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447, cut_off_intensity=2000):
|
52
61
|
"""
|
@@ -72,23 +81,48 @@ def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447
|
|
72
81
|
"""
|
73
82
|
|
74
83
|
df_Ne=calculate_Ne_line_positions(wavelength=wavelength, cut_off_intensity=cut_off_intensity)
|
75
|
-
|
76
|
-
closest1=find_closest(df_Ne, line1_shift).loc['Raman_shift (cm-1)']
|
77
|
-
closest2=find_closest(df_Ne, line2_shift).loc['Raman_shift (cm-1)']
|
78
|
-
closest_1_int=find_closest(df_Ne, line1_shift).loc['Intensity']
|
79
|
-
closest_2_int=find_closest(df_Ne, line2_shift).loc['Intensity']
|
80
|
-
|
81
|
-
diff=abs(closest1-closest2)
|
82
|
-
|
83
|
-
df=pd.DataFrame(data={'Ne_Split': diff,
|
84
|
+
#
|
85
|
+
# closest1=find_closest(df_Ne, line1_shift).loc['Raman_shift (cm-1)']
|
86
|
+
# closest2=find_closest(df_Ne, line2_shift).loc['Raman_shift (cm-1)']
|
87
|
+
# closest_1_int=find_closest(df_Ne, line1_shift).loc['Intensity']
|
88
|
+
# closest_2_int=find_closest(df_Ne, line2_shift).loc['Intensity']
|
89
|
+
#
|
90
|
+
# diff=abs(closest1-closest2)
|
91
|
+
#
|
92
|
+
# df=pd.DataFrame(data={'Ne_Split': diff,
|
93
|
+
# 'Line_1': closest1,
|
94
|
+
# 'Line_2': closest2,
|
95
|
+
# 'Line_1_int': closest_1_int,
|
96
|
+
# 'Line_2_int': closest_2_int,
|
97
|
+
# 'Entered Pos Line 1': line1_shift,
|
98
|
+
# 'Entered Pos Line 2': line2_shift}, index=[0])
|
99
|
+
#
|
100
|
+
#
|
101
|
+
# return df
|
102
|
+
# Use the new function to find the lines of interest
|
103
|
+
closest1_row = find_max_row(df_Ne, line1_shift)
|
104
|
+
closest2_row = find_max_row(df_Ne, line2_shift)
|
105
|
+
|
106
|
+
# Extract the required values from the rows
|
107
|
+
closest1 = closest1_row['Raman_shift (cm-1)']
|
108
|
+
closest2 = closest2_row['Raman_shift (cm-1)']
|
109
|
+
closest_1_int = closest1_row['Intensity']
|
110
|
+
closest_2_int = closest2_row['Intensity']
|
111
|
+
|
112
|
+
# Calculate the difference
|
113
|
+
diff = abs(closest1 - closest2)
|
114
|
+
|
115
|
+
# Create the DataFrame
|
116
|
+
df = pd.DataFrame(data={
|
117
|
+
'Ne_Split': diff,
|
84
118
|
'Line_1': closest1,
|
85
119
|
'Line_2': closest2,
|
86
120
|
'Line_1_int': closest_1_int,
|
87
121
|
'Line_2_int': closest_2_int,
|
88
122
|
'Entered Pos Line 1': line1_shift,
|
89
|
-
'Entered Pos Line 2': line2_shift
|
90
|
-
|
91
|
-
|
123
|
+
'Entered Pos Line 2': line2_shift
|
124
|
+
}, index=[0])
|
125
|
+
|
92
126
|
return df
|
93
127
|
|
94
128
|
def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
|
@@ -131,10 +165,7 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
|
|
131
165
|
553.36788,
|
132
166
|
553.86510,
|
133
167
|
555.90978,
|
134
|
-
|
135
|
-
|
136
|
-
556.27662,
|
137
|
-
556.30531,
|
168
|
+
|
138
169
|
|
139
170
|
|
140
171
|
|
@@ -333,10 +364,7 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
|
|
333
364
|
750,
|
334
365
|
500,
|
335
366
|
350,
|
336
|
-
|
337
|
-
|
338
|
-
5000,
|
339
|
-
750,
|
367
|
+
|
340
368
|
|
341
369
|
|
342
370
|
|
@@ -957,7 +985,7 @@ const_params=True, spec_res=0.4) :
|
|
957
985
|
if block_print is False:
|
958
986
|
print('first iteration, peak Center='+str(np.round(Center_p0, 4)))
|
959
987
|
|
960
|
-
|
988
|
+
|
961
989
|
Amp_p0=result0.params.get('p0_amplitude')
|
962
990
|
if block_print is False:
|
963
991
|
print('first iteration, peak Amplitude='+str(np.round(Amp_p0, 4)))
|
@@ -1039,9 +1067,8 @@ const_params=True, spec_res=0.4) :
|
|
1039
1067
|
# Get center value
|
1040
1068
|
Center_p1=result.best_values.get('p1_center')
|
1041
1069
|
error_pk1 = result.params['p1_center'].stderr
|
1070
|
+
error_pk1_amp = result.params['p1_amplitude'].stderr
|
1042
1071
|
|
1043
|
-
Center_pk2_error=result.params.get('p1_center')
|
1044
|
-
|
1045
1072
|
|
1046
1073
|
# Get mix of lorenz
|
1047
1074
|
Peak1_Prop_Lor=result.best_values.get('p1_fraction')
|
@@ -1066,7 +1093,7 @@ const_params=True, spec_res=0.4) :
|
|
1066
1093
|
Center_pk1=Center_p1
|
1067
1094
|
|
1068
1095
|
|
1069
|
-
return Center_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor
|
1096
|
+
return Center_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor, error_pk1_amp
|
1070
1097
|
|
1071
1098
|
|
1072
1099
|
|
@@ -1283,11 +1310,11 @@ plot_figure=True, loop=True,
|
|
1283
1310
|
x_span_pk2_dist=abs(config.x_span_pk2[1]-config.x_span_pk2[0])
|
1284
1311
|
|
1285
1312
|
# Fit Pk1
|
1286
|
-
cent_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor = fit_Ne_pk(x_pk1, y_corr_pk1, x_span=x_span_pk1, Ne_center=Ne_center_1, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini, peaks_pk1=peaks_1, amplitude=Pk1_Amp, pk1_sigma=config.pk1_sigma,
|
1313
|
+
cent_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor, error_pk1_amp= fit_Ne_pk(x_pk1, y_corr_pk1, x_span=x_span_pk1, Ne_center=Ne_center_1, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini, peaks_pk1=peaks_1, amplitude=Pk1_Amp, pk1_sigma=config.pk1_sigma,
|
1287
1314
|
const_params=const_params, spec_res=spec_res)
|
1288
1315
|
|
1289
1316
|
# Fit pk2
|
1290
|
-
cent_pk2,Area_pk2, sigma_pk2, gamma_pk2, Ne_pk2_reg_x_plot, Ne_pk2_reg_y_plot, Ne_pk2_reg_x, Ne_pk2_reg_y, xx_pk2, result_pk2, error_pk2, result_pk2_origx, comps2, Peak2_Prop_Lor = fit_Ne_pk( x_pk2, y_corr_pk2, x_span=x_span_pk2, Ne_center=Ne_center_2, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini2, peaks_pk1=peaks_2, amplitude=Pk2_Amp, pk1_sigma=config.pk2_sigma, const_params=const_params,spec_res=spec_res)
|
1317
|
+
cent_pk2,Area_pk2, sigma_pk2, gamma_pk2, Ne_pk2_reg_x_plot, Ne_pk2_reg_y_plot, Ne_pk2_reg_x, Ne_pk2_reg_y, xx_pk2, result_pk2, error_pk2, result_pk2_origx, comps2, Peak2_Prop_Lor, error_pk2_amp = fit_Ne_pk( x_pk2, y_corr_pk2, x_span=x_span_pk2, Ne_center=Ne_center_2, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini2, peaks_pk1=peaks_2, amplitude=Pk2_Amp, pk1_sigma=config.pk2_sigma, const_params=const_params,spec_res=spec_res)
|
1291
1318
|
|
1292
1319
|
|
1293
1320
|
# Calculate difference between peak centers, and Delta Ne
|
@@ -1497,6 +1524,8 @@ plot_figure=True, loop=True,
|
|
1497
1524
|
'residual_pk2':residual_pk2,
|
1498
1525
|
'residual_pk1': residual_pk1,
|
1499
1526
|
'residual_pk1+pk2':residual_pk1+residual_pk2,
|
1527
|
+
'error_pk1_amplitude': error_pk1_amp,
|
1528
|
+
'error_pk2_amplitude': error_pk2_amp
|
1500
1529
|
}, index=[0])
|
1501
1530
|
|
1502
1531
|
|
@@ -1727,8 +1756,8 @@ def filter_Ne_Line_neighbours(*, df_combo=None, Corr_factor=None, number_av=6, o
|
|
1727
1756
|
"""
|
1728
1757
|
if df_combo is not None:
|
1729
1758
|
Corr_factor=df_combo['Ne_Corr']
|
1730
|
-
Corr_factor_Filt=np.
|
1731
|
-
median_loop=np.
|
1759
|
+
Corr_factor_Filt=np.zeros(len(Corr_factor), dtype=float)
|
1760
|
+
median_loop=np.zeros(len(Corr_factor), dtype=float)
|
1732
1761
|
|
1733
1762
|
for i in range(0, len(Corr_factor)):
|
1734
1763
|
if i<len(Corr_factor)/2: # For first half, do 5 after
|
@@ -0,0 +1,50 @@
|
|
1
|
+
DiadFit/CO2_EOS.py,sha256=XMBh6sTwBX5jjQFecVaab4ZbQixZv0YLuN4aXx17rWc,28050
|
2
|
+
DiadFit/CO2_H2O_EOS.py,sha256=UFMFsw9c6sRv0_I3pe9ahdNK_3Ea9gIQkL_1C542WZo,44011
|
3
|
+
DiadFit/CO2_in_bubble_error.py,sha256=fkTuuC1wLdc0nZHj9TRgcy1UvqZ5KjoM52jH7B3ERTk,19769
|
4
|
+
DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
|
5
|
+
DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
|
6
|
+
DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=oBOarETLyfq2DJhYGQrJofgHjvRMLamE6G2b7EE5m-Y,1213
|
7
|
+
DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl,sha256=OG1qip_xU1hl3xp3HC8e9_2497-KYEV3Xz3mx0gdJ4Y,1213
|
8
|
+
DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=GaD0ojHbC-bhKKZt9DvXhbRLeKwcRvP0SnJjDfzTDr0,1213
|
9
|
+
DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=qATzWByjHSXt8JYK8eUbhbGOZFA4EBrWEJoQQ-lqExc,1213
|
10
|
+
DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl,sha256=MIAByHpoV23UmNMzN0vv4He1HZRychbSrYYQNta81Z0,1213
|
11
|
+
DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
|
12
|
+
DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
|
13
|
+
DiadFit/Highrho_polyfit_data_CMASS_24C.pkl,sha256=5dPSwuO0m9KdQoyRiruOzk327c2qNc9eyLy-gSEWEO0,1757
|
14
|
+
DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
|
15
|
+
DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=_9iX3nh69g_hlCTkvJ7mzUDvISo4sz_oAgBABwM2gIU,751
|
16
|
+
DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl,sha256=MrhNaLetqQ8KCz_7Wz92PWUz9Un3u6RzeJQStTWLL0k,751
|
17
|
+
DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=Axb2icTCgUDqCsNxqlKNOi3rPiYBsNEvBjWGqatnAU8,751
|
18
|
+
DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=x4lSOrsvRXSRC5Locr8s7m0jCNty8qZy8mI4DNPNlSM,751
|
19
|
+
DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl,sha256=pxaoAWLWZ-k4EwbeFutSpQ7I_2UB7p8gPYirFE8KX6I,751
|
20
|
+
DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
|
21
|
+
DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
|
22
|
+
DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl,sha256=JaW515xTp0_ZNpgWVOAwRYyEWR58iwEySi7j075Izsw,1045
|
23
|
+
DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
|
24
|
+
DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=UWzO_O4cAaNk51zXachKlnW31tom2nCFDnOZlWTRA8Y,1301
|
25
|
+
DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl,sha256=RsegZ8n6R7Wk2rg7rjzRbtSBeKTwAI7VZ-HTiqNlpJo,1301
|
26
|
+
DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Rzp0LV864x9y5rzMWY8xKsxLGYU54iPcEEQsPTjmGRs,1301
|
27
|
+
DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=PW0zZj2bygTp8Iyn3wfN6upX7xQyBP3BVNwoK9tiOV8,1301
|
28
|
+
DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl,sha256=jHLbOKrqmcrpIphq5FhrVY19cMxJU2dnbEVJfzpDyM4,1301
|
29
|
+
DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
|
30
|
+
DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
|
31
|
+
DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
|
32
|
+
DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
|
33
|
+
DiadFit/_version.py,sha256=LrRXPpQk7B3Uw_hEYwPVJegMpbVS2OJ9G9R6W1lJGSE,296
|
34
|
+
DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
|
35
|
+
DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
|
36
|
+
DiadFit/densimeter_fitting.py,sha256=zEyCwq1zDV3z6-MIu-eZqgp3YQPUGqwZiKczN3-22LQ,8247
|
37
|
+
DiadFit/densimeters.py,sha256=hJvMwSkovno-m08emUZZsYlhZHqJsY4-DubfI7iU10I,54757
|
38
|
+
DiadFit/density_depth_crustal_profiles.py,sha256=b072IJaoGDydKpqWWKoJHeXKIkcIXxKf82whpvLAPpw,17761
|
39
|
+
DiadFit/diads.py,sha256=bsdcBXIkMh1wl5-B7RmW-XRrlkv4AForfJ_NtKRv0FQ,176620
|
40
|
+
DiadFit/error_propagation.py,sha256=r7nKS3gjQ4nnMXPKKBmW3FxqqG6wT-TmfsB_fHBLeDM,39129
|
41
|
+
DiadFit/importing_data_files.py,sha256=0Cx_CKJZR8efssMzQit0aPRh_rsjQFGXgLtI285FW_k,41961
|
42
|
+
DiadFit/lookup_table.csv,sha256=Hs1tmSQ9ArTUDv3ymEXbvnLlPBxYUP0P51dz7xAKk-Q,2946857
|
43
|
+
DiadFit/lookup_table_noneg.csv,sha256=HelvewKbBy4cqT2GAqsMo-1ps1lBYqZ-8hCJZWPGfhI,3330249
|
44
|
+
DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
|
45
|
+
DiadFit/ne_lines.py,sha256=6z9oo4lgh0iYv1mkSscgzCt_Pe4gQTnquG99pR6cJS8,63811
|
46
|
+
DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
|
47
|
+
DiadFit-0.0.88.dist-info/METADATA,sha256=BKny8JlwU0arnDZPOfpMAe8ABnW24gpLW-V8309y39I,1170
|
48
|
+
DiadFit-0.0.88.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
49
|
+
DiadFit-0.0.88.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
|
50
|
+
DiadFit-0.0.88.dist-info/RECORD,,
|
DiadFit-0.0.84.dist-info/RECORD
DELETED
@@ -1,40 +0,0 @@
|
|
1
|
-
DiadFit/CO2_EOS.py,sha256=VJVcHilrgecra7OZuC1VN6jmMnf7wZIseZF2zLe-puw,28050
|
2
|
-
DiadFit/CO2_H2O_EOS.py,sha256=O-sgiCmHVHXEdh3okgK70oi24Em1BHakRu1ocZQZgag,40885
|
3
|
-
DiadFit/CO2_in_bubble_error.py,sha256=Ga_hNA63m-OZg2hBOqM7VvpJhnvvTCg6L3Qixh1Bh7A,14196
|
4
|
-
DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
|
5
|
-
DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
|
6
|
-
DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=B7nX560JpBBBssSgr50oDDG-UKsNxAjp235eytquVaI,1213
|
7
|
-
DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=0_eZVQ3Byh9u5xW9TnvlUJg_-bTDSjG3EpVhCutZZkk,1213
|
8
|
-
DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=eQw3HIsZ7xRr9QKBKsxuZKyRdlMbnaFxtxlM72jcRjU,1213
|
9
|
-
DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
|
10
|
-
DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
|
11
|
-
DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
|
12
|
-
DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=FttCfGvf9dKOXvFHeYLP3w1_N93N8_X4jwx9o5U_JOA,751
|
13
|
-
DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=y_53yUG4lv_OIYVWs7BTJjqVh3w55EJ_7pkk8NWodOc,751
|
14
|
-
DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=UNpo1WPgbqTApazne0DYbflrRr1kGbWXWA97XjNRQlg,751
|
15
|
-
DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
|
16
|
-
DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
|
17
|
-
DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
|
18
|
-
DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=oGlsChnHyH4rWOg-HBsrW_oQKGoqe6-2zRodpHH9MSA,1301
|
19
|
-
DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Qxj74-mcCFj8LmwgqdChqNlw4XMXlOuuL03SZNZz5R8,1301
|
20
|
-
DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=zdo1t0F8X6S8ovPldH9Hu2kYQGHU18w67TK48isp4NI,1301
|
21
|
-
DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
|
22
|
-
DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
|
23
|
-
DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
|
24
|
-
DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
|
25
|
-
DiadFit/_version.py,sha256=_gSOI4by-6mg99lrNTeG1MjAQA3GkHtFuda3Et9gMvY,296
|
26
|
-
DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
|
27
|
-
DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
|
28
|
-
DiadFit/densimeter_fitting.py,sha256=Uel9a4qUVz6r-my09uuHFRjD9oPFF-kd5ZBPYfYfOQM,8086
|
29
|
-
DiadFit/densimeters.py,sha256=e5C-SLGG3hAQA3041ayyVI6INlb9KCCOkvoFr8mM_Ek,49419
|
30
|
-
DiadFit/density_depth_crustal_profiles.py,sha256=XPauKf62hMp-iw701XfphaVe3o6LRJSwuQXAcSDXv6s,16983
|
31
|
-
DiadFit/diads.py,sha256=l2JagWCPZjkU4MpNw03wNB8z0BRwInJNP92tbKsqDPo,175013
|
32
|
-
DiadFit/error_propagation.py,sha256=yOMl8KTLu2YPCOf5XfctatX4iwL6eaQVagfW8gXRDI4,41451
|
33
|
-
DiadFit/importing_data_files.py,sha256=SUpjk2cm2zGhyUEimib2MnaNAzMVo99uf3N5IKSWl8Q,39312
|
34
|
-
DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
|
35
|
-
DiadFit/ne_lines.py,sha256=njHOFritpIxfIeVjRHv0o0p9nqM-gKVNcIOD3BSCHhg,62437
|
36
|
-
DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
|
37
|
-
DiadFit-0.0.84.dist-info/METADATA,sha256=XW5UKabQhBVgoQK--ZdGQnlB_-atKcuNIvGc6d7o1FA,1170
|
38
|
-
DiadFit-0.0.84.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
39
|
-
DiadFit-0.0.84.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
|
40
|
-
DiadFit-0.0.84.dist-info/RECORD,,
|
File without changes
|