AeroViz 0.1.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (180) hide show
  1. AeroViz/__init__.py +13 -0
  2. AeroViz/__pycache__/__init__.cpython-312.pyc +0 -0
  3. AeroViz/data/DEFAULT_DATA.csv +1417 -0
  4. AeroViz/data/DEFAULT_PNSD_DATA.csv +1417 -0
  5. AeroViz/data/hysplit_example_data.txt +101 -0
  6. AeroViz/dataProcess/Chemistry/__init__.py +149 -0
  7. AeroViz/dataProcess/Chemistry/__pycache__/__init__.cpython-312.pyc +0 -0
  8. AeroViz/dataProcess/Chemistry/_calculate.py +557 -0
  9. AeroViz/dataProcess/Chemistry/_isoropia.py +150 -0
  10. AeroViz/dataProcess/Chemistry/_mass_volume.py +487 -0
  11. AeroViz/dataProcess/Chemistry/_ocec.py +172 -0
  12. AeroViz/dataProcess/Chemistry/isrpia.cnf +21 -0
  13. AeroViz/dataProcess/Chemistry/isrpia2.exe +0 -0
  14. AeroViz/dataProcess/Optical/PyMieScatt_update.py +577 -0
  15. AeroViz/dataProcess/Optical/_IMPROVE.py +452 -0
  16. AeroViz/dataProcess/Optical/__init__.py +281 -0
  17. AeroViz/dataProcess/Optical/__pycache__/PyMieScatt_update.cpython-312.pyc +0 -0
  18. AeroViz/dataProcess/Optical/__pycache__/__init__.cpython-312.pyc +0 -0
  19. AeroViz/dataProcess/Optical/__pycache__/mie_theory.cpython-312.pyc +0 -0
  20. AeroViz/dataProcess/Optical/_derived.py +518 -0
  21. AeroViz/dataProcess/Optical/_extinction.py +123 -0
  22. AeroViz/dataProcess/Optical/_mie_sd.py +912 -0
  23. AeroViz/dataProcess/Optical/_retrieve_RI.py +243 -0
  24. AeroViz/dataProcess/Optical/coefficient.py +72 -0
  25. AeroViz/dataProcess/Optical/fRH.pkl +0 -0
  26. AeroViz/dataProcess/Optical/mie_theory.py +260 -0
  27. AeroViz/dataProcess/README.md +271 -0
  28. AeroViz/dataProcess/SizeDistr/__init__.py +245 -0
  29. AeroViz/dataProcess/SizeDistr/__pycache__/__init__.cpython-312.pyc +0 -0
  30. AeroViz/dataProcess/SizeDistr/__pycache__/_size_dist.cpython-312.pyc +0 -0
  31. AeroViz/dataProcess/SizeDistr/_size_dist.py +810 -0
  32. AeroViz/dataProcess/SizeDistr/merge/README.md +93 -0
  33. AeroViz/dataProcess/SizeDistr/merge/__init__.py +20 -0
  34. AeroViz/dataProcess/SizeDistr/merge/_merge_v0.py +251 -0
  35. AeroViz/dataProcess/SizeDistr/merge/_merge_v0_1.py +246 -0
  36. AeroViz/dataProcess/SizeDistr/merge/_merge_v1.py +255 -0
  37. AeroViz/dataProcess/SizeDistr/merge/_merge_v2.py +244 -0
  38. AeroViz/dataProcess/SizeDistr/merge/_merge_v3.py +518 -0
  39. AeroViz/dataProcess/SizeDistr/merge/_merge_v4.py +422 -0
  40. AeroViz/dataProcess/SizeDistr/prop.py +62 -0
  41. AeroViz/dataProcess/VOC/__init__.py +14 -0
  42. AeroViz/dataProcess/VOC/__pycache__/__init__.cpython-312.pyc +0 -0
  43. AeroViz/dataProcess/VOC/_potential_par.py +108 -0
  44. AeroViz/dataProcess/VOC/support_voc.json +446 -0
  45. AeroViz/dataProcess/__init__.py +66 -0
  46. AeroViz/dataProcess/__pycache__/__init__.cpython-312.pyc +0 -0
  47. AeroViz/dataProcess/core/__init__.py +272 -0
  48. AeroViz/dataProcess/core/__pycache__/__init__.cpython-312.pyc +0 -0
  49. AeroViz/mcp_server.py +352 -0
  50. AeroViz/plot/__init__.py +13 -0
  51. AeroViz/plot/__pycache__/__init__.cpython-312.pyc +0 -0
  52. AeroViz/plot/__pycache__/bar.cpython-312.pyc +0 -0
  53. AeroViz/plot/__pycache__/box.cpython-312.pyc +0 -0
  54. AeroViz/plot/__pycache__/pie.cpython-312.pyc +0 -0
  55. AeroViz/plot/__pycache__/radar.cpython-312.pyc +0 -0
  56. AeroViz/plot/__pycache__/regression.cpython-312.pyc +0 -0
  57. AeroViz/plot/__pycache__/scatter.cpython-312.pyc +0 -0
  58. AeroViz/plot/__pycache__/violin.cpython-312.pyc +0 -0
  59. AeroViz/plot/bar.py +126 -0
  60. AeroViz/plot/box.py +69 -0
  61. AeroViz/plot/distribution/__init__.py +1 -0
  62. AeroViz/plot/distribution/__pycache__/__init__.cpython-312.pyc +0 -0
  63. AeroViz/plot/distribution/__pycache__/distribution.cpython-312.pyc +0 -0
  64. AeroViz/plot/distribution/distribution.py +576 -0
  65. AeroViz/plot/meteorology/CBPF.py +295 -0
  66. AeroViz/plot/meteorology/__init__.py +3 -0
  67. AeroViz/plot/meteorology/__pycache__/CBPF.cpython-312.pyc +0 -0
  68. AeroViz/plot/meteorology/__pycache__/__init__.cpython-312.pyc +0 -0
  69. AeroViz/plot/meteorology/__pycache__/hysplit.cpython-312.pyc +0 -0
  70. AeroViz/plot/meteorology/__pycache__/wind_rose.cpython-312.pyc +0 -0
  71. AeroViz/plot/meteorology/hysplit.py +93 -0
  72. AeroViz/plot/meteorology/wind_rose.py +77 -0
  73. AeroViz/plot/optical/__init__.py +1 -0
  74. AeroViz/plot/optical/__pycache__/__init__.cpython-312.pyc +0 -0
  75. AeroViz/plot/optical/__pycache__/optical.cpython-312.pyc +0 -0
  76. AeroViz/plot/optical/optical.py +388 -0
  77. AeroViz/plot/pie.py +210 -0
  78. AeroViz/plot/radar.py +184 -0
  79. AeroViz/plot/regression.py +200 -0
  80. AeroViz/plot/scatter.py +174 -0
  81. AeroViz/plot/templates/__init__.py +6 -0
  82. AeroViz/plot/templates/__pycache__/__init__.cpython-312.pyc +0 -0
  83. AeroViz/plot/templates/__pycache__/ammonium_rich.cpython-312.pyc +0 -0
  84. AeroViz/plot/templates/__pycache__/contour.cpython-312.pyc +0 -0
  85. AeroViz/plot/templates/__pycache__/corr_matrix.cpython-312.pyc +0 -0
  86. AeroViz/plot/templates/__pycache__/diurnal_pattern.cpython-312.pyc +0 -0
  87. AeroViz/plot/templates/__pycache__/koschmieder.cpython-312.pyc +0 -0
  88. AeroViz/plot/templates/__pycache__/metal_heatmap.cpython-312.pyc +0 -0
  89. AeroViz/plot/templates/ammonium_rich.py +34 -0
  90. AeroViz/plot/templates/contour.py +47 -0
  91. AeroViz/plot/templates/corr_matrix.py +267 -0
  92. AeroViz/plot/templates/diurnal_pattern.py +61 -0
  93. AeroViz/plot/templates/koschmieder.py +95 -0
  94. AeroViz/plot/templates/metal_heatmap.py +164 -0
  95. AeroViz/plot/timeseries/__init__.py +2 -0
  96. AeroViz/plot/timeseries/__pycache__/__init__.cpython-312.pyc +0 -0
  97. AeroViz/plot/timeseries/__pycache__/template.cpython-312.pyc +0 -0
  98. AeroViz/plot/timeseries/__pycache__/timeseries.cpython-312.pyc +0 -0
  99. AeroViz/plot/timeseries/template.py +47 -0
  100. AeroViz/plot/timeseries/timeseries.py +446 -0
  101. AeroViz/plot/utils/__init__.py +4 -0
  102. AeroViz/plot/utils/__pycache__/__init__.cpython-312.pyc +0 -0
  103. AeroViz/plot/utils/__pycache__/_color.cpython-312.pyc +0 -0
  104. AeroViz/plot/utils/__pycache__/_unit.cpython-312.pyc +0 -0
  105. AeroViz/plot/utils/__pycache__/plt_utils.cpython-312.pyc +0 -0
  106. AeroViz/plot/utils/__pycache__/sklearn_utils.cpython-312.pyc +0 -0
  107. AeroViz/plot/utils/_color.py +71 -0
  108. AeroViz/plot/utils/_unit.py +55 -0
  109. AeroViz/plot/utils/fRH.json +390 -0
  110. AeroViz/plot/utils/plt_utils.py +92 -0
  111. AeroViz/plot/utils/sklearn_utils.py +49 -0
  112. AeroViz/plot/utils/units.json +89 -0
  113. AeroViz/plot/violin.py +80 -0
  114. AeroViz/rawDataReader/FLOW.md +138 -0
  115. AeroViz/rawDataReader/__init__.py +220 -0
  116. AeroViz/rawDataReader/__pycache__/__init__.cpython-312.pyc +0 -0
  117. AeroViz/rawDataReader/config/__init__.py +0 -0
  118. AeroViz/rawDataReader/config/__pycache__/__init__.cpython-312.pyc +0 -0
  119. AeroViz/rawDataReader/config/__pycache__/supported_instruments.cpython-312.pyc +0 -0
  120. AeroViz/rawDataReader/config/supported_instruments.py +135 -0
  121. AeroViz/rawDataReader/core/__init__.py +658 -0
  122. AeroViz/rawDataReader/core/__pycache__/__init__.cpython-312.pyc +0 -0
  123. AeroViz/rawDataReader/core/__pycache__/logger.cpython-312.pyc +0 -0
  124. AeroViz/rawDataReader/core/__pycache__/pre_process.cpython-312.pyc +0 -0
  125. AeroViz/rawDataReader/core/__pycache__/qc.cpython-312.pyc +0 -0
  126. AeroViz/rawDataReader/core/__pycache__/report.cpython-312.pyc +0 -0
  127. AeroViz/rawDataReader/core/logger.py +171 -0
  128. AeroViz/rawDataReader/core/pre_process.py +308 -0
  129. AeroViz/rawDataReader/core/qc.py +961 -0
  130. AeroViz/rawDataReader/core/report.py +579 -0
  131. AeroViz/rawDataReader/script/AE33.py +173 -0
  132. AeroViz/rawDataReader/script/AE43.py +151 -0
  133. AeroViz/rawDataReader/script/APS.py +339 -0
  134. AeroViz/rawDataReader/script/Aurora.py +191 -0
  135. AeroViz/rawDataReader/script/BAM1020.py +90 -0
  136. AeroViz/rawDataReader/script/BC1054.py +161 -0
  137. AeroViz/rawDataReader/script/EPA.py +79 -0
  138. AeroViz/rawDataReader/script/GRIMM.py +68 -0
  139. AeroViz/rawDataReader/script/IGAC.py +140 -0
  140. AeroViz/rawDataReader/script/MA350.py +179 -0
  141. AeroViz/rawDataReader/script/Minion.py +218 -0
  142. AeroViz/rawDataReader/script/NEPH.py +199 -0
  143. AeroViz/rawDataReader/script/OCEC.py +173 -0
  144. AeroViz/rawDataReader/script/Q-ACSM.py +12 -0
  145. AeroViz/rawDataReader/script/SMPS.py +389 -0
  146. AeroViz/rawDataReader/script/TEOM.py +181 -0
  147. AeroViz/rawDataReader/script/VOC.py +106 -0
  148. AeroViz/rawDataReader/script/Xact.py +244 -0
  149. AeroViz/rawDataReader/script/__init__.py +28 -0
  150. AeroViz/rawDataReader/script/__pycache__/AE33.cpython-312.pyc +0 -0
  151. AeroViz/rawDataReader/script/__pycache__/AE43.cpython-312.pyc +0 -0
  152. AeroViz/rawDataReader/script/__pycache__/APS.cpython-312.pyc +0 -0
  153. AeroViz/rawDataReader/script/__pycache__/Aurora.cpython-312.pyc +0 -0
  154. AeroViz/rawDataReader/script/__pycache__/BAM1020.cpython-312.pyc +0 -0
  155. AeroViz/rawDataReader/script/__pycache__/BC1054.cpython-312.pyc +0 -0
  156. AeroViz/rawDataReader/script/__pycache__/EPA.cpython-312.pyc +0 -0
  157. AeroViz/rawDataReader/script/__pycache__/GRIMM.cpython-312.pyc +0 -0
  158. AeroViz/rawDataReader/script/__pycache__/IGAC.cpython-312.pyc +0 -0
  159. AeroViz/rawDataReader/script/__pycache__/MA350.cpython-312.pyc +0 -0
  160. AeroViz/rawDataReader/script/__pycache__/Minion.cpython-312.pyc +0 -0
  161. AeroViz/rawDataReader/script/__pycache__/NEPH.cpython-312.pyc +0 -0
  162. AeroViz/rawDataReader/script/__pycache__/OCEC.cpython-312.pyc +0 -0
  163. AeroViz/rawDataReader/script/__pycache__/Q-ACSM.cpython-312.pyc +0 -0
  164. AeroViz/rawDataReader/script/__pycache__/SMPS.cpython-312.pyc +0 -0
  165. AeroViz/rawDataReader/script/__pycache__/TEOM.cpython-312.pyc +0 -0
  166. AeroViz/rawDataReader/script/__pycache__/VOC.cpython-312.pyc +0 -0
  167. AeroViz/rawDataReader/script/__pycache__/Xact.cpython-312.pyc +0 -0
  168. AeroViz/rawDataReader/script/__pycache__/__init__.cpython-312.pyc +0 -0
  169. AeroViz/tools/__init__.py +2 -0
  170. AeroViz/tools/__pycache__/__init__.cpython-312.pyc +0 -0
  171. AeroViz/tools/__pycache__/database.cpython-312.pyc +0 -0
  172. AeroViz/tools/__pycache__/dataclassifier.cpython-312.pyc +0 -0
  173. AeroViz/tools/database.py +95 -0
  174. AeroViz/tools/dataclassifier.py +117 -0
  175. AeroViz/tools/dataprinter.py +58 -0
  176. aeroviz-0.1.21.dist-info/METADATA +294 -0
  177. aeroviz-0.1.21.dist-info/RECORD +180 -0
  178. aeroviz-0.1.21.dist-info/WHEEL +5 -0
  179. aeroviz-0.1.21.dist-info/licenses/LICENSE +21 -0
  180. aeroviz-0.1.21.dist-info/top_level.txt +1 -0
@@ -0,0 +1,388 @@
1
+ import math
2
+ from typing import Literal
3
+
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from matplotlib.pyplot import Figure, Axes
7
+
8
+ from AeroViz.dataProcess.Optical.PyMieScatt_update import ScatteringFunction
9
+ from AeroViz.dataProcess.Optical.mie_theory import Mie_Q, Mie_MEE, Mie_PESD
10
+ from AeroViz.plot.utils import *
11
+
12
+ __all__ = ['Q_plot',
13
+ 'RI_couple',
14
+ 'RRI_2D',
15
+ 'scattering_phase',
16
+ 'response_surface',
17
+ ]
18
+
19
+ mapping_dic = {'AS': {'m': 1.53 + 0j, 'density': 1.73, 'label': fr'$NH_{4}NO_{3}$', 'color': '#A65E58'},
20
+ 'AN': {'m': 1.55 + 0j, 'density': 1.77, 'label': fr'$(NH_{4})_{2}SO_{4}$', 'color': '#A5BF6B'},
21
+ 'OM': {'m': 1.54 + 0j, 'density': 1.40, 'label': 'OM', 'color': '#F2BF5E'},
22
+ 'Soil': {'m': 1.56 + 0.01j, 'density': 2.60, 'label': 'Soil', 'color': '#3F83BF'},
23
+ 'SS': {'m': 1.54 + 0j, 'density': 1.90, 'label': 'SS', 'color': '#B777C2'},
24
+ 'BC': {'m': 1.80 + 0.54j, 'density': 1.50, 'label': 'BC', 'color': '#D1CFCB'},
25
+ 'Water': {'m': 1.333 + 0j, 'density': 1.00, 'label': 'Water', 'color': '#96c8e6'}}
26
+
27
+
28
+ @set_figure
29
+ def Q_plot(species: Literal["AS", "AN", "OM", "Soil", "SS", "BC", "Water"] | list[
30
+ Literal["AS", "AN", "OM", "Soil", "SS", "BC", "Water"]],
31
+ x: Literal["dp", "sp"] = 'dp',
32
+ y: Literal["Q", "MEE"] = "Q",
33
+ mode: Literal["ext", "sca", "abs"] = 'ext',
34
+ **kwargs) -> tuple[Figure, Axes]:
35
+ """
36
+ Generate a plot showing optical efficiency or mass optical efficiency for different particle species.
37
+
38
+ Parameters
39
+ ----------
40
+ species : Union[Literal["AS", "AN", "OM", "Soil", "SS", "BC", "Water"], list[Literal["AS", "AN", "OM", "Soil", "SS", "BC", "Water"]]]
41
+ The particle species or list of particle species to plot. Valid species include 'AS' (Ammonium Sulfate),
42
+ 'AN' (Ammonium Nitrate), 'OM' (Organic Matter), 'Soil', 'SS' (Sea Salt), 'BC' (Black Carbon), and 'Water'.
43
+
44
+ x : Literal["dp", "sp"], optional
45
+ The x-axis parameter. 'dp' represents particle diameter, and 'sp' represents size parameter (alpha).
46
+ Default is 'dp'.
47
+
48
+ y : Literal["Q", "MEE"], optional
49
+ The y-axis parameter. 'Q' represents optical efficiency (Q_ext, Q_sca, Q_abs), and 'MEE' represents
50
+ mass optical efficiency (MEE, MSE, MAE). Default is 'Q'.
51
+
52
+ mode : Literal["ext", "sca", "abs"], optional
53
+ The mode of efficiency to plot. 'ext' for extinction efficiency, 'sca' for scattering efficiency,
54
+ and 'abs' for absorption efficiency. Default is 'ext'.
55
+
56
+ **kwargs
57
+ Additional keyword arguments to pass to the plot function.
58
+
59
+ Returns
60
+ -------
61
+ ax : Axes
62
+ Matplotlib Axes object containing the generated plot.
63
+
64
+ Examples
65
+ --------
66
+ Example usage of the Q_plot function:
67
+
68
+ >>> Q_plot('AS', x='dp', y='Q', mode='ext')
69
+ >>> Q_plot(['AS', 'AN'], x='sp', y='MEE')
70
+ """
71
+ dp = np.geomspace(10, 10000, 2000)
72
+
73
+ mode_mapping = {'ext': 0, 'sca': 1, 'abs': 2}
74
+
75
+ xlabel_mapping = {'dp': 'Particle Diameter (nm)',
76
+ 'sp': 'Size parameter (\\alpha)'}
77
+
78
+ ylabel_mapping = {'Q': {'ext': r'$Extinction\ efficiency\ (Q_{ext})$',
79
+ 'sca': r'$Scattering\ efficiency\ (Q_{sca})$',
80
+ 'abs': r'$Absorption\ efficiency\ (Q_{abs})$'},
81
+ 'MEE': {'ext': r'$MEE\ (m^{2}/g)$',
82
+ 'sca': r'$MSE\ (m^{2}/g)$',
83
+ 'abs': r'$MAE\ (m^{2}/g)$'}}
84
+
85
+ typ = mode_mapping.get(mode, None)
86
+ xlabel = xlabel_mapping.get(x, None)
87
+ ylabel = ylabel_mapping.get(y, None).get(mode, None)
88
+
89
+ fig, ax = plt.subplots()
90
+
91
+ if x == "sp":
92
+ size_para = math.pi * dp.copy() / 550
93
+ dp_ = size_para
94
+
95
+ else:
96
+ plt.semilogx()
97
+ dp_ = dp.copy()
98
+
99
+ if isinstance(species, list):
100
+ for i, specie in enumerate(species):
101
+ label = mapping_dic[specie].get('label', None)
102
+ color = mapping_dic[specie].get('color', None)
103
+
104
+ mapping_dic[specie]['Q'] = Mie_Q(mapping_dic[specie]['m'], 550, dp)
105
+ mapping_dic[specie]['MEE'] = Mie_MEE(mapping_dic[specie]['m'], 550, dp, mapping_dic[specie]['density'])
106
+
107
+ plt.plot(dp_, mapping_dic[specie][f'{y}'][typ], color=color, label=label, alpha=1, lw=2)
108
+
109
+ else:
110
+ legend_label = {'Q': [r'$\bf Q_{{ext}}$', r'$\bf Q_{{scat}}$', r'$\bf Q_{{abs}}$'],
111
+ 'MEE': [r'$\bf MEE$', r'$\bf MSE$', r'$\bf MAE$']}
112
+
113
+ ylabel_mapping = {'Q': r'$\bf Optical\ efficiency\ (Q_{{ext, sca, abs}})$',
114
+ 'MEE': r'$\bf Mass\ Optical\ Efficiency\ (m^2/g)$'}
115
+
116
+ legend = legend_label.get(y, None)
117
+ ylabel = ylabel_mapping.get(y, None)
118
+
119
+ mapping_dic[species]['Q'] = Mie_Q(mapping_dic[species]['m'], 550, dp)
120
+ mapping_dic[species]['MEE'] = Mie_MEE(mapping_dic[species]['m'], 550, dp, mapping_dic[species]['density'])
121
+
122
+ plt.plot(dp_, mapping_dic[species][f'{y}'][0], color='b', label=legend[0])
123
+ plt.plot(dp_, mapping_dic[species][f'{y}'][1], color='g', label=legend[1])
124
+ plt.plot(dp_, mapping_dic[species][f'{y}'][2], color='r', label=legend[2])
125
+ plt.text(0.04, 0.92, mapping_dic[species]['label'], transform=ax.transAxes, weight='bold')
126
+
127
+ ax.set(xlim=(dp.min(), dp.max()), ylim=(0, None), xlabel=xlabel, ylabel=ylabel)
128
+ ax.grid(color='k', axis='x', which='major', linestyle='dashdot', linewidth=0.4, alpha=0.4)
129
+ ax.legend(loc='best', prop={'weight': 'bold'})
130
+
131
+ # fig.savefig(PATH_MAIN/f'Q_{species}')
132
+ plt.show()
133
+
134
+ return fig, ax
135
+
136
+
137
+ @set_figure(figsize=(9, 4))
138
+ def RI_couple(**kwargs) -> tuple[Figure, Axes]:
139
+ """
140
+ Generate a plot to test the influence of imaginary parts on scattering and absorption efficiencies.
141
+
142
+ Parameters
143
+ ----------
144
+ **kwargs
145
+ Additional keyword arguments to pass to the plot function.
146
+
147
+ Returns
148
+ -------
149
+ ax : Axes
150
+ Matplotlib Axes object containing the generated plot.
151
+
152
+ Examples
153
+ --------
154
+ Example usage of the IJ_couple function:
155
+
156
+ >>> ax = RI_couple()
157
+ """
158
+ dp = np.geomspace(10, 10000, 5000)
159
+
160
+ a = Mie_Q(1.50 + 0.01j, 550, dp)
161
+ b = Mie_Q(1.50 + 0.1j, 550, dp)
162
+ c = Mie_Q(1.50 + 0.5j, 550, dp)
163
+
164
+ fig, ax = plt.subplots(1, 2)
165
+ plt.subplots_adjust(right=0.9, wspace=0.4)
166
+ (ax1, ax2) = ax
167
+ size_para = math.pi * dp / 550
168
+
169
+ ax1.plot(size_para, a[1], 'k-', alpha=1, label=r'$\bf\ k\ =\ 0.01$')
170
+ ax1.plot(size_para, b[1], 'b-', alpha=1, label=r'$\bf\ k\ =\ 0.10$')
171
+ ax1.plot(size_para, c[1], 'g-', alpha=1, label=r'$\bf\ k\ =\ 0.50$')
172
+ ax1.legend()
173
+
174
+ ax1.set_xlim(0, size_para[-1])
175
+ ax1.set_ylim(0, None)
176
+ ax1.set_xlabel(r'$\bf Size\ parameter\ (\alpha)$')
177
+ ax1.set_ylabel(r'$\bf Scattering\ efficiency\ (Q_{{scat}})$')
178
+
179
+ ax2.plot(size_para, a[2], 'k-', alpha=1, label=r'$\bf\ k\ =\ 0.01$')
180
+ ax2.plot(size_para, b[2], 'b-', alpha=1, label=r'$\bf\ k\ =\ 0.10$')
181
+ ax2.plot(size_para, c[2], 'g-', alpha=1, label=r'$\bf\ k\ =\ 0.50$')
182
+ ax2.legend()
183
+
184
+ ax2.set_xlim(0, size_para[-1])
185
+ ax2.set_ylim(0, None)
186
+ ax2.set_xlabel(r'$\bf Size\ parameter\ (\alpha)$')
187
+ ax2.set_ylabel(r'$\bf Absorption\ efficiency\ (Q_{{abs}})$')
188
+
189
+ fig.suptitle(r'$\bf n\ =\ 1.50 $')
190
+ # fig.savefig(PATH_MAIN/f'IJ_couple')
191
+
192
+ plt.show()
193
+
194
+ return fig, ax
195
+
196
+
197
+ @set_figure
198
+ def RRI_2D(mode: Literal["ext", "sca", "abs"] = 'ext',
199
+ **kwargs) -> tuple[Figure, Axes]:
200
+ """
201
+ Generate a 2D plot of scattering efficiency (Q) against real and imaginary parts of the refractive index.
202
+
203
+ Parameters
204
+ ----------
205
+ mode : {'ext', 'sca', 'abs'}, optional
206
+ The mode of scattering efficiency to plot:
207
+ - 'ext' for extinction efficiency (Q_ext)
208
+ - 'sca' for scattering efficiency (Q_sca)
209
+ - 'abs' for absorption efficiency (Q_abs)
210
+ Default is 'ext'.
211
+
212
+ **kwargs
213
+ Additional keyword arguments to pass to the plot function.
214
+
215
+ Returns
216
+ -------
217
+ ax : Axes
218
+ Matplotlib Axes object containing the generated 2D plot.
219
+
220
+ Examples
221
+ --------
222
+ Example usage of the RRI_2D function:
223
+
224
+ >>> RRI_2D(mode='sca', xlabel='Real Part (n)', ylabel='Imaginary Part (k)', title='Scattering Efficiency 2D Plot')
225
+ """
226
+ mode_mapping = {'ext': 0, 'sca': 1, 'abs': 2}
227
+
228
+ typ = mode_mapping.get(mode, None)
229
+
230
+ for dp in [400, 550, 700]:
231
+ RRI = np.linspace(1.3, 2, 100)
232
+ IRI = np.linspace(0, 0.7, 100)
233
+ arr = np.zeros((RRI.size, IRI.size))
234
+
235
+ for i, I_RI in enumerate(IRI):
236
+ for j, R_RI in enumerate(RRI):
237
+ arr[i, j] = Mie_Q(R_RI + 1j * I_RI, 550, dp)[typ]
238
+
239
+ fig, ax = plt.subplots()
240
+ plt.title(fr'$\bf dp\ = {dp}\ nm$', )
241
+ plt.xlabel(r'$\bf Real\ part\ (n)$', )
242
+ plt.ylabel(r'$\bf Imaginary\ part\ (k)$', )
243
+
244
+ im = plt.imshow(arr, extent=(1.3, 2, 0, 0.7), cmap='jet', origin='lower')
245
+ color_bar = plt.colorbar(im, extend='both')
246
+ color_bar.set_label(label=fr'$\bf Q_{{{mode}}}$')
247
+
248
+ # fig.savefig(PATH_MAIN/f'RRI_{mode}_{dp}')
249
+
250
+ plt.show()
251
+
252
+ return fig, ax
253
+
254
+
255
+ @set_figure
256
+ def scattering_phase(m: complex = 1.55 + 0.01j,
257
+ wave: float = 600,
258
+ dp: float = 200) -> tuple[Figure, Axes]:
259
+ """
260
+ Generate a polar plot to visualize the scattering phase function.
261
+
262
+ Parameters
263
+ ----------
264
+ m : complex, optional
265
+ The complex refractive index of the scattering medium. Default is 1.55 + 0.01j.
266
+ wave : float, optional
267
+ The wavelength of the incident light in nanometers. Default is 600 nm.
268
+ dp : float, optional
269
+ The particle diameter in nanometers. Default is 200 nm.
270
+
271
+ Returns
272
+ -------
273
+ ax : Axes
274
+ Matplotlib Axes object containing the generated polar plot.
275
+
276
+ Examples
277
+ --------
278
+ Example usage of the scattering_phase function:
279
+
280
+ >>> ax = scattering_phase(m=1.55 + 0.01j, wave=600, dp=200)
281
+ """
282
+ theta, _SL, _SR, _SU = ScatteringFunction(m, wave, dp)
283
+
284
+ SL = np.append(_SL, _SL[::-1])
285
+ SR = np.append(_SR, _SR[::-1])
286
+ SU = np.append(_SU, _SU[::-1])
287
+
288
+ angles = ['0', '60', '120', '180', '240', '300']
289
+
290
+ fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
291
+
292
+ theta = np.linspace(0, 2 * np.pi, len(SL))
293
+
294
+ plt.thetagrids(range(0, 360, int(360 / len(angles))), angles)
295
+
296
+ plt.plot(theta, SL, '-', linewidth=2, color='#115162', label='SL')
297
+ plt.fill(theta, SL, '#afe0f5', alpha=0.5)
298
+ plt.plot(theta, SR, '-', linewidth=2, color='#7FAE80', label='SR')
299
+ plt.fill(theta, SR, '#b5e6c5', alpha=0.5)
300
+ plt.plot(theta, SU, '-', linewidth=2, color='#621129', label='SU')
301
+ plt.fill(theta, SU, '#f5afbd', alpha=0.5)
302
+
303
+ plt.legend(loc='best', bbox_to_anchor=(1, 0, 0.2, 1), prop={'weight': 'bold'})
304
+ plt.title(r'$\bf Scattering\ phase\ function$')
305
+
306
+ plt.show()
307
+ return fig, ax
308
+
309
+
310
+ @set_figure
311
+ def response_surface(real_range=(1.33, 1.7),
312
+ gmd_range=(10, 500),
313
+ num=50,
314
+ **kwargs) -> tuple[Figure, Axes]:
315
+ """
316
+ Generate a response surface plot for sensitivity tests of extinction based on Mie scattering.
317
+
318
+ Parameters
319
+ ----------
320
+ real_range : tuple, optional
321
+ The range of real part (refractive index) values for sensitivity testing. Default is (1.33, 1.7).
322
+
323
+ gmd_range : tuple, optional
324
+ The range of geometric mean diameter (GMD) values for sensitivity testing. Default is (60, 400).
325
+
326
+ num : int, optional
327
+ The number of points to generate within the specified ranges. Default is 50.
328
+
329
+ **kwargs
330
+ Additional keyword arguments to pass to the plot function.
331
+
332
+ Returns
333
+ -------
334
+ ax : Axes
335
+ Matplotlib Axes object containing the generated response surface plot.
336
+
337
+ Examples
338
+ --------
339
+ Example usage of the response_surface function:
340
+
341
+ >>> response_surface(real_range=(1.4, 1.6), gmd_range=(100, 300), num=30, xlabel='Real Part (n)',
342
+ ... ylabel='GMD (nm)', zlabel='Extinction (1/Mm)', title='Sensitivity Tests of Extinction')
343
+ """
344
+
345
+ def function(RI, GMD):
346
+ Z = np.zeros_like(RI) # 使用 np.zeros_like 可以確保 Z 和 RI 具有相同的形狀
347
+
348
+ for i in range(RI.shape[0]):
349
+ for j in range(RI.shape[1]):
350
+ _RI, _GMD = RI[i, j], GMD[i, j]
351
+ Bext, Bsca, Babs = Mie_PESD(m=_RI, lognormal=True, geoMean=_GMD, geoStdDev=2.)
352
+ Z[i, j] = np.sum(Bext)
353
+
354
+ return Z
355
+
356
+ # 假設 RI、GSD、GMD
357
+ RI = np.linspace(real_range[0], real_range[1], num)
358
+ GMD = np.linspace(gmd_range[0], gmd_range[1], num)
359
+
360
+ # 建立三維 meshgrid
361
+ real, gmd = np.meshgrid(RI, GMD, indexing='xy')
362
+
363
+ # Result
364
+ ext = function(real, gmd)
365
+
366
+ # plot
367
+ fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
368
+ ax.plot_surface(real, gmd, ext, rstride=1, cstride=1, cmap=plt.get_cmap('jet'), edgecolor='none')
369
+
370
+ ax.set(xlabel='Real part (n)', ylabel='GMD (nm)', zlabel=Unit('Extinction'),
371
+ title='Sensitive tests of extinction')
372
+
373
+ ax.zaxis.get_offset_text().set_visible(False)
374
+ exponent = math.floor(math.log10(np.max(ext)))
375
+ ax.text(ax.get_xlim()[1] * 1.01, ax.get_ylim()[1], ax.get_zlim()[1] * 1.1, s=fr'${{\times}}\ 10^{exponent}$')
376
+ ax.ticklabel_format(style='sci', axis='z', scilimits=(0, 0), useOffset=False)
377
+
378
+ plt.show()
379
+
380
+ return fig, ax
381
+
382
+
383
+ if __name__ == '__main__':
384
+ Q_plot(['AS', 'AN', 'OM', 'Soil', 'SS', 'BC'], x='dp', y='MEE')
385
+ Q_plot(['AS', 'AN', 'OM', 'Soil', 'SS', 'BC'], x='dp', y='Q')
386
+
387
+ RI_couple()
388
+ response_surface()
AeroViz/plot/pie.py ADDED
@@ -0,0 +1,210 @@
1
+ from typing import Literal
2
+
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ import pandas as pd
6
+ from matplotlib.pyplot import Figure, Axes
7
+ from pandas import DataFrame
8
+
9
+ from AeroViz.plot.utils import *
10
+
11
+ __all__ = [
12
+ 'pie',
13
+ 'donuts'
14
+ ]
15
+
16
+
17
+ @set_figure(fw='bold')
18
+ def pie(data_set: DataFrame | dict,
19
+ labels: list[str],
20
+ unit: str,
21
+ style: Literal["pie", 'donut'],
22
+ ax: Axes | None = None,
23
+ symbol: bool = True,
24
+ **kwargs) -> tuple[Figure, Axes]:
25
+ """
26
+ Create a pie or donut chart based on the provided data.
27
+
28
+ Parameters
29
+ ----------
30
+ data_set : pd.DataFrame | dict
31
+ A pandas DataFrame or dictionary mapping category names to a list of species.
32
+ If a DataFrame is provided, the index represents the categories, and each column contains species data.
33
+ If a dictionary is provided, it maps category names to lists of species data.
34
+ It is assumed that all lists or DataFrame columns contain the same number of entries as the *labels* list.
35
+ labels : list of str
36
+ The labels for each category.
37
+ unit : str
38
+ The unit to display in the center of the donut chart.
39
+ style : Literal["pie", 'donut']
40
+ The style of the chart, either 'pie' for a standard pie chart or 'donut' for a donut chart.
41
+ ax : plt.Axes or None, optional
42
+ The Axes object to plot the chart onto. If None, a new figure and Axes will be created.
43
+ symbol : bool, optional
44
+ Whether to display values for each species in the chart.
45
+ **kwargs
46
+ Additional keyword arguments to be passed to the plotting function.
47
+
48
+ Returns
49
+ -------
50
+ matplotlib.axes.Axes
51
+ The Axes object containing the violin plot.
52
+
53
+ Notes
54
+ -----
55
+ - If *data_set* is a dictionary, it should contain lists of species that correspond to each category in *labels*.
56
+ - The length of each list in *data_set* or the number of columns in the DataFrame should match the length of the *labels* list.
57
+
58
+ Examples
59
+ --------
60
+ >>> data_set = {'Category 1': [10, 20, 30], 'Category 2': [15, 25, 35]}
61
+ >>> labels = ['Species 1', 'Species 2', 'Species 3']
62
+ >>> pie(data_set, labels, unit='kg', style='pie', symbol=True)
63
+ """
64
+ if isinstance(data_set, DataFrame):
65
+ category_names = list(data_set.index)
66
+ data = data_set.to_numpy()
67
+
68
+ pies, species = data.shape
69
+
70
+ elif isinstance(data_set, dict):
71
+ category_names = list(data_set.keys())
72
+ data = np.array(list(data_set.values()))
73
+
74
+ pies, species = data.shape
75
+
76
+ else:
77
+ raise ValueError('data_set must be a DataFrame or a dictionary.')
78
+
79
+ colors = kwargs.get('colors') or (Color.colors1 if species == 6 else Color.getColor(num=species))
80
+
81
+ radius = 4
82
+ width = 4 if style == 'pie' else 1
83
+
84
+ text = [''] * pies if style == 'pie' else [Unit(unit) + '\n\n' +
85
+ '{:.2f} ± {:.2f}'.format(x, s)
86
+ for x, s in zip(data.sum(axis=1), data.std(axis=1))]
87
+ pct_distance = 0.6 if style == 'pie' else 0.88
88
+
89
+ fig, ax = plt.subplots(1, pies, figsize=((pies * 2) + 1, 2)) if ax is None else (ax.get_figure(), ax)
90
+
91
+ if pies == 1:
92
+ ax = [ax]
93
+
94
+ for i in range(pies):
95
+ ax[i].pie(data[i], labels=None, colors=colors, textprops=None,
96
+ autopct=lambda pct: auto_label_pct(pct, symbol=symbol, include_pct=True),
97
+ pctdistance=pct_distance, radius=radius, wedgeprops=dict(width=width, edgecolor='w'))
98
+
99
+ ax[i].pie(data[i], labels=None, colors=colors, textprops=None,
100
+ autopct=lambda pct: auto_label_pct(pct, symbol=symbol, ignore='outer', include_pct=True),
101
+ pctdistance=1.3, radius=radius, wedgeprops=dict(width=width, edgecolor='w'))
102
+ ax[i].axis('equal')
103
+ ax[i].text(0, 0, text[i], ha='center', va='center')
104
+
105
+ if kwargs.get('title') is None:
106
+ ax[i].set_title(category_names[i])
107
+
108
+ else:
109
+ if len(kwargs.get('title')) == pies:
110
+ title = kwargs.get('title')
111
+ else:
112
+ raise ValueError('The length of the title list must match the number of pies.')
113
+
114
+ ax[i].set_title(title[i])
115
+
116
+ ax[-1].legend(labels, loc='center left', prop={'size': 8, 'weight': 'normal'}, bbox_to_anchor=(1, 0, 1.15, 1))
117
+
118
+ # fig.savefig(f"pie_{style}_{title}")
119
+
120
+ plt.show()
121
+
122
+ return fig, ax
123
+
124
+
125
+ @set_figure(fw='bold')
126
+ def donuts(data_set: DataFrame | dict,
127
+ labels: list[str],
128
+ unit: str,
129
+ ax: Axes | None = None,
130
+ symbol=True,
131
+ **kwargs) -> tuple[Figure, Axes]:
132
+ """
133
+ Plot a donut chart based on the data set.
134
+
135
+ Parameters
136
+ ----------
137
+ data_set : pd.DataFrame | dict
138
+ A pandas DataFrame or a dictionary mapping category names to a list of species.
139
+ If a DataFrame is provided, the index represents the categories, and each column contains species data.
140
+ If a dictionary is provided, it maps category names to lists of species data.
141
+ It is assumed that all lists or DataFrame columns contain the same number of entries as the *labels* list.
142
+ labels : list of str
143
+ The category labels.
144
+ unit : str
145
+ The unit to be displayed in the center of the donut chart.
146
+ ax : matplotlib.axes.Axes, optional
147
+ The axes to plot on. If None, the current axes will be used (default).
148
+ symbol : bool, optional
149
+ Whether to display values for each species (default is True).
150
+ **kwargs : dict, optional
151
+ Additional keyword arguments to pass to the matplotlib pie chart function.
152
+
153
+ Returns
154
+ -------
155
+ matplotlib.axes.Axes
156
+ The axes containing the donut chart.
157
+ """
158
+
159
+ if isinstance(data_set, DataFrame):
160
+ category_names = list(data_set.index)
161
+ data = data_set.to_numpy()
162
+
163
+ pies, species = data.shape
164
+
165
+ elif isinstance(data_set, dict):
166
+ category_names = list(data_set.keys())
167
+ data = np.array(list(data_set.values()))
168
+
169
+ pies, species = data.shape
170
+
171
+ else:
172
+ raise ValueError('data_set must be a DataFrame or a dictionary.')
173
+
174
+ colors1 = kwargs.get('colors') or (Color.colors1 if species == 6 else Color.getColor(num=species))
175
+ colors2 = Color.adjust_opacity(colors1, 0.8)
176
+ colors3 = Color.adjust_opacity(colors1, 0.6)
177
+
178
+ fig, ax = plt.subplots(**kwargs.get('fig_kws', {})) if ax is None else (ax.get_figure(), ax)
179
+
180
+ ax.pie(data[2], labels=None, colors=colors1, textprops=None,
181
+ autopct=lambda pct: auto_label_pct(pct, symbol=symbol, include_pct=True),
182
+ pctdistance=0.9, radius=14, wedgeprops=dict(width=3, edgecolor='w'))
183
+
184
+ ax.pie(data[1], labels=None, colors=colors2, textprops=None,
185
+ autopct=lambda pct: auto_label_pct(pct, symbol=symbol, include_pct=True),
186
+ pctdistance=0.85, radius=11, wedgeprops=dict(width=3, edgecolor='w'))
187
+
188
+ ax.pie(data[0], labels=None, colors=colors3, textprops=None,
189
+ autopct=lambda pct: auto_label_pct(pct, symbol=symbol, include_pct=True),
190
+ pctdistance=0.80, radius=8, wedgeprops=dict(width=3, edgecolor='w'))
191
+
192
+ text = (Unit(f'{unit}') + '\n\n' +
193
+ 'Event : ' + "{:.2f}".format(np.sum(data[2])) + '\n' +
194
+ 'Transition : ' + "{:.2f}".format(np.sum(data[1])) + '\n' +
195
+ 'Clean : ' + "{:.2f}".format(np.sum(data[0])))
196
+
197
+ ax.text(0, 0, text, ha='center', va='center')
198
+ ax.axis('equal')
199
+
200
+ ax.set_title(kwargs.get('title', ''))
201
+
202
+ ax.legend(labels, loc='center', prop={'size': 8}, title_fontproperties={'weight': 'bold'},
203
+ title=f'Outer : {category_names[2]}' + '\n' + f'Middle : {category_names[1]}' + '\n' + f'Inner : {category_names[0]}',
204
+ bbox_to_anchor=(0.8, 0, 0.5, 1))
205
+
206
+ # fig.savefig(f"donuts_{title}")
207
+
208
+ plt.show()
209
+
210
+ return fig, ax