AeroViz 0.1.3__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AeroViz might be problematic. Click here for more details.
- AeroViz/__init__.py +7 -5
- AeroViz/{config → data}/DEFAULT_DATA.csv +1 -1
- AeroViz/dataProcess/Chemistry/__init__.py +40 -40
- AeroViz/dataProcess/Chemistry/_calculate.py +15 -15
- AeroViz/dataProcess/Chemistry/_isoropia.py +72 -68
- AeroViz/dataProcess/Chemistry/_mass_volume.py +158 -161
- AeroViz/dataProcess/Chemistry/_ocec.py +109 -109
- AeroViz/dataProcess/Chemistry/_partition.py +19 -18
- AeroViz/dataProcess/Chemistry/_teom.py +9 -11
- AeroViz/dataProcess/Chemistry/isrpia.cnf +21 -0
- AeroViz/dataProcess/Optical/Angstrom_exponent.py +20 -0
- AeroViz/dataProcess/Optical/_IMPROVE.py +40 -41
- AeroViz/dataProcess/Optical/__init__.py +29 -44
- AeroViz/dataProcess/Optical/_absorption.py +21 -47
- AeroViz/dataProcess/Optical/_extinction.py +31 -25
- AeroViz/dataProcess/Optical/_mie.py +5 -7
- AeroViz/dataProcess/Optical/_mie_sd.py +89 -90
- AeroViz/dataProcess/Optical/_scattering.py +19 -20
- AeroViz/dataProcess/SizeDistr/__init__.py +39 -39
- AeroViz/dataProcess/SizeDistr/__merge.py +159 -158
- AeroViz/dataProcess/SizeDistr/_merge.py +155 -154
- AeroViz/dataProcess/SizeDistr/_merge_v1.py +162 -161
- AeroViz/dataProcess/SizeDistr/_merge_v2.py +153 -152
- AeroViz/dataProcess/SizeDistr/_merge_v3.py +327 -327
- AeroViz/dataProcess/SizeDistr/_merge_v4.py +273 -275
- AeroViz/dataProcess/SizeDistr/_size_distr.py +51 -51
- AeroViz/dataProcess/VOC/__init__.py +9 -9
- AeroViz/dataProcess/VOC/_potential_par.py +53 -55
- AeroViz/dataProcess/__init__.py +28 -6
- AeroViz/dataProcess/core/__init__.py +59 -65
- AeroViz/plot/__init__.py +7 -2
- AeroViz/plot/bar.py +126 -0
- AeroViz/plot/box.py +69 -0
- AeroViz/plot/distribution/distribution.py +421 -427
- AeroViz/plot/meteorology/meteorology.py +240 -292
- AeroViz/plot/optical/__init__.py +0 -1
- AeroViz/plot/optical/optical.py +230 -230
- AeroViz/plot/pie.py +198 -0
- AeroViz/plot/regression.py +196 -0
- AeroViz/plot/scatter.py +165 -0
- AeroViz/plot/templates/__init__.py +2 -4
- AeroViz/plot/templates/ammonium_rich.py +34 -0
- AeroViz/plot/templates/contour.py +25 -25
- AeroViz/plot/templates/corr_matrix.py +86 -93
- AeroViz/plot/templates/diurnal_pattern.py +28 -26
- AeroViz/plot/templates/koschmieder.py +59 -123
- AeroViz/plot/templates/metal_heatmap.py +135 -37
- AeroViz/plot/timeseries/__init__.py +1 -0
- AeroViz/plot/timeseries/template.py +47 -0
- AeroViz/plot/timeseries/timeseries.py +324 -264
- AeroViz/plot/utils/__init__.py +2 -1
- AeroViz/plot/utils/_color.py +57 -57
- AeroViz/plot/utils/_unit.py +48 -48
- AeroViz/plot/utils/plt_utils.py +92 -0
- AeroViz/plot/utils/sklearn_utils.py +49 -0
- AeroViz/plot/utils/units.json +5 -0
- AeroViz/plot/violin.py +80 -0
- AeroViz/process/__init__.py +17 -17
- AeroViz/process/core/DataProc.py +9 -9
- AeroViz/process/core/SizeDist.py +81 -81
- AeroViz/process/method/PyMieScatt_update.py +488 -488
- AeroViz/process/method/mie_theory.py +231 -229
- AeroViz/process/method/prop.py +40 -40
- AeroViz/process/script/AbstractDistCalc.py +103 -103
- AeroViz/process/script/Chemical.py +168 -167
- AeroViz/process/script/IMPACT.py +40 -40
- AeroViz/process/script/IMPROVE.py +152 -152
- AeroViz/process/script/Others.py +45 -45
- AeroViz/process/script/PSD.py +26 -26
- AeroViz/process/script/PSD_dry.py +69 -70
- AeroViz/process/script/retrieve_RI.py +50 -51
- AeroViz/rawDataReader/__init__.py +53 -58
- AeroViz/rawDataReader/config/supported_instruments.py +155 -0
- AeroViz/rawDataReader/core/__init__.py +233 -356
- AeroViz/rawDataReader/script/AE33.py +17 -18
- AeroViz/rawDataReader/script/AE43.py +18 -21
- AeroViz/rawDataReader/script/APS_3321.py +30 -30
- AeroViz/rawDataReader/script/Aurora.py +23 -24
- AeroViz/rawDataReader/script/BC1054.py +36 -40
- AeroViz/rawDataReader/script/EPA_vertical.py +37 -9
- AeroViz/rawDataReader/script/GRIMM.py +16 -23
- AeroViz/rawDataReader/script/IGAC.py +90 -0
- AeroViz/rawDataReader/script/MA350.py +32 -39
- AeroViz/rawDataReader/script/Minion.py +103 -0
- AeroViz/rawDataReader/script/NEPH.py +69 -74
- AeroViz/rawDataReader/script/SMPS_TH.py +25 -25
- AeroViz/rawDataReader/script/SMPS_aim11.py +32 -32
- AeroViz/rawDataReader/script/SMPS_genr.py +31 -31
- AeroViz/rawDataReader/script/Sunset_OCEC.py +60 -0
- AeroViz/rawDataReader/script/TEOM.py +30 -28
- AeroViz/rawDataReader/script/Table.py +13 -14
- AeroViz/rawDataReader/script/VOC.py +26 -0
- AeroViz/rawDataReader/script/__init__.py +18 -20
- AeroViz/tools/database.py +64 -66
- AeroViz/tools/dataclassifier.py +106 -106
- AeroViz/tools/dataprinter.py +51 -51
- AeroViz/tools/datareader.py +38 -38
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/METADATA +5 -4
- AeroViz-0.1.4.dist-info/RECORD +112 -0
- AeroViz/plot/improve/__init__.py +0 -1
- AeroViz/plot/improve/improve.py +0 -240
- AeroViz/plot/optical/aethalometer.py +0 -77
- AeroViz/plot/templates/event_evolution.py +0 -65
- AeroViz/plot/templates/regression.py +0 -256
- AeroViz/plot/templates/scatter.py +0 -130
- AeroViz/plot/templates/templates.py +0 -398
- AeroViz/plot/utils/_decorator.py +0 -74
- AeroViz/rawDataReader/script/IGAC_TH.py +0 -104
- AeroViz/rawDataReader/script/IGAC_ZM.py +0 -90
- AeroViz/rawDataReader/script/OCEC_LCRES.py +0 -34
- AeroViz/rawDataReader/script/OCEC_RES.py +0 -28
- AeroViz/rawDataReader/script/VOC_TH.py +0 -30
- AeroViz/rawDataReader/script/VOC_ZM.py +0 -37
- AeroViz/rawDataReader/utils/__init__.py +0 -0
- AeroViz/rawDataReader/utils/config.py +0 -169
- AeroViz-0.1.3.dist-info/RECORD +0 -111
- /AeroViz/{config → data}/DEFAULT_PNSD_DATA.csv +0 -0
- /AeroViz/{config → rawDataReader/config}/__init__.py +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/LICENSE +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/WHEEL +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.4.dist-info}/top_level.txt +0 -0
|
@@ -1,175 +1,172 @@
|
|
|
1
|
-
from pandas import
|
|
1
|
+
from pandas import concat, DataFrame
|
|
2
2
|
|
|
3
3
|
|
|
4
4
|
def _basic(df_che, df_ref, df_water, df_density, nam_lst):
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
5
|
+
df_all = concat(df_che, axis=1)
|
|
6
|
+
index = df_all.index.copy()
|
|
7
|
+
df_all.columns = nam_lst
|
|
8
|
+
|
|
9
|
+
# parameter
|
|
10
|
+
mol_A, mol_S, mol_N = df_all['NH4+'] / 18, df_all['SO42-'] / 96, df_all['NO3-'] / 62
|
|
11
|
+
df_all['status'] = (mol_A) / (2 * mol_S + mol_N)
|
|
12
|
+
|
|
13
|
+
convert_nam = {'AS': 'SO42-',
|
|
14
|
+
'AN': 'NO3-',
|
|
15
|
+
'OM': 'OC',
|
|
16
|
+
'Soil': 'Fe',
|
|
17
|
+
'SS': 'Na+',
|
|
18
|
+
'EC': 'EC',
|
|
19
|
+
}
|
|
20
|
+
|
|
21
|
+
mass_coe = {'AS': 1.375,
|
|
22
|
+
'AN': 1.29,
|
|
23
|
+
'OM': 1.8,
|
|
24
|
+
'Soil': 28.57,
|
|
25
|
+
'SS': 2.54,
|
|
26
|
+
'EC': 1,
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
vol_coe = {'AS': 1.76,
|
|
30
|
+
'AN': 1.73,
|
|
31
|
+
'OM': 1.4,
|
|
32
|
+
'Soil': 2.6,
|
|
33
|
+
'SS': 2.16,
|
|
34
|
+
'EC': 1.5,
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
RI_coe = {'550': {'ALWC': 1.333 + 0j,
|
|
38
|
+
'AS': 1.53 + 0j,
|
|
39
|
+
'AN': 1.55 + 0j,
|
|
40
|
+
'OM': 1.55 + 0.0163j,
|
|
41
|
+
'Soil': 1.56 + 0.006j,
|
|
42
|
+
'SS': 1.54 + 0j,
|
|
43
|
+
'EC': 1.80 + 0.72j,
|
|
44
|
+
},
|
|
45
|
+
|
|
46
|
+
# m + kj -> m value is same as 550 current
|
|
47
|
+
'450': {'ALWC': 1.333 + 0j,
|
|
48
|
+
'AS': 1.57 + 0j,
|
|
49
|
+
'AN': 1.57 + 0j,
|
|
50
|
+
'OM': 1.58 + 0.056,
|
|
51
|
+
'Soil': 1.56 + 0.009j,
|
|
52
|
+
'SS': 1.54 + 0j,
|
|
53
|
+
'EC': 1.80 + 0.79j,
|
|
54
|
+
},
|
|
55
|
+
}
|
|
56
|
+
|
|
57
|
+
# mass
|
|
58
|
+
# NH4 Enough
|
|
59
|
+
df_mass = DataFrame()
|
|
60
|
+
df_enough = df_all.where(df_all['status'] >= 1).dropna().copy()
|
|
61
|
+
|
|
62
|
+
for _mass_nam, _coe in mass_coe.items():
|
|
63
|
+
df_mass[_mass_nam] = df_all[convert_nam[_mass_nam]] * _coe
|
|
64
|
+
|
|
65
|
+
# NH4 Deficiency
|
|
66
|
+
defic_idx = df_all['status'] < 1
|
|
67
|
+
|
|
68
|
+
if defic_idx.any():
|
|
69
|
+
residual = mol_A - 2 * mol_S
|
|
70
|
+
|
|
71
|
+
# residual > 0
|
|
72
|
+
_status = residual > 0
|
|
73
|
+
if _status.any():
|
|
74
|
+
_cond = _status & (residual <= mol_N)
|
|
75
|
+
df_mass.loc[_cond, 'AN'] = residual.loc[_cond] * 80
|
|
76
|
+
|
|
77
|
+
_cond = _status & (residual > mol_N)
|
|
78
|
+
df_mass.loc[_cond, 'AN'] = mol_N.loc[_cond] * 80
|
|
79
|
+
|
|
80
|
+
# residual < 0
|
|
81
|
+
_status = residual <= 0
|
|
82
|
+
if _status.any():
|
|
83
|
+
df_mass.loc[_status, 'AN'] = 0
|
|
84
|
+
|
|
85
|
+
_cond = _status & (mol_A <= 2 * mol_S)
|
|
86
|
+
df_mass.loc[_cond, 'AS'] = mol_A.loc[_cond] / 2 * 132
|
|
87
|
+
|
|
88
|
+
_cond = _status & (mol_A > 2 * mol_S)
|
|
89
|
+
df_mass.loc[_cond, 'AS'] = mol_S.loc[_cond] * 132
|
|
90
|
+
|
|
91
|
+
df_mass_cal = df_mass.dropna().copy()
|
|
92
|
+
df_mass['total'] = df_mass.sum(axis=1, min_count=6)
|
|
93
|
+
|
|
94
|
+
qc_ratio = df_mass['total'] / df_ref
|
|
95
|
+
qc_cond = (qc_ratio >= 0.7) & (qc_ratio <= 1.3)
|
|
96
|
+
|
|
97
|
+
# volume
|
|
98
|
+
df_vol = DataFrame()
|
|
99
|
+
for _vol_nam, _coe in vol_coe.items():
|
|
100
|
+
df_vol[_vol_nam] = df_mass_cal[_vol_nam] / _coe
|
|
101
|
+
|
|
102
|
+
if df_water is not None:
|
|
103
|
+
df_vol['ALWC'] = df_water.copy()
|
|
104
|
+
df_vol = df_vol.dropna()
|
|
105
|
+
df_vol['total_wet'] = df_vol.sum(axis=1, min_count=6)
|
|
106
|
+
|
|
107
|
+
df_vol['total_dry'] = df_vol[vol_coe.keys()].sum(axis=1, min_count=6)
|
|
108
|
+
|
|
109
|
+
# density
|
|
110
|
+
df_vol_cal = DataFrame()
|
|
111
|
+
df_den_rec = df_mass['total'] / df_vol['total_dry']
|
|
112
|
+
if df_density is not None:
|
|
113
|
+
df_den_all = concat([df_all[['SO42-', 'NO3-', 'NH4+', 'EC']], df_density, df_mass['OM']], axis=1).dropna()
|
|
114
|
+
|
|
115
|
+
df_vol_cal = (df_den_all[['SO42-', 'NO3-', 'NH4+']].sum(axis=1) / 1.75) + \
|
|
116
|
+
df_den_all['Cl-'] / 1.52 + \
|
|
117
|
+
df_den_all['OM'] / 1.4 + df_den_all['EC'] / 1.77
|
|
118
|
+
|
|
119
|
+
df_den = df_den_all.sum(axis=1, min_count=6) / df_vol_cal
|
|
120
|
+
else:
|
|
121
|
+
df_den = df_den_rec
|
|
122
|
+
|
|
123
|
+
# refractive index
|
|
124
|
+
ri_dic = {}
|
|
125
|
+
for _lambda, _coe in RI_coe.items():
|
|
126
|
+
|
|
127
|
+
df_RI = DataFrame()
|
|
128
|
+
|
|
129
|
+
for _ky, _df in df_vol.items():
|
|
130
|
+
if 'total' in _ky: continue
|
|
131
|
+
df_RI[_ky] = (_df * _coe[_ky])
|
|
132
|
+
|
|
133
|
+
df_RI['RI_wet'] = None
|
|
134
|
+
if df_water is not None:
|
|
135
|
+
df_RI['RI_wet'] = (df_RI / df_vol['total_wet'].to_frame().values).sum(axis=1)
|
|
126
136
|
|
|
127
|
-
|
|
137
|
+
df_RI['RI_dry'] = (df_RI[vol_coe.keys()] / df_vol['total_dry'].to_frame().values).sum(axis=1)
|
|
128
138
|
|
|
129
|
-
|
|
130
|
-
if 'total' in _ky: continue
|
|
131
|
-
df_RI[_ky] = (_df * _coe[_ky])
|
|
139
|
+
ri_dic[f'RI_{_lambda}'] = df_RI[['RI_dry', 'RI_wet']]
|
|
132
140
|
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
141
|
+
# mole and equivalent
|
|
142
|
+
df_eq = concat((mol_A, mol_S, mol_N, mol_A * 1, mol_S * 2, mol_N * 1), axis=1)
|
|
143
|
+
df_eq.columns = ['mol_NH4', 'mol_SO4', 'mol_NO3', 'eq_NH4', 'eq_SO4', 'eq_NO3', ]
|
|
136
144
|
|
|
137
|
-
|
|
145
|
+
# out
|
|
146
|
+
out = {'mass': df_mass,
|
|
147
|
+
'volume': df_vol,
|
|
148
|
+
'vol_cal': df_vol_cal,
|
|
149
|
+
'eq': df_eq,
|
|
150
|
+
'density_mat': df_den,
|
|
151
|
+
'density_rec': df_den_rec,
|
|
152
|
+
}
|
|
153
|
+
out.update(ri_dic)
|
|
138
154
|
|
|
139
|
-
|
|
155
|
+
for _ky, _df in out.items():
|
|
156
|
+
out[_ky] = _df.reindex(index).where(qc_cond)
|
|
140
157
|
|
|
141
|
-
|
|
142
|
-
df_eq = concat((mol_A, mol_S, mol_N, mol_A * 1, mol_S * 2, mol_N * 1), axis=1)
|
|
143
|
-
df_eq.columns = ['mol_NH4', 'mol_SO4', 'mol_NO3', 'eq_NH4', 'eq_SO4', 'eq_NO3', ]
|
|
144
|
-
|
|
145
|
-
## out
|
|
146
|
-
out = {'mass': df_mass,
|
|
147
|
-
'volume': df_vol,
|
|
148
|
-
'vol_cal': df_vol_cal,
|
|
149
|
-
'eq': df_eq,
|
|
150
|
-
'density_mat': df_den,
|
|
151
|
-
'density_rec': df_den_rec,
|
|
152
|
-
}
|
|
153
|
-
out.update(ri_dic)
|
|
154
|
-
|
|
155
|
-
for _ky, _df in out.items():
|
|
156
|
-
out[_ky] = _df.reindex(index).where(qc_cond)
|
|
157
|
-
|
|
158
|
-
return out
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
# '''
|
|
158
|
+
return out
|
|
162
159
|
|
|
163
160
|
|
|
164
161
|
def mass_ratio(_df):
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
162
|
+
if _df['PM25'] >= _df['total_mass']:
|
|
163
|
+
_df['others'] = _df['PM25'] - _df['total_mass']
|
|
164
|
+
for _val, _species in zip(_df.values, _df.index):
|
|
165
|
+
_df[f'{_species}_ratio'] = _val / _df['PM25'].__round__(3)
|
|
169
166
|
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
167
|
+
if _df['PM25'] < _df['total_mass']:
|
|
168
|
+
_df['others'] = 0
|
|
169
|
+
for _val, _species in zip(_df.values, _df.index):
|
|
170
|
+
_df[f'{_species}_ratio'] = _val / _df['PM25'].__round__(3)
|
|
174
171
|
|
|
175
|
-
|
|
172
|
+
return _df['others':].drop(labels=['PM25_ratio', 'total_mass_ratio'])
|
|
@@ -1,161 +1,161 @@
|
|
|
1
|
-
from AeroViz.dataProcess.core import _union_index
|
|
2
|
-
|
|
3
|
-
from pandas import date_range, concat, DataFrame, to_numeric
|
|
4
|
-
from scipy.optimize import curve_fit
|
|
5
1
|
import numpy as np
|
|
2
|
+
from pandas import concat, DataFrame
|
|
3
|
+
from scipy.optimize import curve_fit
|
|
4
|
+
|
|
5
|
+
from AeroViz.dataProcess.core import union_index
|
|
6
6
|
|
|
7
7
|
__all__ = [
|
|
8
|
-
|
|
9
|
-
|
|
8
|
+
'_basic',
|
|
9
|
+
# '_ocec_ratio_cal',
|
|
10
10
|
]
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
def _min_Rsq(_oc, _ec, _rng):
|
|
14
|
-
|
|
15
|
-
|
|
14
|
+
_val_mesh, _oc_mesh = np.meshgrid(_rng, _oc)
|
|
15
|
+
_val_mesh, _ec_mesh = np.meshgrid(_rng, _ec)
|
|
16
16
|
|
|
17
|
-
|
|
17
|
+
_out_table = DataFrame(_oc_mesh - _val_mesh * _ec_mesh, index=_oc.index, columns=_rng)
|
|
18
18
|
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
19
|
+
## calculate R2
|
|
20
|
+
_r2_dic = {}
|
|
21
|
+
_func = lambda _x, _sl, _inte: _sl * _x + _inte
|
|
22
|
+
for _ocec, _out in _out_table.items():
|
|
23
|
+
_df = DataFrame([_out.values, _ec.values]).T.dropna()
|
|
24
24
|
|
|
25
|
-
|
|
26
|
-
|
|
25
|
+
_x, _y = _df[0], _df[1]
|
|
26
|
+
_opt, _ = curve_fit(_func, _x, _y)
|
|
27
27
|
|
|
28
|
-
|
|
29
|
-
|
|
28
|
+
_tss = np.sum((_y - _y.mean()) ** 2.)
|
|
29
|
+
_rss = np.sum((_y - _func(_x, *_opt)) ** 2.)
|
|
30
30
|
|
|
31
|
-
|
|
31
|
+
_r2_dic[round(_ocec, 3)] = 1. - _rss / _tss
|
|
32
32
|
|
|
33
|
-
|
|
34
|
-
|
|
33
|
+
## get the min R2
|
|
34
|
+
_ratio = DataFrame(_r2_dic, index=[0]).idxmin(axis=1).values[0]
|
|
35
35
|
|
|
36
|
-
|
|
36
|
+
return _ratio, _out_table[_ratio]
|
|
37
37
|
|
|
38
38
|
|
|
39
39
|
def _ocec_ratio_cal(_nam, _lcres_splt, _hr_lim, _range_, _wisoc_range_):
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
40
|
+
## parameter
|
|
41
|
+
_out = DataFrame(index=_lcres_splt.index)
|
|
42
|
+
(_, _oc), (_, _ec) = _lcres_splt.items()
|
|
43
|
+
# _oc, _ec = _lcres_splt['Thermal_OC'], _lcres_splt['Thermal_EC']
|
|
44
44
|
|
|
45
|
-
|
|
46
|
-
|
|
45
|
+
## real data OC/EC
|
|
46
|
+
_ocec_ratio_real = (_oc / _ec).quantile(.5)
|
|
47
47
|
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
48
|
+
_out[f'OC/EC_real_{_nam}'] = _ocec_ratio_real
|
|
49
|
+
_out[f'POC_real_{_nam}'] = _ocec_ratio_real * _ec
|
|
50
|
+
_out[f'SOC_real_{_nam}'] = _oc - _out[f'POC_real_{_nam}']
|
|
51
51
|
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
52
|
+
## the least R2 method
|
|
53
|
+
## estimated OC/EC
|
|
54
|
+
if (len(_lcres_splt) <= _hr_lim):
|
|
55
|
+
print(f"\t\t{_lcres_splt.index[0].strftime('%Y-%m-%d %X')} to {_lcres_splt.index[-1].strftime('%Y-%m-%d %X')}")
|
|
56
|
+
print('\t\tPlease Modify the Values of "hour_limit" or Input Sufficient Amount of Data !!')
|
|
57
57
|
|
|
58
|
-
|
|
59
|
-
|
|
58
|
+
_out[[f'OC/EC_{_nam}', f'POC_{_nam}', f'SOC_{_nam}', f'WISOC/OC_{_nam}', f'WSOC_{_nam}',
|
|
59
|
+
f'WISOC_{_nam}']] = np.nan
|
|
60
60
|
|
|
61
|
-
|
|
61
|
+
return _out
|
|
62
62
|
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
63
|
+
if (len(_lcres_splt.dropna()) == 0):
|
|
64
|
+
_out[[f'OC/EC_{_nam}', f'POC_{_nam}', f'SOC_{_nam}', f'WISOC/OC_{_nam}', f'WSOC_{_nam}',
|
|
65
|
+
f'WISOC_{_nam}']] = np.nan
|
|
66
66
|
|
|
67
|
-
|
|
67
|
+
return _out
|
|
68
68
|
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
69
|
+
## OC/EC
|
|
70
|
+
_ocec_ratio = False
|
|
71
|
+
_st, _ed, _stp = _range_
|
|
72
72
|
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
73
|
+
for _ in range(2):
|
|
74
|
+
if _ocec_ratio:
|
|
75
|
+
_ocec_rng = np.arange(_ocec_ratio - _stp / 2, _ocec_ratio + _stp / 2, .01).round(3)
|
|
76
|
+
else:
|
|
77
|
+
_ocec_rng = np.arange(_st, _ed + _stp, _stp).round(3)
|
|
78
78
|
|
|
79
|
-
|
|
79
|
+
_ocec_ratio, _soc = _min_Rsq(_oc, _ec, _ocec_rng)
|
|
80
80
|
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
81
|
+
## WISOC
|
|
82
|
+
_st, _ed, _stp = _wisoc_range_
|
|
83
|
+
_wisoc_rng = (np.arange(_st, _ed + _stp, _stp) * _ocec_ratio).round(5)
|
|
84
|
+
_wisoc_ratio, _wsoc = _min_Rsq(_oc, _ec, _wisoc_rng)
|
|
85
85
|
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
86
|
+
## out
|
|
87
|
+
_out[f'OC/EC_{_nam}'] = _ocec_ratio
|
|
88
|
+
_out[f'SOC_{_nam}'] = _soc
|
|
89
|
+
_out[f'POC_{_nam}'] = _oc - _out[f'SOC_{_nam}']
|
|
90
|
+
_out[f'WISOC/OC_{_nam}'] = _wisoc_ratio
|
|
91
|
+
_out[f'WSOC_{_nam}'] = _wsoc
|
|
92
|
+
_out[f'WISOC_{_nam}'] = _oc - _out[f'WSOC_{_nam}']
|
|
93
93
|
|
|
94
|
-
|
|
95
|
-
|
|
94
|
+
return _out[[f'OC/EC_{_nam}', f'POC_{_nam}', f'SOC_{_nam}', f'WISOC/OC_{_nam}', f'WSOC_{_nam}', f'WISOC_{_nam}',
|
|
95
|
+
f'OC/EC_real_{_nam}', f'POC_real_{_nam}', f'SOC_real_{_nam}']]
|
|
96
96
|
|
|
97
97
|
|
|
98
98
|
def _basic(_lcres, _res, _mass, _ocec_ratio, _ocec_ratio_month, _hr_lim, _range, _wisoc_range):
|
|
99
|
-
|
|
99
|
+
_lcres, _res, _mass = union_index(_lcres, _res, _mass)
|
|
100
100
|
|
|
101
|
-
|
|
101
|
+
_out = {}
|
|
102
102
|
|
|
103
|
-
|
|
104
|
-
|
|
103
|
+
## OC1, OC2, OC3, OC4, PC
|
|
104
|
+
_df_bsc = _res / _lcres['Sample_Volume'].to_frame().values.copy()
|
|
105
105
|
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
106
|
+
## SOC, POC, OC/EC
|
|
107
|
+
if _ocec_ratio is not None:
|
|
108
|
+
try:
|
|
109
|
+
iter(_ocec_ratio)
|
|
110
|
+
except TypeError:
|
|
111
|
+
raise TypeError('"ocec_ratio" Only Accept a Single Value !!')
|
|
112
112
|
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
113
|
+
_prcs_df = DataFrame(index=_df_bsc.index)
|
|
114
|
+
_prcs_df['OC/EC'] = _ocec_ratio
|
|
115
|
+
_prcs_df['POC'] = _ocec_ratio * _lcres['Thermal_EC']
|
|
116
|
+
_prcs_df['SOC'] = _lcres['Thermal_OC'] - _prcs_df['POC']
|
|
117
117
|
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
118
|
+
else:
|
|
119
|
+
_df_lst = []
|
|
120
|
+
for _, _df in _lcres.resample(f'{_ocec_ratio_month}MS', closed='left'):
|
|
121
|
+
_thm_cal = _ocec_ratio_cal('thm', _df[['Thermal_OC', 'Thermal_EC']], _hr_lim, _range, _wisoc_range)
|
|
122
|
+
_opt_cal = _ocec_ratio_cal('opt', _df[['Optical_OC', 'Optical_EC']], _hr_lim, _range, _wisoc_range)
|
|
123
|
+
_df_lst.append(concat([_thm_cal, _opt_cal], axis=1))
|
|
124
124
|
|
|
125
|
-
|
|
125
|
+
_prcs_df = concat(_df_lst)
|
|
126
126
|
|
|
127
|
-
|
|
127
|
+
_df_bsc = concat((_df_bsc.copy(), _prcs_df), axis=1)
|
|
128
128
|
|
|
129
|
-
|
|
130
|
-
|
|
129
|
+
## ratio
|
|
130
|
+
_df_ratio = DataFrame(index=_df_bsc.index)
|
|
131
131
|
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
132
|
+
for _ky, _val in _df_bsc.items():
|
|
133
|
+
if 'OC/EC' in _ky: continue
|
|
134
|
+
_df_ratio[f'{_ky}/Thermal_OC'] = _val / _lcres['Thermal_OC']
|
|
135
|
+
_df_ratio[f'{_ky}/Optical_OC'] = _val / _lcres['Optical_OC']
|
|
136
136
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
137
|
+
if _mass is not None:
|
|
138
|
+
for _ky, _val in _df_bsc.items():
|
|
139
|
+
_df_ratio[f'{_ky}/PM'] = _val / _mass
|
|
140
140
|
|
|
141
|
-
|
|
142
|
-
|
|
141
|
+
_df_ratio[f'Thermal_OC/PM'] = _lcres['Thermal_OC'] / _mass
|
|
142
|
+
_df_ratio[f'Thermal_EC/PM'] = _lcres['Thermal_EC'] / _mass
|
|
143
143
|
|
|
144
|
-
|
|
145
|
-
|
|
144
|
+
_df_ratio[f'Optical_OC/PM'] = _lcres['Optical_OC'] / _mass
|
|
145
|
+
_df_ratio[f'Optical_EC/PM'] = _lcres['Optical_EC'] / _mass
|
|
146
146
|
|
|
147
|
-
|
|
148
|
-
|
|
147
|
+
## ratio status
|
|
148
|
+
_df_bsc = concat((_lcres, _df_bsc.copy()), axis=1)
|
|
149
149
|
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
150
|
+
for _ky, _df in _df_ratio.items():
|
|
151
|
+
_df_bsc[f'{_ky}_status'] = 'Normal'
|
|
152
|
+
_df_bsc[f'{_ky}_status'] = _df_bsc[f'{_ky}_status'].mask(_df > 1, 'Warning')
|
|
153
153
|
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
154
|
+
## out
|
|
155
|
+
_out['ratio'] = _df_ratio
|
|
156
|
+
_out['basic'] = _df_bsc
|
|
157
157
|
|
|
158
|
-
|
|
158
|
+
return _out
|
|
159
159
|
|
|
160
160
|
|
|
161
161
|
'''
|
|
@@ -1,29 +1,30 @@
|
|
|
1
|
-
from pandas import
|
|
1
|
+
from pandas import concat, DataFrame
|
|
2
|
+
|
|
2
3
|
from ._calculate import _ug2umol
|
|
3
4
|
|
|
4
5
|
|
|
5
6
|
def _basic(df_che, nam_lst):
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
7
|
+
# parameter
|
|
8
|
+
df_all = concat(df_che, axis=1)
|
|
9
|
+
index = df_all.index.copy()
|
|
10
|
+
df_all.columns = nam_lst
|
|
10
11
|
|
|
11
|
-
|
|
12
|
+
df_umol = _ug2umol(df_all)
|
|
12
13
|
|
|
13
|
-
|
|
14
|
-
|
|
14
|
+
# calculate
|
|
15
|
+
df_out = DataFrame(index=df_umol.index)
|
|
15
16
|
|
|
16
|
-
|
|
17
|
-
|
|
17
|
+
# df_out['NTR'] = df_umol['NH4+'] / (df_umol['NH4+'] + df_all['NH3'] / 22.4)
|
|
18
|
+
df_out['NTR+'] = df_umol['NH4+'] / (df_umol['NH4+'] + df_umol['NH3'])
|
|
18
19
|
|
|
19
|
-
|
|
20
|
-
|
|
20
|
+
df_out['NOR'] = df_umol['NO3-'] / (df_umol['NO3-'] + df_umol['NO2'])
|
|
21
|
+
df_out['NOR_2'] = (df_umol['NO3-'] + df_umol['HNO3']) / (df_umol['NO3-'] + df_umol['NO2'] + df_umol['HNO3'])
|
|
21
22
|
|
|
22
|
-
|
|
23
|
+
df_out['SOR'] = df_umol['SO42-'] / (df_umol['SO42-'] + df_umol['SO2'])
|
|
23
24
|
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
25
|
+
df_out['epls_NO3-'] = df_umol['NO3-'] / (df_umol['NO3-'] + df_umol['HNO3'])
|
|
26
|
+
df_out['epls_NH4+'] = df_umol['NH4+'] / (df_umol['NH4+'] + df_umol['NH3'])
|
|
27
|
+
df_out['epls_SO42-'] = df_out['SOR']
|
|
28
|
+
df_out['epls_Cl-'] = df_umol['Cl-'] / (df_umol['Cl-'] + df_umol['HCl'])
|
|
28
29
|
|
|
29
|
-
|
|
30
|
+
return df_out
|