DiadFit 0.0.84__py3-none-any.whl → 0.0.88__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. DiadFit/CO2_EOS.py +2 -2
  2. DiadFit/CO2_H2O_EOS.py +173 -90
  3. DiadFit/CO2_in_bubble_error.py +217 -115
  4. DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  5. DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  6. DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  7. DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  8. DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  9. DiadFit/Highrho_polyfit_data_CMASS_24C.pkl +0 -0
  10. DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  11. DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  12. DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  13. DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  14. DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  15. DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl +0 -0
  16. DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  17. DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  18. DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  19. DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  20. DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  21. DiadFit/_version.py +1 -1
  22. DiadFit/densimeter_fitting.py +7 -1
  23. DiadFit/densimeters.py +182 -40
  24. DiadFit/density_depth_crustal_profiles.py +37 -5
  25. DiadFit/diads.py +85 -48
  26. DiadFit/error_propagation.py +141 -229
  27. DiadFit/importing_data_files.py +81 -15
  28. DiadFit/lookup_table.csv +64001 -0
  29. DiadFit/lookup_table_noneg.csv +63707 -0
  30. DiadFit/ne_lines.py +58 -29
  31. {DiadFit-0.0.84.dist-info → DiadFit-0.0.88.dist-info}/METADATA +1 -1
  32. DiadFit-0.0.88.dist-info/RECORD +50 -0
  33. {DiadFit-0.0.84.dist-info → DiadFit-0.0.88.dist-info}/WHEEL +1 -1
  34. DiadFit-0.0.84.dist-info/RECORD +0 -40
  35. {DiadFit-0.0.84.dist-info → DiadFit-0.0.88.dist-info}/top_level.txt +0 -0
DiadFit/ne_lines.py CHANGED
@@ -46,7 +46,16 @@ error_pk2
46
46
  dist = (df['Raman_shift (cm-1)'] - line1_shift).abs()
47
47
  return df.loc[dist.idxmin()]
48
48
 
49
-
49
+ def find_max_row(df, target_shift, tol=2):
50
+ """ This function is used to find the highest amplitude within a predefined ampl range for finding the right Ne line
51
+ """
52
+
53
+ df_filtered = df[(df['Raman_shift (cm-1)'] >= target_shift - tol) & (df['Raman_shift (cm-1)'] <= target_shift + tol)]
54
+
55
+ # Find the row with the maximum intensity within this filtered DataFrame
56
+ max_intensity_row = df_filtered.loc[df_filtered['Intensity'].idxmax()]
57
+
58
+ return max_intensity_row
50
59
 
51
60
  def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447, cut_off_intensity=2000):
52
61
  """
@@ -72,23 +81,48 @@ def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447
72
81
  """
73
82
 
74
83
  df_Ne=calculate_Ne_line_positions(wavelength=wavelength, cut_off_intensity=cut_off_intensity)
75
-
76
- closest1=find_closest(df_Ne, line1_shift).loc['Raman_shift (cm-1)']
77
- closest2=find_closest(df_Ne, line2_shift).loc['Raman_shift (cm-1)']
78
- closest_1_int=find_closest(df_Ne, line1_shift).loc['Intensity']
79
- closest_2_int=find_closest(df_Ne, line2_shift).loc['Intensity']
80
-
81
- diff=abs(closest1-closest2)
82
-
83
- df=pd.DataFrame(data={'Ne_Split': diff,
84
+ #
85
+ # closest1=find_closest(df_Ne, line1_shift).loc['Raman_shift (cm-1)']
86
+ # closest2=find_closest(df_Ne, line2_shift).loc['Raman_shift (cm-1)']
87
+ # closest_1_int=find_closest(df_Ne, line1_shift).loc['Intensity']
88
+ # closest_2_int=find_closest(df_Ne, line2_shift).loc['Intensity']
89
+ #
90
+ # diff=abs(closest1-closest2)
91
+ #
92
+ # df=pd.DataFrame(data={'Ne_Split': diff,
93
+ # 'Line_1': closest1,
94
+ # 'Line_2': closest2,
95
+ # 'Line_1_int': closest_1_int,
96
+ # 'Line_2_int': closest_2_int,
97
+ # 'Entered Pos Line 1': line1_shift,
98
+ # 'Entered Pos Line 2': line2_shift}, index=[0])
99
+ #
100
+ #
101
+ # return df
102
+ # Use the new function to find the lines of interest
103
+ closest1_row = find_max_row(df_Ne, line1_shift)
104
+ closest2_row = find_max_row(df_Ne, line2_shift)
105
+
106
+ # Extract the required values from the rows
107
+ closest1 = closest1_row['Raman_shift (cm-1)']
108
+ closest2 = closest2_row['Raman_shift (cm-1)']
109
+ closest_1_int = closest1_row['Intensity']
110
+ closest_2_int = closest2_row['Intensity']
111
+
112
+ # Calculate the difference
113
+ diff = abs(closest1 - closest2)
114
+
115
+ # Create the DataFrame
116
+ df = pd.DataFrame(data={
117
+ 'Ne_Split': diff,
84
118
  'Line_1': closest1,
85
119
  'Line_2': closest2,
86
120
  'Line_1_int': closest_1_int,
87
121
  'Line_2_int': closest_2_int,
88
122
  'Entered Pos Line 1': line1_shift,
89
- 'Entered Pos Line 2': line2_shift}, index=[0])
90
-
91
-
123
+ 'Entered Pos Line 2': line2_shift
124
+ }, index=[0])
125
+
92
126
  return df
93
127
 
94
128
  def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
@@ -131,10 +165,7 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
131
165
  553.36788,
132
166
  553.86510,
133
167
  555.90978,
134
- 556.24416,
135
-
136
- 556.27662,
137
- 556.30531,
168
+
138
169
 
139
170
 
140
171
 
@@ -333,10 +364,7 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
333
364
  750,
334
365
  500,
335
366
  350,
336
- 1500,
337
-
338
- 5000,
339
- 750,
367
+
340
368
 
341
369
 
342
370
 
@@ -957,7 +985,7 @@ const_params=True, spec_res=0.4) :
957
985
  if block_print is False:
958
986
  print('first iteration, peak Center='+str(np.round(Center_p0, 4)))
959
987
 
960
- Center_p0_error=result0.params.get('p0_center')
988
+
961
989
  Amp_p0=result0.params.get('p0_amplitude')
962
990
  if block_print is False:
963
991
  print('first iteration, peak Amplitude='+str(np.round(Amp_p0, 4)))
@@ -1039,9 +1067,8 @@ const_params=True, spec_res=0.4) :
1039
1067
  # Get center value
1040
1068
  Center_p1=result.best_values.get('p1_center')
1041
1069
  error_pk1 = result.params['p1_center'].stderr
1070
+ error_pk1_amp = result.params['p1_amplitude'].stderr
1042
1071
 
1043
- Center_pk2_error=result.params.get('p1_center')
1044
-
1045
1072
 
1046
1073
  # Get mix of lorenz
1047
1074
  Peak1_Prop_Lor=result.best_values.get('p1_fraction')
@@ -1066,7 +1093,7 @@ const_params=True, spec_res=0.4) :
1066
1093
  Center_pk1=Center_p1
1067
1094
 
1068
1095
 
1069
- return Center_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor
1096
+ return Center_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor, error_pk1_amp
1070
1097
 
1071
1098
 
1072
1099
 
@@ -1283,11 +1310,11 @@ plot_figure=True, loop=True,
1283
1310
  x_span_pk2_dist=abs(config.x_span_pk2[1]-config.x_span_pk2[0])
1284
1311
 
1285
1312
  # Fit Pk1
1286
- cent_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor = fit_Ne_pk(x_pk1, y_corr_pk1, x_span=x_span_pk1, Ne_center=Ne_center_1, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini, peaks_pk1=peaks_1, amplitude=Pk1_Amp, pk1_sigma=config.pk1_sigma,
1313
+ cent_pk1, Area_pk1, sigma_pk1, gamma_pk1, Ne_pk1_reg_x_plot, Ne_pk1_reg_y_plot, Ne_pk1_reg_x, Ne_pk1_reg_y, xx_pk1, result_pk1, error_pk1, result_pk1_origx, comps, Peak1_Prop_Lor, error_pk1_amp= fit_Ne_pk(x_pk1, y_corr_pk1, x_span=x_span_pk1, Ne_center=Ne_center_1, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini, peaks_pk1=peaks_1, amplitude=Pk1_Amp, pk1_sigma=config.pk1_sigma,
1287
1314
  const_params=const_params, spec_res=spec_res)
1288
1315
 
1289
1316
  # Fit pk2
1290
- cent_pk2,Area_pk2, sigma_pk2, gamma_pk2, Ne_pk2_reg_x_plot, Ne_pk2_reg_y_plot, Ne_pk2_reg_x, Ne_pk2_reg_y, xx_pk2, result_pk2, error_pk2, result_pk2_origx, comps2, Peak2_Prop_Lor = fit_Ne_pk( x_pk2, y_corr_pk2, x_span=x_span_pk2, Ne_center=Ne_center_2, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini2, peaks_pk1=peaks_2, amplitude=Pk2_Amp, pk1_sigma=config.pk2_sigma, const_params=const_params,spec_res=spec_res)
1317
+ cent_pk2,Area_pk2, sigma_pk2, gamma_pk2, Ne_pk2_reg_x_plot, Ne_pk2_reg_y_plot, Ne_pk2_reg_x, Ne_pk2_reg_y, xx_pk2, result_pk2, error_pk2, result_pk2_origx, comps2, Peak2_Prop_Lor, error_pk2_amp = fit_Ne_pk( x_pk2, y_corr_pk2, x_span=x_span_pk2, Ne_center=Ne_center_2, model_name=config.model_name, LH_offset_mini=config.LH_offset_mini2, peaks_pk1=peaks_2, amplitude=Pk2_Amp, pk1_sigma=config.pk2_sigma, const_params=const_params,spec_res=spec_res)
1291
1318
 
1292
1319
 
1293
1320
  # Calculate difference between peak centers, and Delta Ne
@@ -1497,6 +1524,8 @@ plot_figure=True, loop=True,
1497
1524
  'residual_pk2':residual_pk2,
1498
1525
  'residual_pk1': residual_pk1,
1499
1526
  'residual_pk1+pk2':residual_pk1+residual_pk2,
1527
+ 'error_pk1_amplitude': error_pk1_amp,
1528
+ 'error_pk2_amplitude': error_pk2_amp
1500
1529
  }, index=[0])
1501
1530
 
1502
1531
 
@@ -1727,8 +1756,8 @@ def filter_Ne_Line_neighbours(*, df_combo=None, Corr_factor=None, number_av=6, o
1727
1756
  """
1728
1757
  if df_combo is not None:
1729
1758
  Corr_factor=df_combo['Ne_Corr']
1730
- Corr_factor_Filt=np.empty(len(Corr_factor), dtype=float)
1731
- median_loop=np.empty(len(Corr_factor), dtype=float)
1759
+ Corr_factor_Filt=np.zeros(len(Corr_factor), dtype=float)
1760
+ median_loop=np.zeros(len(Corr_factor), dtype=float)
1732
1761
 
1733
1762
  for i in range(0, len(Corr_factor)):
1734
1763
  if i<len(Corr_factor)/2: # For first half, do 5 after
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.84
3
+ Version: 0.0.88
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -0,0 +1,50 @@
1
+ DiadFit/CO2_EOS.py,sha256=XMBh6sTwBX5jjQFecVaab4ZbQixZv0YLuN4aXx17rWc,28050
2
+ DiadFit/CO2_H2O_EOS.py,sha256=UFMFsw9c6sRv0_I3pe9ahdNK_3Ea9gIQkL_1C542WZo,44011
3
+ DiadFit/CO2_in_bubble_error.py,sha256=fkTuuC1wLdc0nZHj9TRgcy1UvqZ5KjoM52jH7B3ERTk,19769
4
+ DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
5
+ DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
6
+ DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=oBOarETLyfq2DJhYGQrJofgHjvRMLamE6G2b7EE5m-Y,1213
7
+ DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl,sha256=OG1qip_xU1hl3xp3HC8e9_2497-KYEV3Xz3mx0gdJ4Y,1213
8
+ DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=GaD0ojHbC-bhKKZt9DvXhbRLeKwcRvP0SnJjDfzTDr0,1213
9
+ DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=qATzWByjHSXt8JYK8eUbhbGOZFA4EBrWEJoQQ-lqExc,1213
10
+ DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl,sha256=MIAByHpoV23UmNMzN0vv4He1HZRychbSrYYQNta81Z0,1213
11
+ DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
12
+ DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
13
+ DiadFit/Highrho_polyfit_data_CMASS_24C.pkl,sha256=5dPSwuO0m9KdQoyRiruOzk327c2qNc9eyLy-gSEWEO0,1757
14
+ DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
15
+ DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=_9iX3nh69g_hlCTkvJ7mzUDvISo4sz_oAgBABwM2gIU,751
16
+ DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl,sha256=MrhNaLetqQ8KCz_7Wz92PWUz9Un3u6RzeJQStTWLL0k,751
17
+ DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=Axb2icTCgUDqCsNxqlKNOi3rPiYBsNEvBjWGqatnAU8,751
18
+ DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=x4lSOrsvRXSRC5Locr8s7m0jCNty8qZy8mI4DNPNlSM,751
19
+ DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl,sha256=pxaoAWLWZ-k4EwbeFutSpQ7I_2UB7p8gPYirFE8KX6I,751
20
+ DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
21
+ DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
22
+ DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl,sha256=JaW515xTp0_ZNpgWVOAwRYyEWR58iwEySi7j075Izsw,1045
23
+ DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
24
+ DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=UWzO_O4cAaNk51zXachKlnW31tom2nCFDnOZlWTRA8Y,1301
25
+ DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl,sha256=RsegZ8n6R7Wk2rg7rjzRbtSBeKTwAI7VZ-HTiqNlpJo,1301
26
+ DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Rzp0LV864x9y5rzMWY8xKsxLGYU54iPcEEQsPTjmGRs,1301
27
+ DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=PW0zZj2bygTp8Iyn3wfN6upX7xQyBP3BVNwoK9tiOV8,1301
28
+ DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl,sha256=jHLbOKrqmcrpIphq5FhrVY19cMxJU2dnbEVJfzpDyM4,1301
29
+ DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
30
+ DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
31
+ DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
32
+ DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
33
+ DiadFit/_version.py,sha256=LrRXPpQk7B3Uw_hEYwPVJegMpbVS2OJ9G9R6W1lJGSE,296
34
+ DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
35
+ DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
36
+ DiadFit/densimeter_fitting.py,sha256=zEyCwq1zDV3z6-MIu-eZqgp3YQPUGqwZiKczN3-22LQ,8247
37
+ DiadFit/densimeters.py,sha256=hJvMwSkovno-m08emUZZsYlhZHqJsY4-DubfI7iU10I,54757
38
+ DiadFit/density_depth_crustal_profiles.py,sha256=b072IJaoGDydKpqWWKoJHeXKIkcIXxKf82whpvLAPpw,17761
39
+ DiadFit/diads.py,sha256=bsdcBXIkMh1wl5-B7RmW-XRrlkv4AForfJ_NtKRv0FQ,176620
40
+ DiadFit/error_propagation.py,sha256=r7nKS3gjQ4nnMXPKKBmW3FxqqG6wT-TmfsB_fHBLeDM,39129
41
+ DiadFit/importing_data_files.py,sha256=0Cx_CKJZR8efssMzQit0aPRh_rsjQFGXgLtI285FW_k,41961
42
+ DiadFit/lookup_table.csv,sha256=Hs1tmSQ9ArTUDv3ymEXbvnLlPBxYUP0P51dz7xAKk-Q,2946857
43
+ DiadFit/lookup_table_noneg.csv,sha256=HelvewKbBy4cqT2GAqsMo-1ps1lBYqZ-8hCJZWPGfhI,3330249
44
+ DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
45
+ DiadFit/ne_lines.py,sha256=6z9oo4lgh0iYv1mkSscgzCt_Pe4gQTnquG99pR6cJS8,63811
46
+ DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
47
+ DiadFit-0.0.88.dist-info/METADATA,sha256=BKny8JlwU0arnDZPOfpMAe8ABnW24gpLW-V8309y39I,1170
48
+ DiadFit-0.0.88.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
49
+ DiadFit-0.0.88.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
50
+ DiadFit-0.0.88.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,40 +0,0 @@
1
- DiadFit/CO2_EOS.py,sha256=VJVcHilrgecra7OZuC1VN6jmMnf7wZIseZF2zLe-puw,28050
2
- DiadFit/CO2_H2O_EOS.py,sha256=O-sgiCmHVHXEdh3okgK70oi24Em1BHakRu1ocZQZgag,40885
3
- DiadFit/CO2_in_bubble_error.py,sha256=Ga_hNA63m-OZg2hBOqM7VvpJhnvvTCg6L3Qixh1Bh7A,14196
4
- DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
5
- DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
6
- DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=B7nX560JpBBBssSgr50oDDG-UKsNxAjp235eytquVaI,1213
7
- DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=0_eZVQ3Byh9u5xW9TnvlUJg_-bTDSjG3EpVhCutZZkk,1213
8
- DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=eQw3HIsZ7xRr9QKBKsxuZKyRdlMbnaFxtxlM72jcRjU,1213
9
- DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
10
- DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
11
- DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
12
- DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=FttCfGvf9dKOXvFHeYLP3w1_N93N8_X4jwx9o5U_JOA,751
13
- DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=y_53yUG4lv_OIYVWs7BTJjqVh3w55EJ_7pkk8NWodOc,751
14
- DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=UNpo1WPgbqTApazne0DYbflrRr1kGbWXWA97XjNRQlg,751
15
- DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
16
- DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
17
- DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
18
- DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=oGlsChnHyH4rWOg-HBsrW_oQKGoqe6-2zRodpHH9MSA,1301
19
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Qxj74-mcCFj8LmwgqdChqNlw4XMXlOuuL03SZNZz5R8,1301
20
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=zdo1t0F8X6S8ovPldH9Hu2kYQGHU18w67TK48isp4NI,1301
21
- DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
22
- DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
23
- DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
24
- DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
25
- DiadFit/_version.py,sha256=_gSOI4by-6mg99lrNTeG1MjAQA3GkHtFuda3Et9gMvY,296
26
- DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
27
- DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
28
- DiadFit/densimeter_fitting.py,sha256=Uel9a4qUVz6r-my09uuHFRjD9oPFF-kd5ZBPYfYfOQM,8086
29
- DiadFit/densimeters.py,sha256=e5C-SLGG3hAQA3041ayyVI6INlb9KCCOkvoFr8mM_Ek,49419
30
- DiadFit/density_depth_crustal_profiles.py,sha256=XPauKf62hMp-iw701XfphaVe3o6LRJSwuQXAcSDXv6s,16983
31
- DiadFit/diads.py,sha256=l2JagWCPZjkU4MpNw03wNB8z0BRwInJNP92tbKsqDPo,175013
32
- DiadFit/error_propagation.py,sha256=yOMl8KTLu2YPCOf5XfctatX4iwL6eaQVagfW8gXRDI4,41451
33
- DiadFit/importing_data_files.py,sha256=SUpjk2cm2zGhyUEimib2MnaNAzMVo99uf3N5IKSWl8Q,39312
34
- DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
35
- DiadFit/ne_lines.py,sha256=njHOFritpIxfIeVjRHv0o0p9nqM-gKVNcIOD3BSCHhg,62437
36
- DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
37
- DiadFit-0.0.84.dist-info/METADATA,sha256=XW5UKabQhBVgoQK--ZdGQnlB_-atKcuNIvGc6d7o1FA,1170
38
- DiadFit-0.0.84.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
39
- DiadFit-0.0.84.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
40
- DiadFit-0.0.84.dist-info/RECORD,,