AOT-biomaps 2.9.186__py3-none-any.whl → 2.9.294__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AOT-biomaps might be problematic. Click here for more details.
- AOT_biomaps/AOT_Acoustic/StructuredWave.py +2 -2
- AOT_biomaps/AOT_Acoustic/_mainAcoustic.py +11 -6
- AOT_biomaps/AOT_Experiment/Tomography.py +74 -4
- AOT_biomaps/AOT_Experiment/_mainExperiment.py +95 -55
- AOT_biomaps/AOT_Recon/AOT_Optimizers/DEPIERRO.py +48 -13
- AOT_biomaps/AOT_Recon/AOT_Optimizers/LS.py +406 -13
- AOT_biomaps/AOT_Recon/AOT_Optimizers/MAPEM.py +118 -38
- AOT_biomaps/AOT_Recon/AOT_Optimizers/MLEM.py +303 -102
- AOT_biomaps/AOT_Recon/AOT_Optimizers/PDHG.py +443 -12
- AOT_biomaps/AOT_Recon/AOT_PotentialFunctions/RelativeDifferences.py +10 -14
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_CSR.py +274 -0
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_SELL.py +328 -0
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/__init__.py +2 -0
- AOT_biomaps/AOT_Recon/AOT_biomaps_kernels.cubin +0 -0
- AOT_biomaps/AOT_Recon/AlgebraicRecon.py +243 -113
- AOT_biomaps/AOT_Recon/AnalyticRecon.py +26 -41
- AOT_biomaps/AOT_Recon/BayesianRecon.py +81 -146
- AOT_biomaps/AOT_Recon/PrimalDualRecon.py +157 -94
- AOT_biomaps/AOT_Recon/ReconEnums.py +27 -2
- AOT_biomaps/AOT_Recon/ReconTools.py +229 -12
- AOT_biomaps/AOT_Recon/__init__.py +1 -0
- AOT_biomaps/AOT_Recon/_mainRecon.py +60 -53
- AOT_biomaps/__init__.py +4 -69
- {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.294.dist-info}/METADATA +2 -1
- aot_biomaps-2.9.294.dist-info/RECORD +47 -0
- aot_biomaps-2.9.186.dist-info/RECORD +0 -43
- {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.294.dist-info}/WHEEL +0 -0
- {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.294.dist-info}/top_level.txt +0 -0
|
@@ -51,56 +51,41 @@ class AnalyticRecon(Recon):
|
|
|
51
51
|
def _iFourierRecon(self, AOsignal):
|
|
52
52
|
"""
|
|
53
53
|
Reconstruction d'image utilisant la transformation de Fourier inverse.
|
|
54
|
-
|
|
55
|
-
:param AOsignal: Signal dans le domaine temporel.
|
|
54
|
+
:param AOsignal: Signal dans le domaine temporel (shape: N_t, N_theta).
|
|
56
55
|
:return: Image reconstruite dans le domaine spatial.
|
|
57
56
|
"""
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
f_s = np.array([af.f_s for af in self.experiment.AcousticFields]) # spatial freqs (N_theta,)
|
|
63
|
-
f_t = np.fft.fftfreq(AOsignal.shape[0], d=self.experiment.dt) # temporal freqs
|
|
64
|
-
|
|
57
|
+
theta = np.array([af.angle for af in self.experiment.AcousticFields])
|
|
58
|
+
f_s = np.array([af.f_s for af in self.experiment.AcousticFields])
|
|
59
|
+
dt = self.experiment.dt
|
|
60
|
+
f_t = np.fft.fftfreq(AOsignal.shape[0], d=dt) # fréquences temporelles
|
|
65
61
|
x = self.experiment.OpticImage.laser.x
|
|
66
62
|
z = self.experiment.OpticImage.laser.z
|
|
67
|
-
X, Z = np.meshgrid(x, z, indexing='ij') #
|
|
68
|
-
|
|
69
|
-
N_theta = len(theta)
|
|
70
|
-
I_rec = np.zeros((len(x), len(z)), dtype=complex)
|
|
71
|
-
|
|
72
|
-
for i, th in enumerate(trange(N_theta, desc="AOT-BioMaps -- Analytic Recontruction Tomography : iFourier (Processing projection) ---- processing on single CPU ----")):
|
|
73
|
-
fs = f_s[i]
|
|
74
|
-
|
|
75
|
-
# Projection des coordonnées dans le repère tourné
|
|
76
|
-
x_prime = X * np.cos(th) + Z * np.sin(th)
|
|
77
|
-
z_prime = -X * np.sin(th) + Z * np.cos(th)
|
|
78
|
-
|
|
79
|
-
# Signal spectral pour cet angle (1D pour chaque f_t)
|
|
80
|
-
s_angle = s_tilde[:, i] # shape (len(f_t),)
|
|
63
|
+
X, Z = np.meshgrid(x, z, indexing='ij') # grille spatiale (Nx, Nz)
|
|
81
64
|
|
|
82
|
-
|
|
83
|
-
|
|
65
|
+
# Transformée de Fourier du signal
|
|
66
|
+
s_tilde = np.fft.fft(AOsignal, axis=0) # shape: (N_t, N_theta)
|
|
84
67
|
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
# reshape s_angle to (len(f_t), 1, 1)
|
|
89
|
-
s_angle = s_angle[:, None, None]
|
|
90
|
-
|
|
91
|
-
# Contribution de cet angle
|
|
92
|
-
integrand = s_angle * np.exp(phase)
|
|
93
|
-
|
|
94
|
-
# Intégration sur f_t (somme discrète)
|
|
95
|
-
I_theta = np.sum(integrand, axis=0)
|
|
96
|
-
|
|
97
|
-
# Ajout à la reconstruction
|
|
98
|
-
I_rec += I_theta
|
|
99
|
-
|
|
100
|
-
I_rec /= N_theta
|
|
68
|
+
# Initialisation de l'image reconstruite
|
|
69
|
+
I_rec = np.zeros((len(x), len(z)), dtype=complex)
|
|
101
70
|
|
|
71
|
+
# Boucle sur les angles
|
|
72
|
+
for i, th in enumerate(trange(len(theta), desc="AOT-BioMaps -- iFourier Reconstruction")):
|
|
73
|
+
# Coordonnées tournées
|
|
74
|
+
X_prime = X * np.cos(th) + Z * np.sin(th)
|
|
75
|
+
Z_prime = -X * np.sin(th) + Z * np.cos(th)
|
|
76
|
+
|
|
77
|
+
# Pour chaque fréquence temporelle f_t[j]
|
|
78
|
+
for j in range(len(f_t)):
|
|
79
|
+
# Phase: exp(2jπ (X_prime * f_s[i] + Z_prime * f_t[j]))
|
|
80
|
+
phase = 2j * np.pi * (X_prime * f_s[i] + Z_prime * f_t[j])
|
|
81
|
+
# Contribution de cette fréquence
|
|
82
|
+
I_rec += s_tilde[j, i] * np.exp(phase) * dt # Pondération par dt pour l'intégration
|
|
83
|
+
|
|
84
|
+
# Normalisation
|
|
85
|
+
I_rec /= len(theta)
|
|
102
86
|
return np.abs(I_rec)
|
|
103
87
|
|
|
88
|
+
|
|
104
89
|
def _iRadonRecon(self, AOsignal):
|
|
105
90
|
"""
|
|
106
91
|
Reconstruction d'image utilisant la méthode iRadon.
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
from AOT_biomaps.AOT_Recon.AlgebraicRecon import AlgebraicRecon
|
|
2
2
|
from AOT_biomaps.AOT_Recon.ReconEnums import ReconType, OptimizerType, PotentialType, ProcessType
|
|
3
3
|
from .ReconTools import check_gpu_memory, calculate_memory_requirement
|
|
4
|
-
from .AOT_Optimizers import MAPEM, DEPIERRO
|
|
4
|
+
from .AOT_Optimizers import MAPEM, MAPEM_STOP, DEPIERRO
|
|
5
5
|
from AOT_biomaps.Config import config
|
|
6
6
|
|
|
7
7
|
import warnings
|
|
@@ -66,25 +66,18 @@ class BayesianRecon(AlgebraicRecon):
|
|
|
66
66
|
dir_name += f'_Beta_{self.beta}_Sigma_{self.sigma}'
|
|
67
67
|
|
|
68
68
|
results_dir = os.path.join(self.saveDir, dir_name)
|
|
69
|
+
if not os.path.exists(results_dir):
|
|
70
|
+
os.makedirs(results_dir)
|
|
69
71
|
|
|
70
|
-
if os.path.exists(results_dir):
|
|
72
|
+
if os.path.exists(os.path.join(results_dir,"indices.npy")):
|
|
71
73
|
return (True, results_dir)
|
|
72
74
|
|
|
73
75
|
return (False, results_dir)
|
|
74
76
|
|
|
75
|
-
def load(self, withTumor=True, results_date=None, optimizer=None, potential_function=None,
|
|
77
|
+
def load(self, withTumor=True, results_date=None, optimizer=None, potential_function=None, filePath=None, show_logs=True):
|
|
76
78
|
"""
|
|
77
|
-
Load the reconstruction results and indices for Bayesian reconstruction and store them in self.
|
|
78
|
-
|
|
79
|
-
withTumor (bool): If True, loads the reconstruction with tumor; otherwise, loads the reconstruction without tumor.
|
|
80
|
-
results_date (str): Date string (format "ddmm") to specify which results to load. If None, uses the most recent date in saveDir.
|
|
81
|
-
optimizer (OptimizerType): Optimizer type to filter results. If None, uses the current optimizer of the instance.
|
|
82
|
-
potential_function (PotentialType): Potential function type to filter results. If None, uses the current potential function of the instance.
|
|
83
|
-
beta (float): Beta parameter to match the saved directory. If None, skips this filter.
|
|
84
|
-
delta (float): Delta parameter to match the saved directory. If None, skips this filter.
|
|
85
|
-
gamma (float): Gamma parameter to match the saved directory. If None, skips this filter.
|
|
86
|
-
sigma (float): Sigma parameter to match the saved directory. If None, skips this filter.
|
|
87
|
-
filePath (str): Optional. If provided, loads directly from this path (overrides saveDir and results_date).
|
|
79
|
+
Load the reconstruction results and indices as lists of 2D np arrays for Bayesian reconstruction and store them in self.
|
|
80
|
+
If the loaded file is a 3D array, it is split into a list of 2D arrays.
|
|
88
81
|
"""
|
|
89
82
|
if filePath is not None:
|
|
90
83
|
# Mode chargement direct depuis un fichier
|
|
@@ -92,53 +85,55 @@ class BayesianRecon(AlgebraicRecon):
|
|
|
92
85
|
recon_path = filePath
|
|
93
86
|
if not os.path.exists(recon_path):
|
|
94
87
|
raise FileNotFoundError(f"No reconstruction file found at {recon_path}.")
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
88
|
+
# Charge le fichier (3D ou liste de 2D)
|
|
89
|
+
data = np.load(recon_path, allow_pickle=True)
|
|
90
|
+
# Découpe en liste de 2D si c'est un tableau 3D
|
|
91
|
+
if isinstance(data, np.ndarray) and data.ndim == 3:
|
|
92
|
+
if withTumor:
|
|
93
|
+
self.reconPhantom = [data[i, :, :] for i in range(data.shape[0])]
|
|
94
|
+
else:
|
|
95
|
+
self.reconLaser = [data[i, :, :] for i in range(data.shape[0])]
|
|
98
96
|
else:
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
97
|
+
# Sinon, suppose que c'est déjà une liste de 2D
|
|
98
|
+
if withTumor:
|
|
99
|
+
self.reconPhantom = data
|
|
100
|
+
else:
|
|
101
|
+
self.reconLaser = data
|
|
102
|
+
# Essayer de charger les indices
|
|
103
|
+
base_dir, _ = os.path.split(recon_path)
|
|
104
|
+
indices_path = os.path.join(base_dir, 'indices.npy')
|
|
105
105
|
if os.path.exists(indices_path):
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
if os.path.exists(indices_path):
|
|
110
|
-
self.indices = np.load(indices_path, allow_pickle=True)
|
|
106
|
+
indices_data = np.load(indices_path, allow_pickle=True)
|
|
107
|
+
if isinstance(indices_data, np.ndarray) and indices_data.ndim == 3:
|
|
108
|
+
self.indices = [indices_data[i, :, :] for i in range(indices_data.shape[0])]
|
|
111
109
|
else:
|
|
112
|
-
self.indices =
|
|
113
|
-
|
|
114
|
-
|
|
110
|
+
self.indices = indices_data
|
|
111
|
+
else:
|
|
112
|
+
self.indices = None
|
|
113
|
+
if show_logs:
|
|
114
|
+
print(f"Loaded reconstruction results and indices from {recon_path}")
|
|
115
115
|
else:
|
|
116
116
|
# Mode chargement depuis le répertoire de résultats
|
|
117
117
|
if self.saveDir is None:
|
|
118
118
|
raise ValueError("Save directory is not specified. Please set saveDir before loading.")
|
|
119
|
-
|
|
120
119
|
# Use current optimizer and potential function if not provided
|
|
121
120
|
opt_name = optimizer.value if optimizer is not None else self.optimizer.value
|
|
122
121
|
pot_name = potential_function.value if potential_function is not None else self.potentialFunction.value
|
|
123
|
-
|
|
124
122
|
# Build the base directory pattern
|
|
125
123
|
dir_pattern = f'results_*_{opt_name}_{pot_name}'
|
|
126
|
-
|
|
127
124
|
# Add parameters to the pattern based on the optimizer
|
|
128
125
|
if optimizer is None:
|
|
129
126
|
optimizer = self.optimizer
|
|
130
|
-
|
|
131
127
|
if optimizer == OptimizerType.PPGMLEM:
|
|
132
|
-
beta_str = f'_Beta_{
|
|
133
|
-
delta_str = f'_Delta_{
|
|
134
|
-
gamma_str = f'_Gamma_{
|
|
135
|
-
sigma_str = f'_Sigma_{
|
|
128
|
+
beta_str = f'_Beta_{self.beta}'
|
|
129
|
+
delta_str = f'_Delta_{self.delta}'
|
|
130
|
+
gamma_str = f'_Gamma_{self.gamma}'
|
|
131
|
+
sigma_str = f'_Sigma_{self.sigma}'
|
|
136
132
|
dir_pattern += f'{beta_str}{delta_str}{gamma_str}{sigma_str}'
|
|
137
133
|
elif optimizer in (OptimizerType.PGC, OptimizerType.DEPIERRO95):
|
|
138
|
-
beta_str = f'_Beta_{
|
|
139
|
-
sigma_str = f'_Sigma_{
|
|
134
|
+
beta_str = f'_Beta_{self.beta}'
|
|
135
|
+
sigma_str = f'_Sigma_{self.sigma}'
|
|
140
136
|
dir_pattern += f'{beta_str}{sigma_str}'
|
|
141
|
-
|
|
142
137
|
# Find the most recent results directory if no date is specified
|
|
143
138
|
if results_date is None:
|
|
144
139
|
dirs = [d for d in os.listdir(self.saveDir) if os.path.isdir(os.path.join(self.saveDir, d)) and dir_pattern in d]
|
|
@@ -149,33 +144,40 @@ class BayesianRecon(AlgebraicRecon):
|
|
|
149
144
|
else:
|
|
150
145
|
results_dir = os.path.join(self.saveDir, f'results_{results_date}_{opt_name}_{pot_name}')
|
|
151
146
|
if optimizer == OptimizerType.PPGMLEM:
|
|
152
|
-
results_dir += f'_Beta_{
|
|
147
|
+
results_dir += f'_Beta_{self.beta}_Delta_{self.delta}_Gamma_{self.gamma}_Sigma_{self.sigma}'
|
|
153
148
|
elif optimizer in (OptimizerType.PGC, OptimizerType.DEPIERRO95):
|
|
154
|
-
results_dir += f'_Beta_{
|
|
149
|
+
results_dir += f'_Beta_{self.beta}_Sigma_{self.sigma}'
|
|
155
150
|
if not os.path.exists(results_dir):
|
|
156
151
|
raise FileNotFoundError(f"Directory {results_dir} does not exist.")
|
|
157
|
-
|
|
158
152
|
# Load reconstruction results
|
|
159
153
|
recon_key = 'reconPhantom' if withTumor else 'reconLaser'
|
|
160
154
|
recon_path = os.path.join(results_dir, f'{recon_key}.npy')
|
|
161
155
|
if not os.path.exists(recon_path):
|
|
162
156
|
raise FileNotFoundError(f"No reconstruction file found at {recon_path}.")
|
|
163
|
-
|
|
164
|
-
if
|
|
165
|
-
|
|
157
|
+
data = np.load(recon_path, allow_pickle=True)
|
|
158
|
+
if isinstance(data, np.ndarray) and data.ndim == 3:
|
|
159
|
+
if withTumor:
|
|
160
|
+
self.reconPhantom = [data[i, :, :] for i in range(data.shape[0])]
|
|
161
|
+
else:
|
|
162
|
+
self.reconLaser = [data[i, :, :] for i in range(data.shape[0])]
|
|
166
163
|
else:
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
164
|
+
if withTumor:
|
|
165
|
+
self.reconPhantom = data
|
|
166
|
+
else:
|
|
167
|
+
self.reconLaser = data
|
|
168
|
+
# Load saved indices as list of 2D arrays
|
|
169
|
+
indices_path = os.path.join(results_dir, 'indices.npy')
|
|
171
170
|
if not os.path.exists(indices_path):
|
|
172
171
|
raise FileNotFoundError(f"No indices file found at {indices_path}.")
|
|
172
|
+
indices_data = np.load(indices_path, allow_pickle=True)
|
|
173
|
+
if isinstance(indices_data, np.ndarray) and indices_data.ndim == 3:
|
|
174
|
+
self.indices = [indices_data[i, :, :] for i in range(indices_data.shape[0])]
|
|
175
|
+
else:
|
|
176
|
+
self.indices = indices_data
|
|
177
|
+
if show_logs:
|
|
178
|
+
print(f"Loaded reconstruction results and indices from {results_dir}")
|
|
173
179
|
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
print(f"Loaded reconstruction results and indices from {results_dir}")
|
|
177
|
-
|
|
178
|
-
def run(self, processType=ProcessType.PYTHON, withTumor=True):
|
|
180
|
+
def run(self, processType=ProcessType.PYTHON, withTumor=True, show_logs=True):
|
|
179
181
|
"""
|
|
180
182
|
This method is a placeholder for the Bayesian reconstruction process.
|
|
181
183
|
It currently does not perform any operations but serves as a template for future implementations.
|
|
@@ -187,109 +189,42 @@ class BayesianRecon(AlgebraicRecon):
|
|
|
187
189
|
else:
|
|
188
190
|
raise ValueError(f"Unknown Bayesian reconstruction type: {processType}")
|
|
189
191
|
|
|
190
|
-
def _bayesianReconCASToR(self, withTumor):
|
|
192
|
+
def _bayesianReconCASToR(self, show_logs, withTumor):
|
|
191
193
|
raise NotImplementedError("CASToR Bayesian reconstruction is not implemented yet.")
|
|
192
194
|
|
|
193
|
-
def _bayesianReconPython(self, withTumor):
|
|
194
|
-
|
|
195
|
+
def _bayesianReconPython(self, show_logs, withTumor):
|
|
195
196
|
if withTumor:
|
|
196
197
|
if self.experiment.AOsignal_withTumor is None:
|
|
197
198
|
raise ValueError("AO signal with tumor is not available. Please generate AO signal with tumor the experiment first in the experiment object.")
|
|
198
199
|
if self.optimizer.value == OptimizerType.PPGMLEM.value:
|
|
199
|
-
self.reconPhantom, self.indices =
|
|
200
|
+
self.reconPhantom, self.indices = MAPEM_STOP(
|
|
201
|
+
SMatrix=self.SMatrix,
|
|
202
|
+
y=self.experiment.AOsignal_withTumor,
|
|
203
|
+
Omega=self.potentialFunction,
|
|
204
|
+
beta=self.beta,
|
|
205
|
+
delta=self.delta,
|
|
206
|
+
gamma=self.gamma,
|
|
207
|
+
sigma=self.sigma,
|
|
208
|
+
numIterations=self.numIterations,
|
|
209
|
+
isSavingEachIteration=self.isSavingEachIteration,
|
|
210
|
+
withTumor=withTumor,
|
|
211
|
+
device=self.device,
|
|
212
|
+
max_saves=5000,
|
|
213
|
+
show_logs=True)
|
|
200
214
|
elif self.optimizer.value == OptimizerType.PGC.value:
|
|
201
|
-
self.reconPhantom, self.indices =
|
|
215
|
+
self.reconPhantom, self.indices = MAPEM(SMatrix=self.SMatrix, y=self.experiment.AOsignal_withTumor, withTumor=withTumor, show_logs=show_logs)
|
|
202
216
|
elif self.optimizer.value == OptimizerType.DEPIERRO95.value:
|
|
203
|
-
self.reconPhantom, self.indices =
|
|
217
|
+
self.reconPhantom, self.indices = DEPIERRO(SMatrix=self.SMatrix, y=self.experiment.AOsignal_withTumor, withTumor=withTumor, show_logs=show_logs)
|
|
204
218
|
else:
|
|
205
219
|
raise ValueError(f"Unknown optimizer type: {self.optimizer.value}")
|
|
206
220
|
else:
|
|
207
221
|
if self.experiment.AOsignal_withoutTumor is None:
|
|
208
222
|
raise ValueError("AO signal without tumor is not available. Please generate AO signal without tumor the experiment first in the experiment object.")
|
|
209
223
|
if self.optimizer.value == OptimizerType.PPGMLEM.value:
|
|
210
|
-
self.reconLaser, self.indices =
|
|
224
|
+
self.reconLaser, self.indices = MAPEM_STOP(SMatrix=self.SMatrix, y=self.experiment.AOsignal_withoutTumor, withTumor=withTumor, show_logs=show_logs)
|
|
211
225
|
elif self.optimizer.value == OptimizerType.PGC.value:
|
|
212
|
-
self.reconLaser, self.indices =
|
|
226
|
+
self.reconLaser, self.indices = MAPEM(SMatrix=self.SMatrix, y=self.experiment.AOsignal_withoutTumor, withTumor=withTumor, show_logs=show_logs)
|
|
213
227
|
elif self.optimizer.value == OptimizerType.DEPIERRO95.value:
|
|
214
|
-
self.reconLaser, self.indices =
|
|
228
|
+
self.reconLaser, self.indices = DEPIERRO(SMatrix=self.SMatrix, y=self.experiment.AOsignal_withoutTumor, withTumor=withTumor, show_logs=show_logs)
|
|
215
229
|
else:
|
|
216
|
-
raise ValueError(f"Unknown optimizer type: {self.optimizer.value}")
|
|
217
|
-
|
|
218
|
-
def _MAPEM_STOP(self, SMatrix, y, withTumor):
|
|
219
|
-
"""
|
|
220
|
-
This method implements the MAPEM_STOP algorithm using either CPU or single-GPU PyTorch acceleration.
|
|
221
|
-
Multi-GPU and Multi-CPU modes are not implemented for this algorithm.
|
|
222
|
-
"""
|
|
223
|
-
result = None
|
|
224
|
-
required_memory = calculate_memory_requirement(SMatrix, y)
|
|
225
|
-
|
|
226
|
-
if self.isGPU:
|
|
227
|
-
if check_gpu_memory(config.select_best_gpu(), required_memory):
|
|
228
|
-
try:
|
|
229
|
-
result = MAPEM._MAPEM_GPU_STOP(SMatrix=SMatrix, y=y, Omega=self.potentialFunction, numIterations=self.numIterations, beta=self.beta, delta=self.delta, gamma=self.gamma, sigma=self.sigma, isSavingEachIteration=self.isSavingEachIteration, withTumor=withTumor)
|
|
230
|
-
except Exception as e:
|
|
231
|
-
warnings.warn(f"Falling back to CPU implementation due to an error in GPU implementation: {e}")
|
|
232
|
-
else:
|
|
233
|
-
warnings.warn("Insufficient GPU memory for single GPU MAPEM_STOP. Falling back to CPU.")
|
|
234
|
-
|
|
235
|
-
if result is None:
|
|
236
|
-
try:
|
|
237
|
-
result = MAPEM._MAPEM_CPU_STOP(SMatrix=SMatrix, y=y, Omega=self.potentialFunction, numIterations=self.numIterations, beta=self.beta, delta=self.delta, gamma=self.gamma, sigma=self.sigma, isSavingEachIteration=self.isSavingEachIteration, withTumor=withTumor)
|
|
238
|
-
except Exception as e:
|
|
239
|
-
warnings.warn(f"An error occurred in CPU implementation: {e}")
|
|
240
|
-
result = None
|
|
241
|
-
|
|
242
|
-
return result
|
|
243
|
-
|
|
244
|
-
def _MAPEM(self, SMatrix, y, withTumor):
|
|
245
|
-
"""
|
|
246
|
-
This method implements the MAPEM algorithm using either CPU or single-GPU PyTorch acceleration.
|
|
247
|
-
Multi-GPU and Multi-CPU modes are not implemented for this algorithm.
|
|
248
|
-
"""
|
|
249
|
-
result = None
|
|
250
|
-
required_memory = calculate_memory_requirement(SMatrix, y)
|
|
251
|
-
|
|
252
|
-
if self.isGPU:
|
|
253
|
-
if check_gpu_memory(config.select_best_gpu(), required_memory):
|
|
254
|
-
try:
|
|
255
|
-
result = MAPEM._MAPEM_GPU(SMatrix=SMatrix, y=y, Omega=self.potentialFunction, numIterations=self.numIterations, beta=self.beta, delta=self.delta, gamma=self.gamma, sigma=self.sigma, isSavingEachIteration=self.isSavingEachIteration, withTumor=withTumor)
|
|
256
|
-
except Exception as e:
|
|
257
|
-
warnings.warn(f"Falling back to CPU implementation due to an error in GPU implementation: {e}")
|
|
258
|
-
else:
|
|
259
|
-
warnings.warn("Insufficient GPU memory for single GPU MAPEM. Falling back to CPU.")
|
|
260
|
-
|
|
261
|
-
if result is None:
|
|
262
|
-
try:
|
|
263
|
-
result = MAPEM._MAPEM_CPU(SMatrix=SMatrix, y=y, Omega=self.potentialFunction, numIterations=self.numIterations, beta=self.beta, delta=self.delta, gamma=self.gamma, sigma=self.sigma, isSavingEachIteration=self.isSavingEachIteration, withTumor=withTumor)
|
|
264
|
-
except Exception as e:
|
|
265
|
-
warnings.warn(f"An error occurred in CPU implementation: {e}")
|
|
266
|
-
result = None
|
|
267
|
-
|
|
268
|
-
return result
|
|
269
|
-
|
|
270
|
-
def _DEPIERRO(self, SMatrix, y, withTumor):
|
|
271
|
-
"""
|
|
272
|
-
This method implements the DEPIERRO algorithm using either CPU or single-GPU PyTorch acceleration.
|
|
273
|
-
Multi-GPU and Multi-CPU modes are not implemented for this algorithm.
|
|
274
|
-
"""
|
|
275
|
-
result = None
|
|
276
|
-
required_memory = calculate_memory_requirement(SMatrix, y)
|
|
277
|
-
|
|
278
|
-
if self.isGPU:
|
|
279
|
-
if check_gpu_memory(config.select_best_gpu(), required_memory):
|
|
280
|
-
try:
|
|
281
|
-
result = DEPIERRO._DEPIERRO_GPU(SMatrix=SMatrix, y=y, Omega=self.potentialFunction, numIterations=self.numIterations, beta=self.beta, sigma=self.sigma, isSavingEachIteration=self.isSavingEachIteration, withTumor=withTumor)
|
|
282
|
-
except Exception as e:
|
|
283
|
-
warnings.warn(f"Falling back to CPU implementation due to an error in GPU implementation: {e}")
|
|
284
|
-
else:
|
|
285
|
-
warnings.warn("Insufficient GPU memory for single GPU DEPIERRO. Falling back to CPU.")
|
|
286
|
-
|
|
287
|
-
if result is None:
|
|
288
|
-
try:
|
|
289
|
-
result = DEPIERRO._DEPIERRO_CPU(SMatrix=SMatrix, y=y, Omega=self.potentialFunction, numIterations=self.numIterations, beta=self.beta, sigma=self.sigma, isSavingEachIteration=self.isSavingEachIteration, withTumor=withTumor)
|
|
290
|
-
except Exception as e:
|
|
291
|
-
warnings.warn(f"An error occurred in CPU implementation: {e}")
|
|
292
|
-
result = None
|
|
293
|
-
|
|
294
|
-
return result
|
|
295
|
-
|
|
230
|
+
raise ValueError(f"Unknown optimizer type: {self.optimizer.value}")
|