AOT-biomaps 2.9.186__py3-none-any.whl → 2.9.294__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of AOT-biomaps might be problematic. Click here for more details.

Files changed (28) hide show
  1. AOT_biomaps/AOT_Acoustic/StructuredWave.py +2 -2
  2. AOT_biomaps/AOT_Acoustic/_mainAcoustic.py +11 -6
  3. AOT_biomaps/AOT_Experiment/Tomography.py +74 -4
  4. AOT_biomaps/AOT_Experiment/_mainExperiment.py +95 -55
  5. AOT_biomaps/AOT_Recon/AOT_Optimizers/DEPIERRO.py +48 -13
  6. AOT_biomaps/AOT_Recon/AOT_Optimizers/LS.py +406 -13
  7. AOT_biomaps/AOT_Recon/AOT_Optimizers/MAPEM.py +118 -38
  8. AOT_biomaps/AOT_Recon/AOT_Optimizers/MLEM.py +303 -102
  9. AOT_biomaps/AOT_Recon/AOT_Optimizers/PDHG.py +443 -12
  10. AOT_biomaps/AOT_Recon/AOT_PotentialFunctions/RelativeDifferences.py +10 -14
  11. AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_CSR.py +274 -0
  12. AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_SELL.py +328 -0
  13. AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/__init__.py +2 -0
  14. AOT_biomaps/AOT_Recon/AOT_biomaps_kernels.cubin +0 -0
  15. AOT_biomaps/AOT_Recon/AlgebraicRecon.py +243 -113
  16. AOT_biomaps/AOT_Recon/AnalyticRecon.py +26 -41
  17. AOT_biomaps/AOT_Recon/BayesianRecon.py +81 -146
  18. AOT_biomaps/AOT_Recon/PrimalDualRecon.py +157 -94
  19. AOT_biomaps/AOT_Recon/ReconEnums.py +27 -2
  20. AOT_biomaps/AOT_Recon/ReconTools.py +229 -12
  21. AOT_biomaps/AOT_Recon/__init__.py +1 -0
  22. AOT_biomaps/AOT_Recon/_mainRecon.py +60 -53
  23. AOT_biomaps/__init__.py +4 -69
  24. {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.294.dist-info}/METADATA +2 -1
  25. aot_biomaps-2.9.294.dist-info/RECORD +47 -0
  26. aot_biomaps-2.9.186.dist-info/RECORD +0 -43
  27. {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.294.dist-info}/WHEEL +0 -0
  28. {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.294.dist-info}/top_level.txt +0 -0
@@ -1,22 +1,32 @@
1
1
  from AOT_biomaps.AOT_Recon.AlgebraicRecon import AlgebraicRecon
2
- from AOT_biomaps.AOT_Recon.ReconEnums import ReconType, ProcessType
2
+ from AOT_biomaps.AOT_Recon.ReconEnums import ReconType, ProcessType, SMatrixType
3
3
  from AOT_biomaps.AOT_Recon.AOT_Optimizers import CP_KL, CP_TV
4
4
  from AOT_biomaps.AOT_Recon.ReconEnums import OptimizerType
5
5
 
6
6
  import os
7
7
  from datetime import datetime
8
8
  import numpy as np
9
+ import re
9
10
 
10
11
  class PrimalDualRecon(AlgebraicRecon):
11
12
  """
12
13
  This class implements the convex reconstruction process.
13
14
  It currently does not perform any operations but serves as a template for future implementations.
14
15
  """
15
- def __init__(self, theta=1.0, L=None, **kwargs):
16
+ def __init__(self, alpha, beta, theta=1.0, L=None, k_security=0.8, use_power_method=True, auto_alpha_gamma=0.05, apply_positivity_clamp=True, tikhonov_as_gradient=False, use_laplacian=True, laplacian_beta_scale=1.0, **kwargs):
16
17
  super().__init__(**kwargs)
17
18
  self.reconType = ReconType.Convex
19
+ self.alpha = alpha # TV regularization parameter (if None, alpha is auto-scaled)
20
+ self.beta=beta # Tikhonov regularization parameter
18
21
  self.theta = theta # relaxation parameter (between 1 and 2)
19
22
  self.L = L # norme spectrale de l'opérateur linéaire défini par les matrices P et P^T
23
+ self.k_security=k_security
24
+ self.use_power_method=use_power_method
25
+ self.auto_alpha_gamma=auto_alpha_gamma # gamma for auto alpha: alpha = gamma * data_term / tv_term
26
+ self.apply_positivity_clamp=apply_positivity_clamp
27
+ self.tikhonov_as_gradient=tikhonov_as_gradient # if True, apply -tau*2*beta*x instead of prox multiplicative
28
+ self.use_laplacian=use_laplacian # enable Laplacian (Hessian scalar) penalty
29
+ self.laplacian_beta_scale=laplacian_beta_scale # multiply beta for laplacian term if you want separate scaling
20
30
 
21
31
  def run(self, processType=ProcessType.PYTHON, withTumor=True):
22
32
  """
@@ -48,24 +58,20 @@ class PrimalDualRecon(AlgebraicRecon):
48
58
  )
49
59
  os.makedirs(results_dir, exist_ok=True)
50
60
 
51
- if os.path.exists(results_dir):
61
+ if os.path.exists(os.path.join(results_dir,"indices.npy")):
52
62
  return (True, results_dir)
53
63
 
54
64
  return (False, results_dir)
55
65
 
56
-
57
-
58
- def load(self, withTumor=True, results_date=None, optimizer=None, alpha=None, theta=None, L=None, filePath=None):
66
+ def load(self, withTumor=True, results_date=None, optimizer=None, filePath=None, show_logs=True):
59
67
  """
60
- Load the reconstruction results and indices and store them in self.
68
+ Load the reconstruction results (reconPhantom or reconLaser) and indices as lists of 2D np arrays into self.
69
+ If the loaded file is a 3D array, it is split into a list of 2D arrays.
61
70
  Args:
62
- withTumor (bool): If True, loads the reconstruction with tumor; otherwise, loads the reconstruction without tumor.
63
- results_date (str): Date string (format "ddmm") to specify which results to load. If None, uses the most recent date in saveDir.
64
- optimizer (OptimizerType): Optimizer type to filter results. If None, uses the current optimizer of the instance.
65
- alpha (float): Alpha parameter to match the saved directory. If None, uses the current alpha of the instance.
66
- theta (float): Theta parameter to match the saved directory. If None, uses the current theta of the instance.
67
- L (float): L parameter to match the saved directory. If None, uses the current L of the instance.
68
- filePath (str): Optional. If provided, loads directly from this path (overrides saveDir and results_date).
71
+ withTumor: If True, loads reconPhantom (with tumor), else reconLaser (without tumor).
72
+ results_date: Date string (format "ddmm") to specify which results to load. If None, uses the most recent date in saveDir.
73
+ optimizer: Optimizer name (as string or enum) to filter results. If None, uses the current optimizer of the instance.
74
+ filePath: Optional. If provided, loads directly from this path (overrides saveDir and results_date).
69
75
  """
70
76
  if filePath is not None:
71
77
  # Mode chargement direct depuis un fichier
@@ -73,122 +79,179 @@ class PrimalDualRecon(AlgebraicRecon):
73
79
  recon_path = filePath
74
80
  if not os.path.exists(recon_path):
75
81
  raise FileNotFoundError(f"No reconstruction file found at {recon_path}.")
76
-
77
- if withTumor:
78
- self.reconPhantom = np.load(recon_path, allow_pickle=True)
82
+ # Charge les données
83
+ data = np.load(recon_path, allow_pickle=True)
84
+ # Découpe en liste de 2D si c'est un tableau 3D
85
+ if isinstance(data, np.ndarray) and data.ndim == 3:
86
+ if withTumor:
87
+ self.reconPhantom = [data[i, :, :] for i in range(data.shape[0])]
88
+ else:
89
+ self.reconLaser = [data[i, :, :] for i in range(data.shape[0])]
79
90
  else:
80
- self.reconLaser = np.load(recon_path, allow_pickle=True)
81
-
82
- # Essayer de charger les indices (fichier avec suffixe "_indices.npy" ou "reconIndices.npy")
83
- base_dir, file_name = os.path.split(recon_path)
84
- file_base, _ = os.path.splitext(file_name)
85
- indices_path = os.path.join(base_dir, f"{file_base}_indices.npy")
86
- if not os.path.exists(indices_path):
87
- indices_path = os.path.join(base_dir, 'reconIndices.npy') # Alternative
88
-
91
+ # Sinon, suppose que c'est déjà une liste de 2D
92
+ if withTumor:
93
+ self.reconPhantom = data
94
+ else:
95
+ self.reconLaser = data
96
+ # Essayer de charger les indices
97
+ base_dir, _ = os.path.split(recon_path)
98
+ indices_path = os.path.join(base_dir, "indices.npy")
89
99
  if os.path.exists(indices_path):
90
- self.indices = np.load(indices_path, allow_pickle=True)
100
+ indices_data = np.load(indices_path, allow_pickle=True)
101
+ if isinstance(indices_data, np.ndarray) and indices_data.ndim == 3:
102
+ self.indices = [indices_data[i, :, :] for i in range(indices_data.shape[0])]
103
+ else:
104
+ self.indices = indices_data
91
105
  else:
92
106
  self.indices = None
93
-
94
- print(f"Loaded reconstruction results and indices from {recon_path}")
107
+ if show_logs:
108
+ print(f"Loaded reconstruction results and indices from {recon_path}")
95
109
  else:
96
110
  # Mode chargement depuis le répertoire de résultats
97
111
  if self.saveDir is None:
98
112
  raise ValueError("Save directory is not specified. Please set saveDir before loading.")
99
-
100
- # Use current optimizer if not provided
113
+ # Determine optimizer name for path matching
101
114
  opt_name = optimizer.value if optimizer is not None else self.optimizer.value
102
-
103
- # Build the directory path
115
+ # Find the most recent results directory if no date is specified
116
+ dir_pattern = f'results_*_{opt_name}'
117
+ if opt_name == OptimizerType.CP_TV.value or opt_name == OptimizerType.CP_KL.value:
118
+ dir_pattern += f'_Alpha_{self.alpha}_Theta_{self.theta}_L_{self.L}'
104
119
  if results_date is None:
105
- dir_pattern = f'results_*_{opt_name}_Alpha_{alpha if alpha is not None else self.alpha}_Theta_{theta if theta is not None else self.theta}_L_{L if L is not None else self.L}'
106
120
  dirs = [d for d in os.listdir(self.saveDir) if os.path.isdir(os.path.join(self.saveDir, d)) and dir_pattern in d]
107
121
  if not dirs:
108
122
  raise FileNotFoundError(f"No matching results directory found for pattern '{dir_pattern}' in {self.saveDir}.")
109
123
  dirs.sort(reverse=True) # Most recent first
110
124
  results_dir = os.path.join(self.saveDir, dirs[0])
111
125
  else:
112
- results_dir = os.path.join(self.saveDir, f'results_{results_date}_{opt_name}_Alpha_{alpha if alpha is not None else self.alpha}_Theta_{theta if theta is not None else self.theta}_L_{L if L is not None else self.L}')
126
+ results_dir = os.path.join(self.saveDir, f'results_{results_date}_{opt_name}')
127
+ if opt_name == OptimizerType.CP_TV.value or opt_name == OptimizerType.CP_KL.value:
128
+ results_dir += f'_Alpha_{self.alpha}_Theta_{self.theta}_L_{self.L}'
113
129
  if not os.path.exists(results_dir):
114
130
  raise FileNotFoundError(f"Directory {results_dir} does not exist.")
115
-
116
131
  # Load reconstruction results
117
132
  recon_key = 'reconPhantom' if withTumor else 'reconLaser'
118
133
  recon_path = os.path.join(results_dir, f'{recon_key}.npy')
119
134
  if not os.path.exists(recon_path):
120
135
  raise FileNotFoundError(f"No reconstruction file found at {recon_path}.")
121
-
122
- if withTumor:
123
- self.reconPhantom = np.load(recon_path, allow_pickle=True)
136
+ data = np.load(recon_path, allow_pickle=True)
137
+ # Découpe en liste de 2D si c'est un tableau 3D
138
+ if isinstance(data, np.ndarray) and data.ndim == 3:
139
+ if withTumor:
140
+ self.reconPhantom = [data[i, :, :] for i in range(data.shape[0])]
141
+ else:
142
+ self.reconLaser = [data[i, :, :] for i in range(data.shape[0])]
124
143
  else:
125
- self.reconLaser = np.load(recon_path, allow_pickle=True)
126
-
127
- # Load saved indices
128
- indices_path = os.path.join(results_dir, 'reconIndices.npy')
129
- if not os.path.exists(indices_path):
130
- raise FileNotFoundError(f"No indices file found at {indices_path}.")
131
-
132
- self.indices = np.load(indices_path, allow_pickle=True)
133
-
134
- print(f"Loaded reconstruction results and indices from {results_dir}")
135
-
136
- def _convexReconPython(self, withTumor):
137
- if withTumor:
138
- y=self.experiment.AOsignal_withTumor
139
-
140
- else:
141
- y=self.experiment.AOsignal_withoutTumor
144
+ if withTumor:
145
+ self.reconPhantom = data
146
+ else:
147
+ self.reconLaser = data
148
+ # Try to load saved indices (if file exists)
149
+ indices_path = os.path.join(results_dir, 'indices.npy')
150
+ if os.path.exists(indices_path):
151
+ indices_data = np.load(indices_path, allow_pickle=True)
152
+ if isinstance(indices_data, np.ndarray) and indices_data.ndim == 3:
153
+ self.indices = [indices_data[i, :, :] for i in range(indices_data.shape[0])]
154
+ else:
155
+ self.indices = indices_data
156
+ else:
157
+ self.indices = None
158
+ if show_logs:
159
+ print(f"Loaded reconstruction results and indices from {results_dir}")
142
160
 
161
+ def _convexReconPython(self, withTumor,show_logs=True):
143
162
  if self.optimizer == OptimizerType.CP_TV:
144
163
  if withTumor:
145
164
  self.reconPhantom, self.indices = CP_TV(
146
- self.SMatrix,
147
- y=self.experiment.AOsignal_withTumor,
148
- alpha=self.alpha,
149
- theta=self.theta,
150
- numIterations=self.numIterations,
151
- isSavingEachIteration=self.isSavingEachIteration,
152
- L=self.L,
153
- withTumor=withTumor,
154
- device=None
155
- )
165
+ SMatrix = self.SMatrix,
166
+ y = self.experiment.AOsignal_withTumor,
167
+ alpha=self.alpha,
168
+ beta=self.beta,
169
+ theta=self.theta,
170
+ numIterations=self.numIterations,
171
+ isSavingEachIteration=self.isSavingEachIteration,
172
+ L=self.L,
173
+ withTumor=withTumor,
174
+ device=self.device,
175
+ max_saves=self.maxSaves,
176
+ show_logs=show_logs,
177
+ smatrixType= self.smatrixType,
178
+ k_security=self.k_security,
179
+ use_power_method=self.use_power_method,
180
+ auto_alpha_gamma=self.auto_alpha_gamma,
181
+ apply_positivity_clamp=self.apply_positivity_clamp,
182
+ tikhonov_as_gradient=self.tikhonov_as_gradient,
183
+ use_laplacian=self.use_laplacian,
184
+ laplacian_beta_scale=self.laplacian_beta_scale
185
+ )
156
186
  else:
157
187
  self.reconLaser, self.indices = CP_TV(
158
- self.SMatrix,
159
- y=self.experiment.AOsignal_withoutTumor,
160
- alpha=self.alpha,
161
- theta=self.theta,
162
- numIterations=self.numIterations,
163
- isSavingEachIteration=self.isSavingEachIteration,
164
- L=self.L,
165
- withTumor=withTumor,
166
- device=None
167
- )
188
+ SMatrix = self.SMatrix,
189
+ y = self.experiment.AOsignal_withoutTumor,
190
+ alpha=self.alpha,
191
+ beta=self.beta,
192
+ theta=self.theta,
193
+ numIterations=self.numIterations,
194
+ isSavingEachIteration=self.isSavingEachIteration,
195
+ L=self.L,
196
+ withTumor=withTumor,
197
+ device=self.device,
198
+ max_saves=self.maxSaves,
199
+ show_logs=show_logs,
200
+ smatrixType= self.smatrixType,
201
+ k_security=self.k_security,
202
+ use_power_method=self.use_power_method,
203
+ auto_alpha_gamma=self.auto_alpha_gamma,
204
+ apply_positivity_clamp=self.apply_positivity_clamp,
205
+ tikhonov_as_gradient=self.tikhonov_as_gradient,
206
+ use_laplacian=self.use_laplacian,
207
+ laplacian_beta_scale=self.laplacian_beta_scale
208
+ )
168
209
  elif self.optimizer == OptimizerType.CP_KL:
169
210
  if withTumor:
170
211
  self.reconPhantom, self.indices = CP_KL(
171
- self.SMatrix,
172
- y=self.experiment.AOsignal_withTumor,
173
- alpha=self.alpha,
174
- theta=self.theta,
175
- numIterations=self.numIterations,
176
- isSavingEachIteration=self.isSavingEachIteration,
177
- L=self.L,
178
- withTumor=withTumor,
179
- device=None
212
+ SMatrix = self.SMatrix,
213
+ y = self.experiment.AOsignal_withTumor,
214
+ alpha=self.alpha,
215
+ beta=self.beta,
216
+ theta=self.theta,
217
+ numIterations=self.numIterations,
218
+ isSavingEachIteration=self.isSavingEachIteration,
219
+ L=self.L,
220
+ withTumor=withTumor,
221
+ device=self.device,
222
+ max_saves=self.maxSaves,
223
+ show_logs=show_logs,
224
+ smatrixType= self.smatrixType,
225
+ k_security=self.k_security,
226
+ use_power_method=self.use_power_method,
227
+ auto_alpha_gamma=self.auto_alpha_gamma,
228
+ apply_positivity_clamp=self.apply_positivity_clamp,
229
+ tikhonov_as_gradient=self.tikhonov_as_gradient,
230
+ use_laplacian=self.use_laplacian,
231
+ laplacian_beta_scale=self.laplacian_beta_scale
180
232
  )
181
233
  else:
182
234
  self.reconLaser, self.indices = CP_KL(
183
- self.SMatrix,
184
- y=self.experiment.AOsignal_withoutTumor,
185
- alpha=self.alpha,
186
- theta=self.theta,
187
- numIterations=self.numIterations,
188
- isSavingEachIteration=self.isSavingEachIteration,
189
- L=self.L,
190
- withTumor=withTumor,
191
- device=None
235
+ SMatrix = self.SMatrix,
236
+ y = self.experiment.AOsignal_withoutTumor,
237
+ alpha=self.alpha,
238
+ beta=self.beta,
239
+ theta=self.theta,
240
+ numIterations=self.numIterations,
241
+ isSavingEachIteration=self.isSavingEachIteration,
242
+ L=self.L,
243
+ withTumor=withTumor,
244
+ device=self.device,
245
+ max_saves=self.maxSaves,
246
+ show_logs=show_logs,
247
+ smatrixType= self.smatrixType,
248
+ k_security=self.k_security,
249
+ use_power_method=self.use_power_method,
250
+ auto_alpha_gamma=self.auto_alpha_gamma,
251
+ apply_positivity_clamp=self.apply_positivity_clamp,
252
+ tikhonov_as_gradient=self.tikhonov_as_gradient,
253
+ use_laplacian=self.use_laplacian,
254
+ laplacian_beta_scale=self.laplacian_beta_scale
192
255
  )
193
256
  else:
194
257
  raise ValueError(f"Optimizer value must be CP_TV or CP_KL, got {self.optimizer}")
@@ -354,8 +354,33 @@ class NoiseType(Enum):
354
354
  - None: No noise is applied.
355
355
  """
356
356
  POISSON = 'poisson'
357
- """Poisson noise, typically used for emission data."""
357
+ """Poisson noise."""
358
358
  GAUSSIAN = 'gaussian'
359
- """Gaussian noise, typically used for transmission data."""
359
+ """Gaussian noise."""
360
360
  None_ = 'none'
361
361
  """No noise is applied."""
362
+
363
+ class SMatrixType(Enum):
364
+ """
365
+ Enum for different sparsing methods used in reconstructions.
366
+
367
+ Selection of sparsing methods:
368
+ - Thresholding: Sparsing based on a threshold value.
369
+ - TopK: Sparsing by retaining the top K values.
370
+ - None: No sparsing is applied.
371
+ """
372
+ DENSE = 'DENSE'
373
+ """No sparsing is applied."""
374
+ CSR = 'CSR'
375
+ """Sparsing based on a threshold value."""
376
+ COO = 'COO'
377
+ """Sparsing by retaining the top K values."""
378
+ SELL = 'SELL'
379
+ """Sparsing using sell C sigma method.
380
+ Optimized variant of ELLPACK, dividing the matrix into fixed-size "chunks" of `C` rows.
381
+ Non-zero elements are sorted by column within each chunk to improve memory coalescing on GPUs.
382
+ Rows are padded with zeros to align their length to the longest row in the chunk.
383
+ ** Ref : Kreutzer, M., Hager, G., Wellein, G., Fehske, H., & Bishop, A. R. (2014).
384
+ "A Unified Sparse Matrix Data Format for Efficient General Sparse Matrix-Vector Multiply on Modern Processors".
385
+ ACM Transactions on Mathematical Software, 41(2), 1–24. DOI: 10.1145/2592376.
386
+ """
@@ -1,9 +1,11 @@
1
1
  import os
2
+ from AOT_biomaps.AOT_Recon.AOT_SparseSMatrix import SparseSMatrix_CSR, SparseSMatrix_SELL
2
3
  import torch
3
4
  import numpy as np
5
+ import pycuda.driver as drv
4
6
  from numba import njit, prange
5
7
  from torch_sparse import coalesce
6
- import torch.nn.functional as F
8
+ from scipy.signal.windows import hann
7
9
 
8
10
  def load_recon(hdr_path):
9
11
  """
@@ -78,7 +80,7 @@ def load_recon(hdr_path):
78
80
  rescale_offset = float(header.get('data rescale offset', 0))
79
81
  image = image * rescale_slope + rescale_offset
80
82
 
81
- return image.T
83
+ return image
82
84
 
83
85
  def mse(y_true, y_pred):
84
86
  """
@@ -150,20 +152,82 @@ def ssim(img1, img2, win_size=7, k1=0.01, k2=0.03, L=1.0):
150
152
  return np.mean(ssim_map)
151
153
 
152
154
  def calculate_memory_requirement(SMatrix, y):
153
- """Calculate the memory requirement for the given matrices in GB."""
154
- num_elements_SMatrix = SMatrix.size
155
- num_elements_y = y.size
156
- num_elements_theta = SMatrix.shape[1] * SMatrix.shape[2] # Assuming theta has shape (Z, X)
155
+ """
156
+ Calcule la mémoire requise (en Go) pour :
157
+ - SMatrix : Matrice (np.ndarray, CuPy CSR, SparseSMatrix_CSR ou SparseSMatrix_SELL)
158
+ - y : vecteur (NumPy ou CuPy, float32)
159
+
160
+ Args:
161
+ SMatrix: Matrix object (np.ndarray, cpsparse.csr_matrix, SparseSMatrix_CSR, or SparseSMatrix_SELL)
162
+ y: Vector (float32)
163
+ """
164
+ total_bytes = 0
165
+
166
+ # --- 1. Memory for SMatrix ---
167
+
168
+ # 1.1. Custom Sparse Matrix (SELL/CSR)
169
+ if isinstance(SMatrix, (SparseSMatrix_SELL, SparseSMatrix_CSR)):
170
+ # We rely on the getMatrixSize method, which we fixed to track all host/GPU bytes.
171
+ # This is the most reliable way to estimate memory for custom GPU-backed structures.
172
+ try:
173
+ matrix_size_gb = SMatrix.getMatrixSize()
174
+ if isinstance(matrix_size_gb, dict) and 'error' in matrix_size_gb:
175
+ raise ValueError(f"SMatrix allocation error: {matrix_size_gb['error']}")
176
+
177
+ # Convert GB back to bytes (1 GB = 1024^3 bytes)
178
+ size_SMatrix = matrix_size_gb * (1024 ** 3)
179
+ total_bytes += size_SMatrix
180
+ print(f"SMatrix (Custom Sparse) size: {matrix_size_gb:.3f} GB")
181
+
182
+ except AttributeError:
183
+ raise AttributeError("Custom Sparse Matrix must implement the getMatrixSize() method.")
184
+
185
+ # 1.2. NumPy Dense Array (Standard)
186
+ elif isinstance(SMatrix, np.ndarray):
187
+ # Dense NumPy array (float32)
188
+ size_SMatrix = SMatrix.nbytes
189
+ total_bytes += size_SMatrix
190
+ print(f"SMatrix (NumPy Dense) size: {size_SMatrix / (1024 ** 3):.3f} GB")
191
+
192
+ # 1.3. CuPy CSR Matrix (Standard Sparse CuPy)
193
+ # Note: Requires CuPy to be imported, which is usually done outside this function.
194
+ # Assuming 'cpsparse.csr_matrix' is available in the environment if this path is taken.
195
+ elif 'cupy.sparse' in str(type(SMatrix)): # Using string check for type safety outside CuPy context
196
+ # CuPy CSR matrix structure: data (float32), indices (int32), indptr (int32)
197
+ nnz = SMatrix.nnz
198
+ num_rows = SMatrix.shape[0]
199
+ size_data = nnz * 4 # float32 = 4 bytes
200
+ size_indices = nnz * 4 # int32 = 4 bytes
201
+ size_indptr = (num_rows + 1) * 4 # int32 = 4 bytes
202
+ size_SMatrix = size_data + size_indices + size_indptr
203
+ total_bytes += size_SMatrix
204
+ print(f"SMatrix (CuPy CSR) size: {size_SMatrix / (1024 ** 3):.3f} GB")
205
+
206
+ else:
207
+ raise ValueError("SMatrix must be a np.ndarray, cpsparse.csr_matrix, or a custom SparseSMatrix object (CSR/SELL).")
208
+
209
+ # --- 2. Memory for Vector y ---
210
+
211
+ # Check if y is a CuPy array or NumPy array (assuming float32 based on docstring)
212
+ if hasattr(y, 'nbytes'):
213
+ size_y = y.nbytes
214
+ total_bytes += size_y
215
+ print(f"Vector y size: {size_y / (1024 ** 3):.3f} GB")
216
+ else:
217
+ # Fallback if object doesn't expose nbytes (e.g., custom buffer), but usually array objects do.
218
+ raise ValueError("Vector y must be an array type exposing the .nbytes attribute.")
219
+
157
220
 
158
- # Calculate total memory requirement in GB
159
- total_memory = (num_elements_SMatrix + num_elements_y + num_elements_theta) * 32 / 8 / 1024**3
160
- return total_memory
221
+ # --- 3. Final Result ---
222
+ return total_bytes / (1024 ** 3)
161
223
 
162
- def check_gpu_memory(device_index, required_memory):
224
+
225
+ def check_gpu_memory(device_index, required_memory, show_logs=True):
163
226
  """Check if enough memory is available on the specified GPU."""
164
- free_memory, total_memory = torch.cuda.mem_get_info(f"cuda:{device_index}")
227
+ free_memory, _ = torch.cuda.mem_get_info(f"cuda:{device_index}")
165
228
  free_memory_gb = free_memory / 1024**3
166
- print(f"Free memory on GPU {device_index}: {free_memory_gb:.2f} GB, Required memory: {required_memory:.2f} GB")
229
+ if show_logs:
230
+ print(f"Free memory on GPU {device_index}: {free_memory_gb:.2f} GB, Required memory: {required_memory:.2f} GB")
167
231
  return free_memory_gb >= required_memory
168
232
 
169
233
  @njit(parallel=True)
@@ -270,3 +334,156 @@ def prox_F_star(y, sigma, a):
270
334
  def prox_G(x, tau, K):
271
335
  return torch.clamp(x - tau * K, min=0)
272
336
 
337
+ def filter_radon(f, N, filter_type, Fc):
338
+ """
339
+ Implémente les filtres pour la rétroprojection filtrée (iRadon).
340
+ Inspirée de la fonction MATLAB FilterRadon de Mamouna Bocoum.
341
+
342
+ Paramètres :
343
+ ------------
344
+ f : np.ndarray
345
+ Vecteur des fréquences (ex: f_t ou f_z).
346
+ N : int
347
+ Taille du filtre (longueur de f).
348
+ filter_type : str
349
+ Type de filtre : 'ram-lak', 'shepp-logan', 'cosine', 'hamming', 'hann'.
350
+ Fc : float
351
+ Fréquence de coupure.
352
+
353
+ Retourne :
354
+ -----------
355
+ FILTER : np.ndarray
356
+ Filtre appliqué aux fréquences.
357
+ """
358
+ FILTER = np.abs(f)
359
+
360
+ if filter_type == 'ram-lak':
361
+ pass # FILTER = |f| (déjà calculé)
362
+ elif filter_type == 'shepp-logan':
363
+ # Évite la division par zéro
364
+ with np.errstate(divide='ignore', invalid='ignore'):
365
+ FILTER = FILTER * (np.sinc(2 * f / (2 * Fc))) # sin(2πf/(2Fc))/(2πf/(4Fc)) = sinc(2f/(2Fc))
366
+ FILTER[np.isnan(FILTER)] = 1.0 # Pour f=0
367
+ elif filter_type == 'cosine':
368
+ FILTER = FILTER * np.cos(2 * np.pi * f / (4 * Fc))
369
+ elif filter_type == 'hamming':
370
+ FILTER = FILTER * (0.54 + 0.46 * np.cos(2 * np.pi * f / Fc))
371
+ elif filter_type == 'hann':
372
+ FILTER = FILTER * (1 + np.cos(2 * np.pi * f / (4 * Fc))) / 2
373
+ else:
374
+ raise ValueError(f"Type de filtre inconnu : {filter_type}")
375
+
376
+ # Coupure des fréquences au-delà de Fc
377
+ FILTER[np.abs(f) > Fc] = 0
378
+ # Atténuation exponentielle (optionnelle, comme dans le code MATLAB)
379
+ FILTER = FILTER * np.exp(-2 * (np.abs(f) / Fc)**10)
380
+
381
+ return FILTER
382
+
383
+ def compute_TV_cpu(x, Z, X, isotropic=False):
384
+ """
385
+ Compute total variation of x (1D flattened of shape Z*X).
386
+ isotropic=False -> anisotropic (sum |dx| + |dy|)
387
+ isotropic=True -> isotropic sqrt(dx^2 + dy^2)
388
+ """
389
+ x2d = x.reshape(Z, X)
390
+ dx = np.diff(x2d, axis=1)
391
+ dy = np.diff(x2d, axis=0)
392
+ if isotropic:
393
+ # pad to original size for consistent measure (we only need sum of norms)
394
+ mags = np.sqrt(dx**2 + dy**2)
395
+ return float(np.sum(mags))
396
+ else:
397
+ return float(np.sum(np.abs(dx)) + np.sum(np.abs(dy)))
398
+
399
+ def get_apodization_vector_gpu(matrix_sparse_obj):
400
+ """
401
+ Génère un vecteur de fenêtrage 2D (Hanning) pour l'apodisation
402
+ de la matrice système A et le transfère sur le GPU.
403
+ Ce vecteur doit être multiplié par les colonnes de A (pixels Z*X).
404
+ """
405
+ Z = matrix_sparse_obj.Z
406
+ X = matrix_sparse_obj.X
407
+
408
+ # 1. Génération des fenêtres 1D sur l'axe X et Z
409
+ # Forte apodisation latérale (X) pour cibler l'artefact de bordure.
410
+ fenetre_x = hann(X).astype(np.float32)
411
+
412
+ # Fenêtre uniforme en profondeur (Z), car l'artefact est surtout latéral.
413
+ fenetre_z = np.ones(Z, dtype=np.float32)
414
+
415
+ # 2. Création de la matrice de fenêtre 2D (Z, X)
416
+ fenetre_2d = np.outer(fenetre_z, fenetre_x)
417
+
418
+ # 3. Vectorisation (Z*X)
419
+ fenetre_vectorisee = fenetre_2d.flatten()
420
+
421
+ # 4. Transfert sur GPU (mémoire contiguë)
422
+ fenetre_gpu = drv.mem_alloc(fenetre_vectorisee.nbytes)
423
+ drv.memcpy_htod(fenetre_gpu, fenetre_vectorisee)
424
+
425
+ print(f"✅ Vecteur de fenêtrage (Z*X={Z*X}) généré et transféré sur GPU.")
426
+
427
+ return fenetre_gpu
428
+
429
+ def _call_axpby(axpby_kernel, out_ptr, x_ptr, y_ptr, a, b, N, stream, block):
430
+ grid = ((int(N) + block - 1) // block, 1, 1)
431
+ axpby_kernel(out_ptr, x_ptr, y_ptr,
432
+ np.float32(a), np.float32(b),
433
+ np.int32(N),
434
+ block=(block, 1, 1), grid=grid, stream=stream)
435
+
436
+ def _call_minus_axpy(minus_kernel, out_ptr, z_ptr, a, N, stream, block):
437
+ grid = ((int(N) + block - 1) // block, 1, 1)
438
+ minus_kernel(out_ptr, z_ptr, np.float32(a), np.int32(N),
439
+ block=(block, 1, 1), grid=grid, stream=stream)
440
+
441
+ def power_method_estimate_L__SELL(SMatrix, stream, n_it=20, block_size=256):
442
+ """Estimate ||A||^2 using power method (uses your projection/backprojection kernels)."""
443
+ TN = int(SMatrix.N * SMatrix.T)
444
+ ZX = int(SMatrix.Z * SMatrix.X)
445
+ proj = SMatrix.sparse_mod.get_function("projection_kernel__SELL")
446
+ back = SMatrix.sparse_mod.get_function("backprojection_kernel__SELL")
447
+ TN_i = np.int32(TN)
448
+ ZX_i = np.int32(ZX)
449
+ slice_h = np.int32(SMatrix.slice_height)
450
+ grid_rows = ((TN + block_size - 1) // block_size, 1, 1)
451
+ block_1D = (block_size, 1, 1)
452
+
453
+ dtype = np.float32
454
+ x_host = np.random.randn(ZX).astype(dtype)
455
+ x_host /= np.linalg.norm(x_host) + 1e-12
456
+ x_gpu = drv.mem_alloc(x_host.nbytes)
457
+ drv.memcpy_htod_async(x_gpu, x_host, stream)
458
+ q_gpu = drv.mem_alloc(TN * np.dtype(dtype).itemsize)
459
+ ATq_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize)
460
+ ATq_host = np.empty(ZX, dtype=dtype)
461
+
462
+ for _ in range(n_it):
463
+ proj(q_gpu, SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
464
+ x_gpu, TN_i, slice_h, block=block_1D, grid=grid_rows, stream=stream)
465
+ drv.memset_d32_async(ATq_gpu, 0, ZX, stream)
466
+ back(SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
467
+ q_gpu, ATq_gpu, TN_i, slice_h, block=block_1D, grid=grid_rows, stream=stream)
468
+ stream.synchronize()
469
+ drv.memcpy_dtoh(ATq_host, ATq_gpu)
470
+ norm = np.linalg.norm(ATq_host)
471
+ if norm < 1e-12:
472
+ break
473
+ x_host = ATq_host / norm
474
+ drv.memcpy_htod_async(x_gpu, x_host, stream)
475
+ # final Rayleigh quotient
476
+ proj(q_gpu, SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
477
+ x_gpu, TN_i, slice_h, block=block_1D, grid=grid_rows, stream=stream)
478
+ drv.memset_d32_async(ATq_gpu, 0, ZX, stream)
479
+ back(SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
480
+ q_gpu, ATq_gpu, TN_i, slice_h, block=block_1D, grid=grid_rows, stream=stream)
481
+ stream.synchronize()
482
+ drv.memcpy_dtoh(ATq_host, ATq_gpu)
483
+ L_sq = float(np.dot(x_host, ATq_host))
484
+ for g in (x_gpu, q_gpu, ATq_gpu):
485
+ try:
486
+ g.free()
487
+ except:
488
+ pass
489
+ return max(L_sq, 1e-6)
@@ -9,3 +9,4 @@ from .ReconTools import *
9
9
 
10
10
 
11
11
 
12
+