AeroViz 0.1.3__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AeroViz might be problematic. Click here for more details.
- AeroViz/__init__.py +7 -5
- AeroViz/{config → data}/DEFAULT_DATA.csv +1 -1
- AeroViz/dataProcess/Chemistry/__init__.py +40 -40
- AeroViz/dataProcess/Chemistry/_calculate.py +15 -15
- AeroViz/dataProcess/Chemistry/_isoropia.py +72 -68
- AeroViz/dataProcess/Chemistry/_mass_volume.py +158 -161
- AeroViz/dataProcess/Chemistry/_ocec.py +109 -109
- AeroViz/dataProcess/Chemistry/_partition.py +19 -18
- AeroViz/dataProcess/Chemistry/_teom.py +9 -11
- AeroViz/dataProcess/Chemistry/isrpia.cnf +21 -0
- AeroViz/dataProcess/Optical/Angstrom_exponent.py +20 -0
- AeroViz/dataProcess/Optical/_IMPROVE.py +40 -41
- AeroViz/dataProcess/Optical/__init__.py +29 -44
- AeroViz/dataProcess/Optical/_absorption.py +21 -47
- AeroViz/dataProcess/Optical/_extinction.py +31 -25
- AeroViz/dataProcess/Optical/_mie.py +5 -7
- AeroViz/dataProcess/Optical/_mie_sd.py +89 -90
- AeroViz/dataProcess/Optical/_scattering.py +19 -20
- AeroViz/dataProcess/SizeDistr/__init__.py +39 -39
- AeroViz/dataProcess/SizeDistr/__merge.py +159 -158
- AeroViz/dataProcess/SizeDistr/_merge.py +155 -154
- AeroViz/dataProcess/SizeDistr/_merge_v1.py +162 -161
- AeroViz/dataProcess/SizeDistr/_merge_v2.py +153 -152
- AeroViz/dataProcess/SizeDistr/_merge_v3.py +327 -327
- AeroViz/dataProcess/SizeDistr/_merge_v4.py +273 -275
- AeroViz/dataProcess/SizeDistr/_size_distr.py +51 -51
- AeroViz/dataProcess/VOC/__init__.py +9 -9
- AeroViz/dataProcess/VOC/_potential_par.py +53 -55
- AeroViz/dataProcess/__init__.py +28 -6
- AeroViz/dataProcess/core/__init__.py +59 -65
- AeroViz/plot/__init__.py +7 -2
- AeroViz/plot/bar.py +126 -0
- AeroViz/plot/box.py +69 -0
- AeroViz/plot/distribution/distribution.py +421 -427
- AeroViz/plot/meteorology/meteorology.py +240 -292
- AeroViz/plot/optical/__init__.py +0 -1
- AeroViz/plot/optical/optical.py +230 -230
- AeroViz/plot/pie.py +198 -0
- AeroViz/plot/regression.py +196 -0
- AeroViz/plot/scatter.py +165 -0
- AeroViz/plot/templates/__init__.py +2 -4
- AeroViz/plot/templates/ammonium_rich.py +34 -0
- AeroViz/plot/templates/contour.py +25 -25
- AeroViz/plot/templates/corr_matrix.py +86 -93
- AeroViz/plot/templates/diurnal_pattern.py +28 -26
- AeroViz/plot/templates/koschmieder.py +59 -123
- AeroViz/plot/templates/metal_heatmap.py +135 -37
- AeroViz/plot/timeseries/__init__.py +1 -0
- AeroViz/plot/timeseries/template.py +47 -0
- AeroViz/plot/timeseries/timeseries.py +324 -264
- AeroViz/plot/utils/__init__.py +2 -1
- AeroViz/plot/utils/_color.py +57 -57
- AeroViz/plot/utils/_unit.py +48 -48
- AeroViz/plot/utils/plt_utils.py +92 -0
- AeroViz/plot/utils/sklearn_utils.py +49 -0
- AeroViz/plot/utils/units.json +5 -0
- AeroViz/plot/violin.py +80 -0
- AeroViz/process/__init__.py +17 -17
- AeroViz/process/core/DataProc.py +9 -9
- AeroViz/process/core/SizeDist.py +81 -81
- AeroViz/process/method/PyMieScatt_update.py +488 -488
- AeroViz/process/method/mie_theory.py +231 -229
- AeroViz/process/method/prop.py +40 -40
- AeroViz/process/script/AbstractDistCalc.py +103 -103
- AeroViz/process/script/Chemical.py +168 -167
- AeroViz/process/script/IMPACT.py +40 -40
- AeroViz/process/script/IMPROVE.py +152 -152
- AeroViz/process/script/Others.py +45 -45
- AeroViz/process/script/PSD.py +26 -26
- AeroViz/process/script/PSD_dry.py +69 -70
- AeroViz/process/script/retrieve_RI.py +50 -51
- AeroViz/rawDataReader/__init__.py +53 -58
- AeroViz/rawDataReader/config/supported_instruments.py +155 -0
- AeroViz/rawDataReader/core/__init__.py +233 -356
- AeroViz/rawDataReader/script/AE33.py +17 -18
- AeroViz/rawDataReader/script/AE43.py +18 -21
- AeroViz/rawDataReader/script/APS_3321.py +30 -30
- AeroViz/rawDataReader/script/Aurora.py +23 -24
- AeroViz/rawDataReader/script/BC1054.py +36 -40
- AeroViz/rawDataReader/script/EPA_vertical.py +37 -9
- AeroViz/rawDataReader/script/GRIMM.py +16 -23
- AeroViz/rawDataReader/script/IGAC.py +90 -0
- AeroViz/rawDataReader/script/MA350.py +32 -39
- AeroViz/rawDataReader/script/Minion.py +103 -0
- AeroViz/rawDataReader/script/NEPH.py +69 -74
- AeroViz/rawDataReader/script/SMPS_TH.py +25 -25
- AeroViz/rawDataReader/script/SMPS_aim11.py +32 -32
- AeroViz/rawDataReader/script/SMPS_genr.py +31 -31
- AeroViz/rawDataReader/script/Sunset_OCEC.py +60 -0
- AeroViz/rawDataReader/script/TEOM.py +30 -28
- AeroViz/rawDataReader/script/Table.py +13 -14
- AeroViz/rawDataReader/script/VOC.py +26 -0
- AeroViz/rawDataReader/script/__init__.py +18 -20
- AeroViz/tools/database.py +64 -66
- AeroViz/tools/dataclassifier.py +106 -106
- AeroViz/tools/dataprinter.py +51 -51
- AeroViz/tools/datareader.py +38 -38
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/METADATA +5 -4
- AeroViz-0.1.4.dist-info/RECORD +112 -0
- AeroViz/plot/improve/__init__.py +0 -1
- AeroViz/plot/improve/improve.py +0 -240
- AeroViz/plot/optical/aethalometer.py +0 -77
- AeroViz/plot/templates/event_evolution.py +0 -65
- AeroViz/plot/templates/regression.py +0 -256
- AeroViz/plot/templates/scatter.py +0 -130
- AeroViz/plot/templates/templates.py +0 -398
- AeroViz/plot/utils/_decorator.py +0 -74
- AeroViz/rawDataReader/script/IGAC_TH.py +0 -104
- AeroViz/rawDataReader/script/IGAC_ZM.py +0 -90
- AeroViz/rawDataReader/script/OCEC_LCRES.py +0 -34
- AeroViz/rawDataReader/script/OCEC_RES.py +0 -28
- AeroViz/rawDataReader/script/VOC_TH.py +0 -30
- AeroViz/rawDataReader/script/VOC_ZM.py +0 -37
- AeroViz/rawDataReader/utils/__init__.py +0 -0
- AeroViz/rawDataReader/utils/config.py +0 -169
- AeroViz-0.1.3.dist-info/RECORD +0 -111
- /AeroViz/{config → data}/DEFAULT_PNSD_DATA.csv +0 -0
- /AeroViz/{config → rawDataReader/config}/__init__.py +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/LICENSE +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/WHEEL +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/top_level.txt +0 -0
|
@@ -1,34 +1,35 @@
|
|
|
1
|
-
from AeroViz.dataProcess.core import _union_index
|
|
2
|
-
|
|
3
1
|
from datetime import datetime as dtm
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
4
|
from pandas import DataFrame, to_datetime
|
|
5
5
|
# from scipy.interpolate import interp1d
|
|
6
6
|
from scipy.interpolate import UnivariateSpline as unvpline, interp1d
|
|
7
|
-
|
|
7
|
+
|
|
8
|
+
from AeroViz.dataProcess.core import union_index
|
|
8
9
|
|
|
9
10
|
__all__ = ['_merge_SMPS_APS']
|
|
10
11
|
|
|
11
12
|
|
|
12
13
|
def __test_plot(smpsx, smps, apsx, aps, mergex, merge, mergeox, mergeo, _sh):
|
|
13
|
-
|
|
14
|
+
from matplotlib.pyplot import subplots, close, show
|
|
14
15
|
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
16
|
+
## parameter
|
|
17
|
+
# '''
|
|
18
|
+
## plot
|
|
19
|
+
fig, ax = subplots()
|
|
19
20
|
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
21
|
+
ax.plot(smpsx, smps, c='#ff794c', label='smps', marker='o', lw=2)
|
|
22
|
+
ax.plot(apsx, aps, c='#4c79ff', label='aps', marker='o', lw=2)
|
|
23
|
+
ax.plot(mergex, merge, c='#79796a', label='merge')
|
|
24
|
+
# ax.plot(mergeox,mergeo,c='#111111',label='mergeo',marker='o',lw=.75)
|
|
24
25
|
|
|
25
|
-
|
|
26
|
+
ax.set(xscale='log', yscale='log', )
|
|
26
27
|
|
|
27
|
-
|
|
28
|
-
|
|
28
|
+
ax.legend(framealpha=0, )
|
|
29
|
+
ax.set_title((_sh ** 2)[0], fontsize=13)
|
|
29
30
|
|
|
30
|
-
|
|
31
|
-
|
|
31
|
+
show()
|
|
32
|
+
close()
|
|
32
33
|
|
|
33
34
|
|
|
34
35
|
# '''
|
|
@@ -38,79 +39,79 @@ def __test_plot(smpsx, smps, apsx, aps, mergex, merge, mergeox, mergeo, _sh):
|
|
|
38
39
|
## Create a fitting func. by smps data
|
|
39
40
|
## return : shift factor
|
|
40
41
|
def _overlap_fitting(_smps_ori, _aps_ori, _smps_lb, _aps_hb):
|
|
41
|
-
|
|
42
|
+
print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92moverlap range fitting\033[0m")
|
|
42
43
|
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
44
|
+
## overlap fitting
|
|
45
|
+
## parmeter
|
|
46
|
+
_dt_indx = _smps_ori.index
|
|
46
47
|
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
48
|
+
## overlap diameter data
|
|
49
|
+
_aps = _aps_ori[_aps_ori.keys()[_aps_ori.keys() < _aps_hb]].copy()
|
|
50
|
+
_smps = _smps_ori[_smps_ori.keys()[_smps_ori.keys() > _smps_lb]].copy()
|
|
50
51
|
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
52
|
+
## use SMPS data apply power law fitting
|
|
53
|
+
## y = Ax^B, A = e**coefa, B = coefb, x = logx, y = logy
|
|
54
|
+
## ref : http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
|
|
55
|
+
## power law fit to SMPS num conc at upper bins to log curve
|
|
55
56
|
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
57
|
+
## coefficient A, B
|
|
58
|
+
_smps_qc_cond = ((_smps != 0) & np.isfinite(_smps))
|
|
59
|
+
_smps_qc = _smps.where(_smps_qc_cond)
|
|
59
60
|
|
|
60
|
-
|
|
61
|
-
|
|
61
|
+
_size = _smps_qc_cond.sum(axis=1)
|
|
62
|
+
_size = _size.where(_size != 0.).copy()
|
|
62
63
|
|
|
63
|
-
|
|
64
|
-
|
|
64
|
+
_logx, _logy = np.log(_smps_qc.keys()._data.astype(float)), np.log(_smps_qc)
|
|
65
|
+
_x, _y, _xy, _xx = _logx.sum(), _logy.sum(axis=1), (_logx * _logy).sum(axis=1), (_logx ** 2).sum()
|
|
65
66
|
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
67
|
+
_coeB = ((_size * _xy - _x * _y) / (_size * _xx - _x ** 2.))
|
|
68
|
+
_coeA = np.exp((_y - _coeB * _x) / _size).values.reshape(-1, 1)
|
|
69
|
+
_coeB = _coeB.values.reshape(-1, 1)
|
|
69
70
|
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
71
|
+
## rebuild shift smps data by coe. A, B
|
|
72
|
+
## x_shift = (y_ori/A)**(1/B)
|
|
73
|
+
_aps_shift_x = (_aps / _coeA) ** (1 / _coeB)
|
|
74
|
+
_aps_shift_x = _aps_shift_x.where(np.isfinite(_aps_shift_x))
|
|
74
75
|
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
76
|
+
## the least squares of diameter
|
|
77
|
+
## the shift factor which the cklosest to 1
|
|
78
|
+
_shift_factor = (_aps_shift_x.keys()._data.astype(float) / _aps_shift_x)
|
|
79
|
+
_shift_factor.columns = range(len(_aps_shift_x.keys()))
|
|
79
80
|
|
|
80
|
-
|
|
81
|
+
_dropna_idx = _shift_factor.dropna(how='all').index.copy()
|
|
81
82
|
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
83
|
+
## use the target function to get the similar aps and smps bin
|
|
84
|
+
## S2 = sum( (smps_fit_line(dia) - aps(dia*shift_factor) )**2 )
|
|
85
|
+
## assumption : the same diameter between smps and aps should get the same conc.
|
|
85
86
|
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
87
|
+
## be sure they art in log value
|
|
88
|
+
_S2 = DataFrame(index=_aps_shift_x.index)
|
|
89
|
+
_dia_table = DataFrame(np.full(_aps_shift_x.shape, _aps_shift_x.keys()),
|
|
90
|
+
columns=_aps_shift_x.keys(), index=_aps_shift_x.index)
|
|
91
|
+
for _idx, _factor in _shift_factor.items():
|
|
92
|
+
_smps_fit_df = _coeA * (_dia_table / _factor.to_frame().values) ** _coeB
|
|
93
|
+
_S2[_idx] = ((_smps_fit_df - _aps) ** 2).sum(axis=1)
|
|
93
94
|
|
|
94
|
-
|
|
95
|
+
_least_squ_idx = _S2.idxmin(axis=1).loc[_dropna_idx]
|
|
95
96
|
|
|
96
|
-
|
|
97
|
-
|
|
97
|
+
_shift_factor_out = DataFrame(_shift_factor.loc[_dropna_idx].values[range(len(_dropna_idx)), _least_squ_idx.values],
|
|
98
|
+
index=_dropna_idx).reindex(_dt_indx)
|
|
98
99
|
|
|
99
|
-
|
|
100
|
+
return _shift_factor_out, (DataFrame(_coeA, index=_dt_indx), DataFrame(_coeB, index=_dt_indx))
|
|
100
101
|
|
|
101
102
|
|
|
102
103
|
## Remove big shift data ()
|
|
103
104
|
## Return : aps, smps, shift (without big shift data)
|
|
104
105
|
def _shift_data_process(_shift):
|
|
105
|
-
|
|
106
|
+
print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mshift-data quality control\033[0m")
|
|
106
107
|
|
|
107
|
-
|
|
108
|
-
|
|
108
|
+
_rho = _shift ** 2
|
|
109
|
+
_shift = _shift.mask((~np.isfinite(_shift)) | (_rho > 2.6) | (_rho < 0.6))
|
|
109
110
|
|
|
110
|
-
|
|
111
|
+
# _qc_index = _shift.mask((_rho<0.6) | (_shift.isna())).dropna().index
|
|
111
112
|
|
|
112
|
-
|
|
113
|
-
|
|
113
|
+
# return _qc_index, _shift
|
|
114
|
+
return _shift
|
|
114
115
|
|
|
115
116
|
|
|
116
117
|
# return _smps.loc[~_big_shift], _aps.loc[~_big_shift], _shift[~_big_shift].reshape(-1,1)
|
|
@@ -120,124 +121,124 @@ def _shift_data_process(_shift):
|
|
|
120
121
|
## shift all smps bin and remove the aps bin which smaller than the latest old smps bin
|
|
121
122
|
## Return : merge bins, merge data, density
|
|
122
123
|
def _merge_data(_smps_ori, _aps_ori, _shift_ori, _smps_lb, _aps_hb, _coe, _shift_mode):
|
|
123
|
-
|
|
124
|
+
print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mcreate merge data : {_shift_mode}\033[0m")
|
|
124
125
|
|
|
125
|
-
|
|
126
|
-
|
|
126
|
+
_ori_idx = _smps_ori.index
|
|
127
|
+
_merge_idx = _smps_ori.loc[_aps_ori.dropna(how='all').index].dropna(how='all').index
|
|
127
128
|
|
|
128
|
-
|
|
129
|
-
|
|
129
|
+
_corr_aps_cond = _aps_ori.keys() < 700
|
|
130
|
+
_corr_aps_ky = _aps_ori.keys()[_corr_aps_cond]
|
|
130
131
|
|
|
131
|
-
|
|
132
|
-
|
|
132
|
+
_uni_idx, _count = np.unique(np.hstack((_smps_ori.dropna(how='all').index, _aps_ori.dropna(how='all').index,
|
|
133
|
+
_shift_ori.dropna(how='all').index)), return_counts=True)
|
|
133
134
|
|
|
134
|
-
|
|
135
|
+
_merge_idx = to_datetime(np.unique(_uni_idx[_count == 3]))
|
|
135
136
|
|
|
136
|
-
|
|
137
|
+
_smps, _aps, _shift = _smps_ori.loc[_merge_idx], _aps_ori.loc[_merge_idx], _shift_ori.loc[_merge_idx].values
|
|
137
138
|
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
139
|
+
## parameter
|
|
140
|
+
_coeA, _coeB = _coe[0].loc[_merge_idx], _coe[1].loc[_merge_idx]
|
|
141
|
+
_smps_key, _aps_key = _smps.keys()._data.astype(float), _aps.keys()._data.astype(float)
|
|
141
142
|
|
|
142
|
-
|
|
143
|
-
|
|
143
|
+
_cntr = 1000
|
|
144
|
+
_bin_lb = _smps_key[-1]
|
|
144
145
|
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
146
|
+
## make shift bins
|
|
147
|
+
_smps_bin = np.full(_smps.shape, _smps_key)
|
|
148
|
+
_aps_bin = np.full(_aps.shape, _aps_key)
|
|
148
149
|
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
150
|
+
_std_bin = np.geomspace(_smps_key[0], _aps_key[-1], 230)
|
|
151
|
+
_std_bin_merge = _std_bin[(_std_bin < _cntr) & (_std_bin > _bin_lb)]
|
|
152
|
+
_std_bin_inte1 = _std_bin[_std_bin <= _bin_lb]
|
|
153
|
+
_std_bin_inte2 = _std_bin[_std_bin >= _cntr]
|
|
153
154
|
|
|
154
|
-
|
|
155
|
-
|
|
155
|
+
if _shift_mode == 'mobility':
|
|
156
|
+
_aps_bin /= _shift
|
|
156
157
|
|
|
157
|
-
|
|
158
|
-
|
|
158
|
+
elif _shift_mode == 'aerodynamic':
|
|
159
|
+
_smps_bin *= _shift
|
|
159
160
|
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
161
|
+
## merge
|
|
162
|
+
_merge_lst, _corr_lst = [], []
|
|
163
|
+
for _bin_smps, _bin_aps, _dt_smps, _dt_aps, _sh in zip(_smps_bin, _aps_bin, _smps.values, _aps.values, _shift):
|
|
164
|
+
## keep complete smps bins and data
|
|
165
|
+
## remove the aps bin data lower than smps bin
|
|
166
|
+
_condi = _bin_aps >= _bin_smps[-1]
|
|
166
167
|
|
|
167
|
-
|
|
168
|
-
|
|
168
|
+
_merge_bin = np.hstack((_bin_smps, _bin_aps[_condi]))
|
|
169
|
+
_merge_dt = np.hstack((_dt_smps, _dt_aps[_condi]))
|
|
169
170
|
|
|
170
|
-
|
|
171
|
+
_merge_fit_loc = (_merge_bin < 1500) & (_merge_bin > _smps_lb)
|
|
171
172
|
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
173
|
+
## coeA and coeB
|
|
174
|
+
_unvpl_fc = unvpline(np.log(_merge_bin[_merge_fit_loc]), np.log(_merge_dt[_merge_fit_loc]), s=50)
|
|
175
|
+
_inte_fc = interp1d(_merge_bin, _merge_dt, kind='linear', fill_value='extrapolate')
|
|
175
176
|
|
|
176
|
-
|
|
177
|
-
|
|
177
|
+
_merge_dt_fit = np.hstack((_inte_fc(_std_bin_inte1), np.exp(_unvpl_fc(np.log(_std_bin_merge))),
|
|
178
|
+
_inte_fc(_std_bin_inte2)))
|
|
178
179
|
|
|
179
|
-
|
|
180
|
-
|
|
180
|
+
_merge_lst.append(_merge_dt_fit)
|
|
181
|
+
_corr_lst.append(interp1d(_std_bin, _merge_dt_fit)(_bin_aps[_corr_aps_cond]))
|
|
181
182
|
|
|
182
|
-
|
|
183
|
-
|
|
183
|
+
_df_merge = DataFrame(_merge_lst, columns=_std_bin, index=_merge_idx)
|
|
184
|
+
_df_merge = _df_merge.mask(_df_merge < 0)
|
|
184
185
|
|
|
185
|
-
|
|
186
|
+
_df_corr = DataFrame(_corr_lst, columns=_corr_aps_ky, index=_merge_idx) / _aps_ori.loc[_merge_idx, _corr_aps_ky]
|
|
186
187
|
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
188
|
+
## process output df
|
|
189
|
+
## average, align with index
|
|
190
|
+
def _out_df(*_df_arg, **_df_kwarg):
|
|
191
|
+
_df = DataFrame(*_df_arg, **_df_kwarg).reindex(_ori_idx)
|
|
192
|
+
_df.index.name = 'time'
|
|
193
|
+
return _df
|
|
193
194
|
|
|
194
|
-
|
|
195
|
+
return _out_df(_df_merge), _out_df(_shift_ori ** 2), _out_df(_df_corr)
|
|
195
196
|
|
|
196
197
|
|
|
197
198
|
def merge_SMPS_APS(df_smps, df_aps, aps_unit='um', smps_overlap_lowbound=500, aps_fit_highbound=1000):
|
|
198
|
-
|
|
199
|
+
df_smps, df_aps = union_index(df_smps, df_aps)
|
|
199
200
|
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
201
|
+
## set to the same units
|
|
202
|
+
smps, aps_ori = df_smps.copy(), df_aps.copy()
|
|
203
|
+
smps.columns = smps.keys().to_numpy(float)
|
|
204
|
+
aps_ori.columns = aps_ori.keys().to_numpy(float)
|
|
204
205
|
|
|
205
|
-
|
|
206
|
-
|
|
206
|
+
if aps_unit == 'um':
|
|
207
|
+
aps_ori.columns = aps_ori.keys() * 1e3
|
|
207
208
|
|
|
208
|
-
|
|
209
|
-
|
|
209
|
+
den_lst, mer_lst = [], []
|
|
210
|
+
aps_input = aps_ori.loc[:, aps_ori.keys() > 700].copy()
|
|
210
211
|
|
|
211
|
-
|
|
212
|
+
for _count in range(2):
|
|
212
213
|
|
|
213
|
-
|
|
214
|
-
|
|
214
|
+
## shift infomation, calculate by powerlaw fitting
|
|
215
|
+
shift, coe = _overlap_fitting(smps, aps_input, smps_overlap_lowbound, aps_fit_highbound)
|
|
215
216
|
|
|
216
|
-
|
|
217
|
-
|
|
217
|
+
## process data by shift infomation, and average data
|
|
218
|
+
shift = _shift_data_process(shift)
|
|
218
219
|
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
220
|
+
## merge aps and smps
|
|
221
|
+
merge_arg = (smps, aps_ori, shift, smps_overlap_lowbound, aps_fit_highbound, coe)
|
|
222
|
+
merge_data_mob, density, _corr = _merge_data(*merge_arg, 'mobility')
|
|
223
|
+
merge_data_aer, density, _ = _merge_data(*merge_arg, 'aerodynamic')
|
|
224
|
+
density.columns = ['density']
|
|
224
225
|
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
226
|
+
if _count == 0:
|
|
227
|
+
corr = _corr.resample('1d').mean().reindex(smps.index).ffill()
|
|
228
|
+
corr = corr.mask(corr < 1, 1)
|
|
229
|
+
aps_ori.loc[:, corr.keys()] *= corr
|
|
229
230
|
|
|
230
|
-
|
|
231
|
+
aps_input = aps_ori.copy()
|
|
231
232
|
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
233
|
+
## out
|
|
234
|
+
out_dic = {
|
|
235
|
+
'data_all': merge_data_mob,
|
|
236
|
+
'data_all_aer': merge_data_aer,
|
|
237
|
+
'density_all': density,
|
|
238
|
+
}
|
|
238
239
|
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
240
|
+
## process data
|
|
241
|
+
for _nam, _df in out_dic.items():
|
|
242
|
+
out_dic[_nam] = _df.reindex(smps.index).copy()
|
|
242
243
|
|
|
243
|
-
|
|
244
|
+
return out_dic
|